Journal of Automated Reasoning manuscript No.
JARS-D-10-00050

On deciding satisfiability by theorem proving with speculatve
inferences

Maria Paola Bonacina - Christopher A. Lynch -
Leonardo de Moura

Received: February 2010 / Accepted: October 2010

Abstract Applications in software verification often require detarimg the satisfiability
of first-order formulae with respect to background theor@sting development, conjec-
tures are usually false. Therefore, it is desirable to hatleearem prover that terminates
on satisfiable instances. Satisfiability Modulo TheorieMI TP solvers have proven to be
highly scalable, efficient and suitable for integrated thigeasoning. Inference systems with
resolution and superposition are strong at reasoning wjtialgies, universally quantified
variables, and Horn clauses. We describe a theorem-prangtgod that tightly integrates
superposition-based inference system and SMT solver. dhioation is refutationally
complete if background theory symbols only occur in grouadniulae, and non-ground
clauses are variable-inactive. Termination is enforceéhbyducing additional axioms as
hypotheses. The system detects any unsoundness intrdolyitieese speculative inferences
and recovers from it.

Keywords Program checking Theorem proving Satisfiability modulo theories
Combination of theories

1 Introduction
Applications in software verification have benefited greditbm recent advances in au-

tomated reasoning. Reasoning about programs often reqigtermining the satisfiability
of first-order formulae with respect to some background tlegsotn numerous contexts in

The first author was supported in part by grant no. 2007-9E8Kkthe Ministero dell’Istruzione Universita
e Ricerca.

Maria Paola Bonacina
Dipartimento di Informatica, Universita degli Studi didma, Strada Le Grazie 15, 1-37134 Verona, Italy
E-mail: mariapaola.bonacina@univr.it

Christopher A. Lynch
Department of Mathematics and Computer Science, Clarksovetsity, Potsdam, NY 13699-5815, USA
E-mail: clynch@clarkson.edu

Leonardo de Moura
Microsoft Research, One Microsoft Way, Redmond, WA 98053AU
E-mail: leonardo@microsoft.com

software verification, quantifiers are also needed. For ei@nthey are used for capturing
frame conditions over loops, axiomatizing type systemsjraarizing auxiliary invariants
over heaps, and for supplying axioms of theories that aralneady equipped with decision
procedures for ground formulee. Thus, many verification fgrols consist in determining
the satisfiability of a set of formula® w P modulo a background theory, whereZ is a set
of non-ground clauses without occurrences’fsymbols, andP is a large ground formula,
or set of ground clauses, that typically contaifissymbols. The set of formulaZ can be
viewed as the axiomatization of an application specific thebhe background theory”

is a combination7 = (J; of theoriesZ;, 1 <i < n, commonly used in hardware and
software verification, such as linear arithmetic.

Satisfiability Modulo Theories (SMT) solvers have provegtty scalable, efficient and
suitable for integrated theory reasoning. Most SMT soleeesestricted to ground formulee,
and integrate the Davis-Putnam-Logemann-Loveland proee(DPLL) for propositional
logic [26,25], with satellite solvers for ground satisfiétlgi problems in the theoriesZ,

1 <i < n, that are therefore built into the SMT solver. The resultimgggration is called
DPLL(Z), where 7 = |Ji_; . General treatments appeared in [55,61]. For quantifiers,
there are situations where the needed instances of unliyegsantified variables can be
computed without loss of completeness: for instance, faasefragments of the theories
of arrays [21,17] and pointers [52], or for local theory edi®ns [63,43]. Otherwise, tech-
nigues to guess how to instantiate variables, based onstiesrand user annotations, were
investigated [34,27,39]. They are known as “triggeringgtause the terms to be instanti-
ated are called “triggers.” These techniques can be veryiagiti when they succeed, but
they require expensive user guidance, and their incompstecauses false positives in the
program verification tools that use the SMT-solver.

In comparison with SMT solvers, generic inference systeaset on superposition and
resolution are refutationally complete for first-orderitogvith equality; they are strong
at reasoning with equalities, universally quantified valea, and Horn clauses. Available
surveys include [10,56,48]. A standard superpositiorebasference system was proved to
terminate and hence to be a satisfiability procedure forraktieeories of data structures,
including arrays and recursive data structures, and toeiabinations [5, 3,15, 4].

The DPLL(") system of [28] integrates an SMT solver with a generic efee system
I" based on superposition and resolution. The DPLL engine sMoykbuilding a candidate
model: if the construction succeeds, it returns satisfjablefails definitely, it returns un-
satisfiable. The inference systdmworks by deducing clauses from clauses and removing
redundant clauses: if it generates the empty clausthat represents contradiction, it re-
turns unsatisfiable. The key to their integration is thatlitezals in the candidate model
built by the DPLL engine can occur as premise$ eihferences. The resulting system aims
at uniting the strengths of SMT solvers — propositional &fficy, fast theory solvers, tight
integration — with those of superposition-based theoremegrs, especially general reason-
ing about quantifiers without recurring to incomplete hstics.

However, in general, DPLIL) is not refutationally complete, when both and.%Z are
not empty, even wheg -symbols do not occur iz¢. For example, assunig = {x~ aV x ~
b} andP = 0, and the background theog¥ is arithmetic. The clause~ aVv x ~ b implies
that any model has a domain with at most two elements, whicle&ly incompatible with
any model for arithmetic, that requires an infinite domamother words, DPLL{) does
not have a way to detect unsatisfiability due to the lack of @ebvith infinite domain. A
first contribution of this article is a revised version of DRL), named DPLL{ + .7), with
sufficient conditions to make it refutationally completeemty” is not empty.

