The Strategy Challenge in

SMT Solving (part 1)
IWS 2012, Manchester, UK

Leonardo de Moura (Microsoft Research) and
Grant Passmore (University of Cambridge)

Satisfiability Modulo Theories (SMT)

A Satisfiability Checker
with built-in support for useful theories

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) £ f(c-b+1)

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c¢ and f(read(write(a,b,3), c-2) £ f(c-b+1)

Arithmetic

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) £ f(c-b+1)

Array Theory

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO

Main challenges

e Scalability (huge formulas)
e Complexity

e Undecidability

e Quantified formulas

@ Nonlinear arithmetic

Microso ft

Research

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),
ps=(y>2),p,=(y<1)

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

@ ps=(y>2), py=(y<1)

SAT
Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

@ ps=(y>2), py=(y<1)

Assignment
SAT
[J j‘> p]_l p21 _'p3l p4

Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

p]_l p21 (p3\/ p4) plz(XZO), pZE(y=X+ 1)1

@ Ps=(y>2), py=(y<1)
U

SAT Assignment x>0,y=x+1,
j‘> pll p21 _'p3l p4 j‘>

Solver —(y>2),y<1

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ ps=(y >2), p,=(y<1)
T P vy SR)
Solver vore Ty —(y>2),y<1

Unsatisfiable <,i Theory
x>0,y=x+1,y<1 Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ ps=(y>2), p,=(y<1)
SAT j>§ss'§m:ep”tp N X>0,y=x+1,
Solver vore Ty —(y>2),y<1

v

New Lemma <:j Unsatisfiable <’t Theory
=P VP V=P, Y X20,y=x+1,y<1 Solver

SMT =» SAT Abstraction/Refinement

New Lemma @ Unsatisfiable <’t Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict

> S I R = .' _‘ — ' icroso
* e T\m L .L. 'Research

I = To N0 ap

Orchestrating Decision Engines

Combining Engines

Current SMT solvers provide
a combination
of different engines

Combining Engines

Congruence m

Closure
R Grobner
Simplification \w/ Basis

V3-
KB elimination

Completion
Superposition

Configuring SAT/SMT Solvers: “state-of-the-art”

Config

=)
=)

-

Theorem Prover/

N

Satisfiability Checker

=)

/

Z3 has approx. 300

options

Satisfiable
(model)

Unsatisfiable
(proof)

Opening the “Black Box”

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”
“I want to include these rewriting rules in Z3.”
“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

The Strategy Challenge

To build theoretical and practical tools
allowing users to exert strategic control
over core heuristic aspects of high
performance SMT solvers.

What is a strategy?

Theorem proving as an exercise of
combinatorial search

Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

The Need for “Strategies”

Different Strategies for Different Domains.

The Need for “Strategies”

Different Strategies for Different Domains.

From timeout to 0.05 secs...

Example in Quantified Bit-\Vector Logic

Join work with C. Wintersteiger and Y. Hamadi
FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: I[z]and T'|x,2’]
Vo, o’ . I[a] AT [z, 2] = 3y, 4" Ty ATy, o]

Ranking function synthesis.

Hardware Fixpoint Checks

[sec] [sec]
1k 1k
100 100
Z3 10 L 73 10

% 3

+ E3 + 3

1 o S 1 o+

] i + T + " "

i + LT+ |+ .

0.1 = + = 0.1 ++ 3 +

N T A O S s £ wt | 3

¥ i + +H ++ + 4 +

+ +- 1 L 4

0.01 HHtHE |+ 4 0.01 + H + 4

0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo

Ranking Function Synthesis

[sec] [sec]
1k 1k
100 100
Z3 10 - Z3 10 =
= + -
1 + 1 +
¥ T OE
+7 *
0.01 0.01
0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo

Why is Z3 so fast in these benchmarks?

/3 is using different engines:
rewriting, simplification, model checking, SAT, ...

/3 is using a customized strategy.

