
The Strategy Challenge in
SMT Solving (part I)
IWS 2012, Manchester, UK

Leonardo de Moura (Microsoft Research) and
Grant Passmore (University of Cambridge)

A Satisfiability Checker

 with built-in support for useful theories

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic Array Theory

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic Array Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Scalability (huge formulas)

Complexity

Undecidability

Quantified formulas

Nonlinear arithmetic

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA

Theory conflict

Current SMT solvers provide

a combination

of different engines

DPLL

Simplex

Grobner
Basis

-
elimination

Superposition

Simplification

Congruence
Closure

KB
Completion

SMT

…

Theorem Prover/
Satisfiability Checker

F Satisfiable

(model)

Unsatisfiable

(proof)
Config

Z3 has approx. 300
options

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”

“I want to include these rewriting rules in Z3.”

“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

 To build theoretical and practical tools
allowing users to exert strategic control

over core heuristic aspects of high
performance SMT solvers.

 Theorem proving as an exercise of
combinatorial search

 Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

Different Strategies for Different Domains.

Different Strategies for Different Domains.

From timeout to 0.05 secs…

Hardware Fixpoint Checks.

Given: and

Ranking function synthesis.

Join work with C. Wintersteiger and Y. Hamadi

FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Z3 is using different engines:

rewriting, simplification, model checking, SAT, …

Z3 is using a customized strategy.

We could do it because

we have access to the source code.

SMT solvers are collections of little engines.

They should provide access to these engines.

Users should be able to define their own strategies.

Tactic

goal

subgoals

Proof
builder

Proofs for subgoals

Proof
builder

Proof for goal

Tactic
goal

subgoals

Proof
builder

Tactic
goal

Tactic

Tactic

Proof
builder

Proof
builder

Proof
builder

Proof
Builder

proof

Proof
Builder

Proof
Builder

Proof
Builder

proof

Proof
Builder

Proof
Builder

thm in LCF
terminology

proof in LCF
terminology

 then(,) = Tactic Tactic Tactic

orelse(,) = Tactic Tactic Tactic

repeat() = Tactic Tactic

Tactic

goal

subgoals

Proof
builder

Model
builder

end-game tactics:
never return unknown(sb, mc, pc)

non-branching tactics:
sb is a sigleton in

 unknown(sb, mc, pc)

Empty goal [] is trivially satisfiable

False goal […, false, …] is trivially unsatisfiable

basic : tactic

Tactic:
elim-vars

Proof
builder

Model
builder

Tactic:
elim-vars

Proof
builder

Model
builder

M

M, M(a) = M(b) + 1

Tactic:
split-or

Proof
builder

Model
builder

simplify

nnf

cnf

tseitin

lift-if

bitblast

gb

vts

propagate-bounds

propagate-values

split-ineqs

split-eqs

rewrite

p-cad

sat

solve-eqs

http://rise4fun.com/z3/tutorial/strategies (SMT 2.0)

http://rise4fun.com/z3py/tutorial/strategies (Python)

http://rise4fun.com/z3/tutorial/strategies
http://rise4fun.com/z3py/tutorial/strategies
http://rise4fun.com/z3py/tutorial/strategies