DPLL(I" + 7) has to combine the built-in theories.ifi = J{_; 7 and the axiomatized
theory%. Combination of built-in theories is usually done by #muality sharingmethod
of [53], later dubbed “Nelson-Oppen scheme” from the nanigkeauthors. This method
has three requirements. First, the theories cannot shactidn symbols. Second, each
must bestably infinite A theory .7} is stably infinite if every.Zi-satisfiable ground formula
has a.Z;-model with domain of infinite cardinality. Third, everf-solver must be capable
of generating all entailed disjunctions of equalities kegw shared constants. The third re-
quirement is relaxed imodel-based theory combinati@@8], which is a version of equality
sharing, where it is sufficient that each-solver generates the equalities between shared
constants that are true in the current candid&tenodel. Thus, this method requires that
each.Zj-solver generates a candidate model. On the other hand jcatian of axiomatized
theories in a superposition-based engine requires thatdbeiot share function symbols
and arevariable-inactive under these hypotheses, if the superposition-basednsysteni-
nates on satisfiability problems in each theory, it also teates on satisfiability problems
in their union [3,4]. A second contribution of this articketo explain how to apply known
results on variable inactivity [18,4,17] to combine builttheories by model-based theory
combination and axiomatized theories in DPLL{ 7).

In software verification, during development time, sevemljectures are false because
of errors in the implementation or specification. Therefdres desirable to have a theorem
prover that terminates on satisfiable instances. In genthialis not a realistic goal since
pure first-order logic is not decidable, and, even worseretle no sound and complete
procedure for first-order logic formulae of linear arithnoetvith uninterpreted functions
[41]. Axioms such agransitivity

S(xCy)vV=(yCz)vxCz

andmonotonicity
~(XEY) VX E f(y)

are problematic for any resolution-basédsince they tend to generate an unbounded num-
ber of clauses, even with a selection function that selesgmtive literals to prevent self-
resolutions. Such axioms may arise in formalizations oétypstems for programming lan-
guages. In that context, the symtiolrepresents a subtype relationship, and the monadic
function f represents a type constructor, suchasay-of.

As an example, assume that the axiomatization contains atomoity axiom

~(XEy)V T(x) E f(y).
Unrestricted resolution would resolve it with itself, thistwith a variant
(X EY)VIX) Ef(y)
to generate-(x C y) v f2(x) C f2(y), hence the infinite series
{m(x2y)V (%) T W)izo,

where at each step the original axiom resolves witk C y) v fi=1(x) C f=1(y) to yield

its successor. A selection function that selects negatemls prevents all these inferences,
becausd (X') C f(y') cannot resolve with(x C y), if =(X CY') is selected. However, even
resolution with negative selection generates an infinitese

{f'@ C f'(b)}izo

from monotonicity and each literalC b in the input. In practice, it is seldom the case that
we need to go beyonél(a) C f(b) or f?(a) C f2(b) to show satisfiability.

A third contribution of this article is a new version of DPUL{.7) with speculative
inferencesa feature suggested by [49]. The idea is to allow the prarehe experimenter,
to guess additional axioms, that avoid infinitary behavsorsh as that induced by the mono-
tonicity axiom. If the additional axioms are a cause of umgimess, by turning a satisfiable
set into an unsatisfiable one, the prover detects it and eesdnom it automatically. The re-
sulting method yields decision procedures for severalmattzations of type systems that
are relevant to software verification.

This article is organized as follows. Section 2 providestthekground. Section 3 shows
how to apply previous results on superposition and variatzetive theories in DPLLT +
T); it states the requirements on the probléiw P and the background theory, setting
the stage for the sequel. Section 4 presents the new DPELE) system with speculative
inferences. Section 6 introduces the notioes$entially finite theories a generalization of
thefinite model property- exhibits essentially finite theories, and shows how DFPLE(T)
with speculative inferences yields a decision procedurdiem and their combinations.
Section 7 concludes with summary of the results, comparigtmrelated work, and direc-
tions for further research. A short version of this artigipeared in [20].

2 Background

We assume basic notions from logic used in theorem provieg2Lbe asignaturecon-
sisting of a set ofunctionandpredicatesymbols, each with itarity, denoted byarity(f),
for symbol f. We call O-arity function symbolsonstantsymbols, and use, b, c, d for
constantsf, g, h for non-constant function symbolp,for a predicate symbok, vy, z, u for
variables~ for equality, andx for either~ or %: these three symbols are symmetric. Two
signatures ardlisjoint if they share no function or predicate symbol other thanTerms,
literals, clauses, sentences and formulae are defined ak Astlause (i.e., a disjunction
of literals) ispositiveif all its literals are; it isHorn if it has at most one positive literal.
We uset, s, |, r for terms,|, mfor literals,C, D for clausesp for the empty clause, which
denotes contradiction, arfg, N, P, Sfor sets of claused/ar(l) is the set of variables oc-
curring inl. The notatiorl [t} means that appears as subterm bfA first-order X-theory
is presentedor axiomatized, by a set &-sentences. Two theories atisjoint if their sig-
natures are. We reserve calligraphic letters, suckrand#, for presentations of theories.
A Horn presentations a set of non-negative Horn clausBefined or interpreted symbols
are those symbols whose interpretation is restricted tonthdels of a theory, whered®ge,
or uninterpreted symbols are those symbols whose interpretation is uinctsir