We could do it because
we have access to the source code.

The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines.
Users should be able to define their own strategies.

IMain inspiration: LCF-approach

o

goal

Tactic

builder

IMain inspiration: LCF-approach

subgoals
@ Tactic i> O
goal Proof
builder

@ Proof
O i> buricl)cfl)er i> O
O

Proof for goal
Proofs for subgoals

IMain inspiration: LCF-approach

Tactic

i>© i> Tactic

O i> Tactic

builder

Proof
builder

e
r

Proof
builder

IMain inspiration: LCF-approach

Proof O
o Proof <:]Q <:] Builder <:]O

Builder

proof
O Proof O
Builder O

IMain inspiration: LCF-approach

<:] Proof <:]O
Builder
O <:] PI’OOf <:]

oo Builder
Proof Q
k Builder
thm.in LCF proof in LCF
terminology terminology

Tacticals aka Combinators

then(| Tactic , | Tactic)

Tactic

Tactic

orelse(| Tactic | , | Tactic)

Tactic

S
I

repeat(| Tactic

SMT Tactic

goal

Tactic

o
<::> subgoals

)
Proof

builder

Model
builder

SMT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt

SMT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt

T

end-game tactics:
never return unknown(sb, mc, pc)

SMT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt
\ o
non-branching tactics:
sb is a sigleton in

unknown(sb, mc, pc)

Trivial goals

Empty goal [] is trivially satisfiable
False goal [..., false, ...] is trivially unsatisfiable

basic : tactic

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
elim-vars
Proof Model
builder | (b+1<0Vb+1>0), b>3]

builder

SMT Tactic example

la=b+1, (a<0Va>0),b>3]

@

Tactic:
elim-vars

Proof

-~

builder | (b+1<0Vb+1>0), b>3]

M, M(a) = M(b) +1

m Ny

Model
builder

-2 ~
M

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
split-or

-_=

Proof la=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder

SMT Tactics

simplify propagate-bounds
nnf propagate-values
cnf split-inegs

tseitin split-eqs

lift-if rewrite

bitblast p-cad

gb sat

vts solve-eqs

SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,%2) applies ¢; to the given goal and 5 to every subgoal produced by t;.
thenx : (tactic X tactic Sequence) — tactic
thenx(t1, [t2,, ..., t2,,]) applies ¢1 to the given goal, producing subgoals g1, ..., gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,t2) first applies #1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic
par(t1,t2) excutes t1 and t2 in parallel.

SMT Tacticals

then(skip,t) = then(t,skip) = ¢

orelse(fail, t) = orelse(t, fail) = ¢

SMT Tacticals

repeat : tactic — tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic X nat — tactic
Keep applying the given tactic until no subgoal is modified by it, or the max-
imum number of iterations is reached.

tryfor : tactic X seconds — tactic
tryfor(t, k) returns the value computed by tactic ¢ applied to the given goal if
this value is computed within k seconds, otherwise it fails.

Strategies online

http://rise4fun.com/z3/tutorial/strategies (SMT 2.0)

http://rise4fun.com/z3py/tutorial/strategies (Python)

[=] o =]

°| & hitp://risedfun.com/Z3Py/tutori: O ~ B & X | (& risedfun 4 -:l Google

i} % 52

L3Py -
strategies "

Strategies

........................

1. Introduction :
v 2. Tactics
. 3. Probes

4. tutorials

Translate this page H‘
[Spamsh [+][

arch Microsoft® Translator <>

other tutorials close

¥, ¥ = BReals('x y")

g = Goall)

g.addix > 0, v > 0, 2 ==y + Z)
print g

tl = Tactic{'simplify')

t2 = Tactic('sclve-sgs')
t = Then(tl, tZ)
print t(g)

http://rise4fun.com/z3/tutorial/strategies
http://rise4fun.com/z3py/tutorial/strategies
http://rise4fun.com/z3py/tutorial/strategies

