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Satisfiability Modulo Theories (SMT)

A Satisfiability Checker
with built-in support for useful theories
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Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) # f(c-b+1)

Uninterpreted
Functions
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Main challenges

e Scalability (huge formulas)
e Complexity

e Undecidability

e Quantified formulas

@ Nonlinear arithmetic

Microso ft
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Orchestrating Decision Engines



Combining Engines

Current SMT solvers provide
a combination
of different engines




Combining Engines

Congruence m

Closure
R Grobner
Simplification \w/ Basis

V3-
KB elimination

Completion
Superposition



Configuring SAT/SMT Solvers: “state-of-the-art”

Config
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Theorem Prover/
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Satisfiability Checker
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Z3 has approx. 300

options

Satisfiable
(model)

Unsatisfiable
(proof)



Opening the “Black Box”

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”
“I want to include these rewriting rules in Z3.”
“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”



The Strategy Challenge

To build theoretical and practical tools
allowing users to exert strategic control
over core heuristic aspects of high
performance SMT solvers.



What is a strategy?

Theorem proving as an exercise of
combinatorial search

Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.



The Need for “Strategies”

Different Strategies for Different Domains.



The Need for “Strategies”

Different Strategies for Different Domains.

From timeout to 0.05 secs...



Example in Quantified Bit-\Vector Logic

Join work with C. Wintersteiger and Y. Hamadi
FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: I[z]and T'|x,2’]
Vo, o’ . I[a] AT [z, 2] = 3y, 4" Ty ATy, o]

Ranking function synthesis.



Hardware Fixpoint Checks
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Ranking Function Synthesis
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Why is Z3 so fast in these benchmarks?

/3 is using different engines:
rewriting, simplification, model checking, SAT, ...

/3 is using a customized strategy.

We could do it because
we have access to the source code.



The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines.
Users should be able to define their own strategies.
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IMain inspiration: LCF-approach

subgoals
@ Tactic i> O
goal Proof
builder

@ Proof
O i> buricl)cfl)er i> O
O

Proof for goal
Proofs for subgoals
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IMain inspiration: LCF-approach

Proof O
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O Proof O
Builder O




IMain inspiration: LCF-approach
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Tacticals aka Combinators

then( | Tactic , | Tactic )

Tactic

Tactic

orelse( | Tactic | , | Tactic )

Tactic

S
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repeat( | Tactic




SMT Tactic

goal

Tactic

o
<::> subgoals

)
Proof

builder

Model
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SMT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt
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SMT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt
\ o
non-branching tactics:
sb is a sigleton in

unknown(sb, mc, pc)




Trivial goals

Empty goal [ ] is trivially satisfiable
False goal [ ..., false, ...] is trivially unsatisfiable

basic : tactic



SMT Tactic example

la=b+1, (a<0Va>0), b>3]
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Tactic:
elim-vars
Proof Model
builder | (b+1<0Vb+1>0), b>3]

builder




SMT Tactic example

la=b+1, (a<0Va>0),b>3]

@

Tactic:
elim-vars

Proof

-~

builder | (b+1<0Vb+1>0), b>3]

M, M(a) = M(b) +1

m Ny

Model
builder
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SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
split-or

-_=

Proof la=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder




SMT Tactics

simplify propagate-bounds
nnf propagate-values
cnf split-inegs

tseitin split-eqs

lift-if rewrite

bitblast p-cad

gb sat

vts solve-eqs



SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,%2) applies ¢; to the given goal and 5 to every subgoal produced by t;.
thenx : (tactic X tactic Sequence) — tactic
thenx(t1, [t2,, ..., t2,,]) applies ¢1 to the given goal, producing subgoals g1, ..., gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,t2) first applies #1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic
par(t1,t2) excutes t1 and t2 in parallel.



SMT Tacticals

then(skip,t) = then(t,skip) = ¢

orelse(fail, t) = orelse(t, fail) = ¢



SMT Tacticals

repeat : tactic — tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic X nat — tactic
Keep applying the given tactic until no subgoal is modified by it, or the max-
imum number of iterations is reached.

tryfor : tactic X seconds — tactic
tryfor(t, k) returns the value computed by tactic ¢ applied to the given goal if
this value is computed within k seconds, otherwise it fails.



Strategies online

http://rise4fun.com/z3/tutorial/strategies (SMT 2.0)

http://rise4fun.com/z3py/tutorial/strategies (Python)
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arch Microsoft® Translator <>

other tutorials close

¥, ¥ = BReals('x y")

g = Goall)

g.addix > 0, v > 0, 2 ==y + Z)
print g

tl = Tactic{'simplify')

t2 = Tactic('sclve-sgs')
t = Then(tl, tZ)
print t(g)
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