A Z-structure @ consists of a non-empty universe, or domai|, and an interpreta-
tion for variables and symbols iB. We usev, w for elements of ®|. For eachf € X, the
interpretation off is denoted by®(f). For a function symboF with arity(f) = n, ®@(f)
is ann-ary function on|®| with range(®(f)) = {w| Ive |®|, ®(f)(v) = w}. For a pred-
icate symbolp with arity(p) = n, ®@(p) is a subset of®|". The interpretation of a term
t is denoted byd(t). If t is a variable or constantp(t) is an element in®|. Otherwise,
P(f(tg,....th)) = @()(P(t1),...,P(ty)). If Sis a set of termsP(S) = {P(t) | t € S}.
Satisfaction® |= C is defined as usual; i = C, then® is amodelof C. For refutational
completeness in first-order theorem proving it is sufficientonsideHerbrand interpre-
tations where the domain is the Herbrand universe and constantsmutidn symbols are
interpreted as themselves.

An inference system1 is a set of inference rule©rdering-basednference systems
use an ordering- on terms and literals to restrieixpansion inferenceshat expand the
existing set by generating clauses, and to defo@raction inferencegshat contract the set
by removing clauses. This ordering is assumed to d@naplete simplification orderingt is
stable(if s:-t thenso > to for all substitutionss), monotongif s>t thenl[s| > | [t] for all
), it has thesubterm propertyl [t] >t for all t andl # t), hence it iswell-foundedthere is
no infinite decreasing chatm >ty > ...t > tiy1 > ...) [31], and it istotal on ground terms
and literals (ifs # t, then eithers -t ort - s). The ordering is extended to equations and
clauses by multiset extension, which preserves well-fedndss [33]. Arinference rule
with n premises has anain premiseandn — 1 side premises. For an expansion rule, the
main premise yields the conclusion in the context of the pigenises; such a rule sound
if the conclusion is a logical consequence of the premisessafeontraction rule, the main
premise is reduced to the conclusion or removed; such agatandif the main premise is
a logical consequence of side premises and conclusiorgsipt. Premises and conclusion
of an inferencey are denoted b (y) andC(y), respectively. We writg € I" to say thatyis
an application of an inference rule fn

Clauses deleted by contraction aeglundant Redundancy is defined based on well-
founded orderings on clauses, whereby a ground clauseusdedt in a set of clauses, if
it is entailed by smaller ground clauses in the set, and aselaredundant if all its ground
instances are [6], or well-founded orderings on proofs, neby a clause is redundant in
a set of clauses, if it does not affect its minimal proofs [18h inference is redundant
if it uses or generates a redundant clause. A clause or ideréhat is not redundant is
irredundant A set of claused\ is saturated with respect t6, or I -saturated if all I -
inferences ifN are redundant. Given an input set of clauSgs I -derivationis a sequence
SbtrSkr...SHrSaabr ... where at each stef. 1 is derived fromS by al -inference;
its limit is the set opersistent clausesS= Ui~ (= Sj. A I -derivation isfair, if all expan-
sion inferences from persistent irredundant premises @ne dventually. If & -derivation
is fair, its limit is saturated. SincE is non-deterministic, there may be more than éne
derivation from a giver®. The combination of with asearch planthat controls the choice
of inferences, yields a deterministiceorem-proving strategyr proof proceduretermed
I -strategy or I" -procedure whose derivation is unique gively. A strategy or procedure is
fair if all its derivations are. A recent abstract treatmefithese notions, with references to
their history, appeared in [12].

Letl be a mapping, calledrmodel functoythat assigns to each set of ground clal$es
not containingd, a Herbrand interpretatioly, called thecandidate modelA clauseC is a
counterexample foly if Iy £ C; C is a minimal counterexample if, in addition, there is no
other counterexamplB for Iy such thalC = D. An inference system has thereduction
property for counterexamples for all setsN of clauses and counterexamp@$or Iy in N,
there is an inference i from N with main premise, side premises that are trueljp and
conclusionD that is a smaller counterexample farthanC. This property is used in proofs
of refutational completeness since at least [6] accordirthe following standard:

Theorem 1 If N is a " -saturated set of ground clauses ahdhas the reduction property
for counterexamples, then N is unsatisfiable if and onlydbittainsO.

Proof The “if” direction is trivial. To prove the “only if” directdn, one proves its contra-
positive: if N does not containl, then it is satisfiable. By way of contradiction, assume that
it is not. Then, for every candidate modg|l there is a counterexample M. Let C be a
minimal counterexample fdg in N. By the reduction property for counterexamples, there
is a smaller counterexampl®, conclusion of a -inference. IfD € N, thenC would not

have been minimal to begin with. D ¢ N, thenN is not saturated, which contradicts the
hypothesis. O

We do not assume a specific inference systerns:a parameter for DPLI{+ 7). Since
examples and proofs for specific theories mention concnééeance rules, and in order to
make this article self-contained, typical expansion andtre@tion rules are collected in
Figure 1: in contraction, what is above the double inferelivoe is replaced by what is
below, whereas in expansion, as usual, what is below thdesinference line is added
to what is above. In resolutioh,and!” are the literalgesolved uponin paramodulation,
I[S] (CVI1[d]) is the literal (clauseparamodulated intpands~t (D V s=~t) is the literal
(clause)paramodulated fromThe same terminology applies to superposifidResolution,
paramodulation and superposition originally appeared#j,[[57] and [45], respectively.
Since then, they were the object of decades of researcteropotary versions of these rules
appeared in [42,60,6,19]; more references and history edaund in [10,56,12,48,11].

In addition to the ordering, expansion inference rules camdstricted by &election
function that selects negative literals [6]. A clause can have athes or none of its negative
literals selected, depending on the selection functiome$olution with negative selectipn
paramodulation with negative selectiandsuperposition with negative selectjghe order-
ing constraint on the negative literal resolved upon, onliteeal paramodulated into (i.e.,
Condition (iii) in Figure 1) and on the literal superposetbi(i.e., Condition (v) in Figure 1)
is lifted, and replaced by two requirements: the negatiterdl resolved upon, the literal
paramodulated into and the literal superposed into mustleeted, and the other premise
contains no selected literal. If some negative literal iected for each clause containing
one, one premise in each resolution, paramodulation orrgapiéion inference will be a
positive clause, yielding positive strategyif, in addition, all clauses are Horn, only posi-
tive unit clauses can be resolved upon or superposed or pdrdated from, yielding anit
strategywith unit resolutionandunit superpositiorf32]. Contemporary theorem provers, in-
cluding the implementation of DPLL(+.7) on top of Z3 [30], use resolution with negative
selection to implemerttyperresolutio{58]. In hyperresolution, the side premises, termed
satellites are positive clauses that resolve away all negative lggrathe main premise,
termednucleus generating a positive clause, in a single step with a sanebus unifier of
all pairs of literals resolved upchA selection function that selects some negative literal
in each clause containing one induces resolution to simbigberresolution as a macro in-
ference involving several steps of resolution. In thiscéetihyperresolution is realized via
resolution with negative selection.

3 Variable inactivity in DPLL(I +.7)

In this section we see how previous results from [4, 18, 17A]m&aimported into DPLL{ +
) to combine a built-in theory? and an axiomatized theory¢, where both and #
can be themselves unions of theories. In a purely rewrisedapproach there is n@
and all axioms are part of the input ##. The ordering- of I is required to beyood|[4,
16], meaning that >~ c for all ground compound terrnand constant. A fair I -strategy

1 We use superposition when the literal paramodulated inégjisational, and paramodulation otherwise.
Other articles reserve superposition to unit clauses dtipwgquations.

2 This instance of the rule is callgmbsitive hyperresolutiarThe dual rule namexdegative hyperresolution
operates in the same way with polarities exchanged. Sireet®a functions are defined to select negative
literals, negative hyperresolution falls outside of thiscdssion.

. Cv-l DvI . Y
Resolution — VDo vYmeC:-lo Amo, VmeD:l'oc A mo
!
Factoring % vYmeC:lo Amo

CVI[§] Dvs~t

Paramodulation CVDVIT)o (i), (i), (iii)

CvIg]xr DVs~t

Superposition CVDVIf =)o (i), (i), (iv), (v)
Reflection % VieC: (S#90 £lo
g
Cvs~tvs ~t

Equational Factoring (i), VI e {d ~t'}uC: (s~t)o £lo

(Cvt#t' vs~t)o
whereo is the most general unifier (mgu) b&ndl’ in resolution and factoring, and sfands’ in the other
rules;s’ is not a variable in paramodulation and superposition, haddllowing abbreviations hold:

(i) isso Atao,

(i) isVmeD: (s~t)o A mao,

(i) isvmeC:l[s|o £ mo,

(iv) isl[s]o Aro, and

(v) isVmeC: (l[s]xr)o £ mo.

C D

Strict Subsumption = D=C
Cll] sx~t
Simplification % | =so, so>to, C[l]>(s~t)o
. Cvt~t
Deletion —_—

whereD > Cif D& CandC % D; andD & Cif Co C D (as multisets) for some substituti@an In practice,
theorem provers also apply subsumption of variant® @ C andC 2 D, the oldest clause is retained) and
tautology deletion (that removes clauses sucB@s$\V —l).

Fig. 1 Sample expansion and contraction rules: in expansion \stialow the inference line is added to the
clause set that contains what is above the inference linepritraction what is above the double inference
line is removed and what is below is added.

is shown to be ar?-satisfiability procedure, by showing that it is guarantézterminate
on Z-satisfiability problemsZ W S, whereSis a set of ground unitZ-clauses. Variable-
inactivity was introduced in [3,4]:

Definition 1 A clauseC is variable-inactiveif no maximal literal inC is an equation ~ x
wherex ¢ Var(t). A set of clauses igariable-inactiveif all its clauses are.

Definition 2 A theory presentatio® is variable-inactivefor an inference system if the
limit S, of a fair I'-derivation fromS = % W Siis variable-inactive, wher§ is a set of
ground unitZ-clauses.

It was proved in [4] (cf. Theorem 4.1 and Corollary 3) thatigration ismodular.

Theorem 2 (Armando, Bonacina, Ranise and Schulz 2009)%#¢t. .., %, be disjoint and
variable-inactive for™, and let%Z = | J{L, %,. If a fair " -strategy terminates of;-satisfia-
bility problems, forl <i < n, then it terminates also o#-satisfiability problems.

A cardinality constraintis a clause containing only non-trivial (i.e., other tham x) posi-
tive equations between variables (eygy XV y =~ 2). Such a clause is clearly not variable-
inactive. The following key lemma was proved in [18] (cf. Leva 5.2):

Lemma 1 (Bonacina, Ghilardi, Nicolini, Ranise and Zucchelli 2006%, is a finite satis-
fiable set of clauses, thery &dmits no infinite models if and only if the limit, $f a fair
I -derivation from $ contains a cardinality constrairi.

It follows that (cf. Theorem 4.5 in [4]):

Theorem 3 (Armando, Bonacina, Ranise and Schulz 2009% I§ variable-inactive for™,
then it is stably-infinite.

Thus, " reveals the lack of stable infiniteness by generating a walit constraint. The
original versions of Theorem 2, Lemma 1 and Theorem 3 wereegprin a context where
equality was the only predicate and superposition the mgdargsion inference rule df.

It is trivial to extend them to the case where the signaturgZohtroduces predicate sym-
bols other than equality, and features also resolution and paramodulation. For instance
for Theorem 2, the essence of the proof is to show that therely finitely many in-
ferences across theories: disjointness of the signatum&ms not only superpositions,
but also paramodulations from compound terms, and resakijtivariable inactivity pre-
vents not only superpositions, but also paramodulatioms fvariables; thus, the only in-
ferences across theories are superpositions and paraatiodslfrom shared constants, that
are finitely many.

Itis useful to import results from the rewrite-based appho DPLL(™ + .7), applied
to a problemZ & P modulo .7, because DPLLU{ + .77) usesl" as anZ-solver applied to
Z-satisfiability problemsZ W S, whereSis a set of ground uni#Z-clauses. The initial set
of ground clauseP typically contains alsa”7 -symbols. HoweverP is subject topurifica-
tion, which is a standard step in the Nelson-Oppen method. Tmstormation, also known
asseparation37], separates occurrences of function symbols from idiffesignatures oc-
curring in ground terms, by introducing new constant syrebBbr examplef (g(a)) ~ b,
wheref andg belong to different signatures, beconfgs) ~ b A g(a) ~ ¢, wherec is new.
Since only constants are introduced, the set remains grdumg,P is transformed in two
disjoint sets?; andP,, whereP; contains onlyZ-symbols and® only .7 -symbols. Since a
key feature of DPLL{ + .7) is thatl" deals only withnon-ground clauseandground unit
clausesit is indeed the case thaAtworks on anZ-satisfiability problemsZ w S; initially, S
will be the subset of unit clauses froRy.

DPLL(I" + .7) needs to combineZ, ..., %, % in the Nelson-Oppen scheme, which
requires that the theories are disjoint, stably infiniteJ eaach solver generates all entailed
disjunctions of equalities between shared constants. Weweesthat7;, . . ., 7, satisfy these
requirements and tha# is disjoint from each of them. For stable infiniteness&fwe re-
quire thatZ is variable-inactive and apply Theorem 3. In practice, toisdition is checked
dynamically: in the implementation of DPLL(+.7) on top of Z3, the superposition-based
engine is equipped with a test that detects the generativariable-inactive clauses, hence
cardinality constraints, and discovers whetbgis not stably infinite. Such a test also ex-
cludes upfront a situation such &= {x~ aV x ~ b} of the example in Section 1. For
the generation of disjunctions of equalities between shaomstants by thez-solver ™,

3 Lemma 5.2 in [18] requires that the superposition-baseerémice system is invariant with respect to
renaming finitely many constants. Most inference systertisfga stronger requirement, namely they allow
signature extensions, e.g., to introduce Skolem constants

the fairness of thé -derivation ensures that every theorem is implied by sonmeigeed
formulae® An explicit proof that the superposition-based engine gaties formulze that en-
tail all disjunctions of equalities between constants i @xiomatized theory was given in
[17] (cf. Theorem 71). If contraction is also done systenaly, only irredundant clauses
generated by are kept and passed to the DPLEJ core.

The following definition summarizes the problem requiretadar the sequel:

Definition 3 A set of formuleeS= #Z W P is smoothwith respect to a background theory
7 = U1 Z, or 7-smoothfor short, if

- AN,..., 7% andZ are pairwise disjoint,

- A,..., are stably infinite,

— % is variable-inactive, and

— Pis a set of ground formuld, & P, whereP; contains onlyZ-symbols, and® only
7 -symbols.

Note that uninterpreted symbols a#&symbols. In summary, variable inactivity is an in-
gredient for: (1) modularity of termination éf, whenZ is a union of axiomatized theories
[4]; (2) stable infiniteness o [18], hence combination of axiomatized theories and bilt-
theories; (3) refutational completeness of DPLIH .77) when both7 andZ are not empty
(cf. Theorem 4 in the next section).

4 A new DPLL(I" 4+) system with speculative inferences

DPLL(I" +.7) works onhypothetical clausesf the formH >C, whereC is a clause, and the
hypothesis Hs a set of ground literals. The hypothesis is interpreteal @mjunction, and a
hypothetical clauséiA...Alp)>(17V... V1) isinterpreted asli V...V -l VI V. VI
As we shall see, the literals id come from the candidate model built by DPIL§ .7),
and are the literals th& depends on, in the sense that they were used as premisesrto inf
C by I -inferences. As it was done in [28] for DPLLJ, DPLL(I" + .7) is described as a
transition systemwith two modessearch modandconflict resolution mode

In search mode, the state of the system has the i, whereM is a sequence of
assigned literalsandF a set ofhypothetical clausedntuitively, M represents a partial as-
signment to ground literals, possibly with a justificatiand therefore it represents a partial
model, or a set of candidate models. An assigned literal eaeither adecided literalor
animplied literal. A decided literal represents a guess, and has no justificatin implied
literal Ic is a literall justified by a claus€: all other literals ofC are false inM so thatl
needs to be true. No assigned literal occurs twicMinor does it occur negated M. If
neitherl nor -l appears irM, thenl is said to baindefined

In conflict resolution mode, the state has the foviiF || C, whereC is a ground clause
whose literals are all false und®t. Such a clause is inonflict If Cisly V...V, then
—C is the formula—l1 A ... A —ln. We could state tha® is in conflict by writingM = —C.
In DPLL(I" +.7), the DPLL engine accepts only propositional clauses, edeethe theory
solvers accept ground first-order clauses &ndccepts first-order clauses. To bridge this
gap, anabstraction functiormaps first-order ground atoms to propositional atoms. Thus,
it is customary to writeM |=p —C, readM “propositionally satisfies™C, to say thatV
satisfies the propositional abstraction-g.

4 Fairness guarantees even more: every theorem has a minoediip the limit; see [12] for details.

10

Definition 4 Given an input set of claus&= #Z ¢ P, aDPLL(" + .7)-derivationis a se-
guence of state transitions

Ny=—= N = .. [0 = A1 — ...

whereVi > 0, 4; is of the formM; ||F or M| K || C;, each transition is determined by a
DPLL(I 4+)-rule, andAg = ||y for Fo = {0-C |C € S}.

In the sequel, we uge for 0>C, clauses$F) to denote the s€iC | H>C € F }, ngclauseéF)
for the subset of non-ground clause<tzusesF), lits(M) to denote the set of assigned lit-
erals lits, (M) for the subset of assigned-literals andclause$(M || F) for ngclause&=) U
lits5 (M).

4.1 Speculative inferences in DPUL{- .7)

In theorem proving applied to mathematics, most conjestare true. Thus, it is customary
to sacrifice completeness for efficiency, and retain sousgjivehich is necessary to attribute
unsatisfiability to the input set of clauses if a proof is fdua traditional example ideletion
by weighff51], where clauses that are too “heavy” are deleted. Inrdragroving applied to
verification, most conjectures are false. Thus, it was sstggen [49] to sacrifice soundness
for termination, and retain completeness, which is necgdsaestablish satisfiability if
a proof isnot found. Dually to deletion by weight, an unsound inferencaldsuppress
literals in clauses that are too heavy. We sgéculativean inference that may turn out to
be unsound.

We consider a single speculative inference rule: addingrhitrary clauseC. Such a
step may be unsound becau&enay not be implied by the given set. This rule is simple,
but can simulate different kinds of speculative inferen&gpose we want to suppress the
literalsD in CV D, then we can simply add, which subsume€ Vv D. Suppose a clauszt]
contains a deep tertpand we want to replace it with a constantWe can accomplish this
by addingt ~ a.

The idea is to extend DPLE(+ .77) with areversibletransition ruleSpeculativelntro for
speculative inferences. Rather than merely adding a clauSgeculativelntro introduces a
hypothetical clauséC|>C into F and it addgC] to M: [C] is a new propositional variable
used as a label for clau&e By adding[C] to M, the system records the fact that igisess-
ing C. Speculativelntro is reversible because the system ug€ to track the consequences
of having adde. The hypothetical clausgC] >C is semantically equivalent to[C]| vV C.
This clause does not change the satisfiability of the inpunéda becausgC] is a new
propositional variable:

Speculativelntro
C ¢ clausesF),
M| F = M [C]|F, [C]>C if [C] is new
[C],=[C] & M.

Note that/C] is added taM as a decided literal. The first condition says that we do nesgu
a clause that we already have. The second condition req@re® be a new symbol with
respect to the initial signature. The third condition pragethe system from addir®@, if it
was already done[C] € M), or if the addition was already discovered to be inconsiste
with the current partial modé¥l (=[C| € M).

11

4.2 Model-based theory combination in DPILL{ .77)

In order to combine the theories i = |J._; % andZ in the Nelson-Oppen scheme, every
Z-solver, 1< i < n, needs to communicate to the other theories, includighe (dis-
junctions of) equalities between shared constants edthifeZ andP. The next transition
rule takes care of this requirement, according to modeddhdiseory combination [29]. We
assume that everyi-solver builds a specific candidatg-model forM, that we denote by
model;(M). For instance, solvers for linear arithmetic satisfy teiguirement [35]. The idea
is to inspectmodel;(M) and propagate all the equalities it implies, hedging they tare
consistent with the other theories, includigg Since these equalities ageessesf one of
them turns out to be inconsistent, backtracking will be usdik model;(M). The rationale
for this approach is practical: it is generally far less exgiee to enumerate the equalities
satisfied in a particulafi-model than those satisfied by aff-models consistent withl; in
most experiments, the number of equalities that are realéywant turns out to be small.

PropagateEq

t andsare ground,

t,soccur inF,

(t ~s) is undefined irM,
modeli(M)(t) = modelj(M)(s),

M| F — Mt~s|F if

for every theory.Z;, 1 <i < n. Since theZ-solvers only deal with ground clauses, this rule
treats only ground equalities, and therefore only grounchdehat appear if. The reason
why it adds equalities between ground terms and not only é@tvghared constants will be
explained in relation to thBeduce rule.

4.3 The core transition rules of DPLL(+ .7)

Figure 2 reports the basic and theory propagation rules &iDP + .7) from [28].

The Decide rule is not concerned with literals in hypotheses, sincé diterals already
come fromM. TheDeduce rule realizes the interface with: assumey is an inference of
with n premises{H;>Cy,...,Hn>Cn} is a set of hypothetical clausesi {Im1,...,In}
is a set of assigned literals M, andH(y) denotes the sétl; U...UHmU {Imt1,...,In};
if y with premisesP(y) = {Cx,...,Cm,Im+1,...,In} yields C(y), the latter is added tb as
H(y)>C(y). The hypotheses of the claudés>C; are hidden from the inference rules/in
Our Deduce rule differs from its predecessor in [28], narm@etuce?, in the range of allowed
premises fronf . Deduce’ allowed/™ to use as premiséiss(M), and non-ground clauses and
ground unit clauses frordlause$F). Our Deduce allows ™ to use onlyclauses(M || F) =
ngclauseéF) Ulits,(M). This is a consequence of the additiorPebpagateEq, which adds
the relevant ground unit clauses directlyMo so that” finds them inlits,,(M). This is the
reason why we lePropagateEq add equalities between ground terms and not only between
shared constants.

A hypothetical clauséd >C is in conflictif every literal inC is complementary to an
assigned literal. Th€onflict rule converts a hypothetical conflict claude C into a regular
clause by negating its hypotheses, and puts the DPEL{") system in conflict resolution
mode. TheExplain rule unfolds literals from conflict clauses that were praetlidy unit
propagation. Any clause derived I&gplain can be added t& by theLearn rule, because
it is a logical consequence of the original set of clause® Bickjump rule drives the
DPLL(I" + .77) system back from conflict resolution mode to search mod#jtamassigns

12

Decide

| is ground
M| F =MI|F if ¢ I or=l occurs inF,
| is undefined irM.
UnitPropagate

| is ground
M[FH>(CVI) =M lycwFH>(CVI) if M Ep —C,
| is undefined irM.

Deduce
yel,
M| F —M|F,H(y)>C(y) if { P(y) Cclauses(M||F),
C(y) ¢ clausesF).
Conflict
M|F,H>C =—M||F,H>C||-H VvC if M=p-C
Explain _
MHFHC\/' :>MHFH_‘H\/D\/C if IHD(D\/I)GM
Learn
M| F|C —M|F,C|C if C¢ clause$F)
Backjump
M Ep —C,
MIMFCVE =My |[F f 'F'S uraeined i
N { HNlits(I’ M") = 0}
Unsat
M|F|B —unsat

T-Propagate
| is ground and occurs iR,
| is undefined irM,

MIIF =M I(ﬁll\/...vﬁln\/l) [F if l1,...,In € lits(M),
I, In =T 1L
T-Conflict
. l1,...,Iy €lits(M),
MF M A1V vl if {Il,....l:):Tfa(llsé

Fig. 2 Basic and theory propagation rules of DPLL{ .7).

at least one decided literal, namiéih the rule definition in Figure 2. A typical choice is that
I” be the least recently decided literal that satisfies theitiond of the rule. All hypothetical
clausedH >C which contain hypotheses that will be unassigned byRiekjump rule are
deleted. Note that a learnt clau3enay contain-[C]. In this case, the claug®is recording
the context where guessing the cla@sis unsound.

Figure 3 reproduces from [28] theontraction transitionghat import the contraction
rules of " in DPLL(I" + .77): note that they apply only in search mode. These transition
and their explanation, that follows, refer to generic caction rules schemas, and not to
the concrete contraction rules of Figure 1, in order to shioat this way of integrating
contraction is general, and applies to the contractiorsrafé-igure 1 as well as to others.
Any sound contraction inference taking a single premisg.(éautology deletion) can be
easily incorporated into DPLI{+ .7). Given a hypothetical claudd >C, such a rule is
just applied taC. Contraction rules with more than one premise need speegtinhent. We
useyy(C,Cy,...,Cy) to denote the application of a generic sound deletion rule

C.Cy,....Cm
CZ,...Cm

13

Delete
M|F,H-C = M|F if {
Disable

M|F,H>C = M|F,[H>Clievelnr, f

¥a(C,Cz,..,In), n>2
levelH) > Ievel(H)

¥a(C,Cp,... In), n>2
levelH) < Ievel(H)
Simplify

M|FH>C = M|F,(HUH)C if {
Simplify-disable

M|F,H>C = M|F,[H DC]IevekH/y(H UH)>C

¢ {%(CCa . In,C) n=2
levelH) < level(H’)

¥%(C,Co,...,In,C'), n>2
levelH) > level(H’)

Fig. 3 Contraction transitions of DPLI{+ .7): the notation in the conditions is explained in the text.

where a redundant main premi8ds deleted, angs(C,Cy, ...,Cny,C’) to denote the appli-
cation of a generic sound simplification rule

C,CZ,...,Cm
c.Cy,...Cm

where a redundant main premi€ds replaced byC'. DPLL(I" +.7) assigns acope level
to each literal inM::

Definition 5 Thescope levebf a literall, denotedevell), in M | M, is equal to the number
of decided literals itM |. Thescope levedf a set of literald is

[max{leve(l) |l eH} if H=#£D0,
leve(H) = {0 otherwise.

A contraction inference/ from I" is generalized to hypothetical clauses as follows: given
main premiseH >C, taken fromngclauseé~), and side premisebly >Cy, ..., Hn>Cn,
Im+1,---,In, taken fromngclauseéF) andlits,, (M), respectively, leH’ = HoU...UHRmU
{lm+1,--.,In}. Assume thay has premise€,Cy, ...,Cm,Im+1, ..., In. First, for a simplifica-
tion ys, H>C is replaced byH UH’) >C’. Second, for botlyy andys, H>C is deleted only

if levelH) > leve(H’). Indeed, this condition prevents the situation where hankjng
removes side premises (e.g., simplifiers or subsumersyédedmoving the main premise
HC (i.e., the simplified or subsumed clause). Such a situatiostrbe prevented, be-
cause otherwise the system would reach an unsound states M€ was deleted, but the
clauses that made it redundant and justified its deletiom@atenger there. For this reason,
if levelH) < levelH’), thenH >C is only disabled In Figure 3 a disabled clause is sur-
rounded by square brackets and bears as subscript the fahel get of side premises that
disabled it. A disabled clause is not deleted, but it is netduss premise. Whelrvel(H’)

is backjumped, all disabled clauses with subsdepe(H’) will be re-enabled and will be
available again as premises.

4.4 Refutational completeness of DPILL{ .7)

It was proved in [28] that DPLLL) is refutationally complete wheg& is empty. We prove
a stronger result for the case where bsthand % are not empty. We start with definitions

14

that adapt to DPLLU{ + .7) the classical notions of redundancy, fairness and satarat
(cf. Section 2). We usé -based transitiongor Deduce and the contraction transitions of
Figure 3.

Definition 6 A I -based transition isedundantin stateM || F if the corresponding -infe-
rence is redundant iclauses(M | F).

Note that/ -based transitions apply only in search mode.

Definition 7 A DPLL(I" + .7)-derivation isfair if all applicable transitions are applied
eventually, excepbpeculativelntro and redundanf -based transitions.

We recall that: (1) contraction rules are part/of (2) I, and therefore contraction rules,
only seeglauses(M || F) = ngclauseéF) Ulits,(M); (3) contraction inferences delete only
clauses imgclause&F). All other transitions do not usegclauseé~) and are therefore
sheltered from contraction. Thus, the only transitiong #ra affected by contraction, and
for which we need to stipulate that only irredundant infeeshare considered, arebased
transitions.

Definition 8 A DPLL(I" + .7) state issaturatedif it is

— eitherunsat
— or a stateM || F such that the only applicable transitions &peculativelntro transitions
or redundant -based transitions.

Clearly, a fair derivation yields a saturated state evdiytua order to prove refutational
completeness — whenever the input Sé& unsatisfiable, DPLLUT{ + .7°) reaches thensat
state — we prove as usual its contrapositive:

Theorem 4 If the initial set of clauses S Z WP is -smooth, and” has the reduction
property for counterexamples, whenever DPLE(.7) reaches a saturated state |NF, the
input set S is satisfiable moduld.

Proof We need to show that ¥ | F is saturated, thenlauses$F) Ulits(M) is satisfiable.
Satisfiability of Swill follow, because the transition rules in DPULH) are sound and
therefore preserve satisfiability. LNtbe clause$F) Ulits(M). The selN has the form#Z’ &
M1 W Gy & M, W Gy, whereZ’ contains non-ground clauses (i€, = ngclauseéF)), M &
G1 WMo WG, is ground,M; WMy = lits(M), Z' & G W G, = clauses$F), G; W Mz contains
only Z-symbols (i.e.M; = lits;»(M)), andG, W M, contains only.7-symbols.

— We consider firstZ’ & G; & My. In a standard proof of completeness foralone, we
would have that#’' w G, & M, is I -saturated, because the-derivation is fair. For
DPLL(I +.7) we need to show tha#’ W G, WM, is I -saturated, even if -based tran-
sitions do not us&;. SinceM ||F is saturated, for every clau§ee G;, fori € {1,2},
thereis aliteral of Cin M;. Indeed, if this were not the case, thecide rule could apply,
violating the hypothesis thal | F is saturated. Thus, every clauSes G; is subsumed
by a literal inMy, therefore it is redundant M1 & G4, and every -based transition that
usesC is redundant. Then’ & M, alone isl" -saturated: if it were not, an irredundant
I -based transition could apply, violating the hypothesat M || F is saturated. It fol-
lows that%’ WG, WM, is " -saturated. Sinc&’ W G, WM, does not contaifu, andl” has
the reduction property for counterexamplé®,w G, & M, is satisfiable by Theorem 1.

15

— We consider nexG; W M: this set is satisfiable moduld™, because if it were not, the
T-Conflict rule would apply, and/ | F would not be saturated.

— By the hypothesis that the initial s&t= Z WP is 7 -smooth (cf. Definition 3)Z is
variable-inactive. By Definition 2%’, which is derived from#% and ground unitz-
clauses, is also variable-inactive, hence stably infinjitéieorem 3. Thusz' W Gy WMy
has a model with infinite domain. Again by the hypothesis tat P is .7 -smooth,7
is a union of stably infinite theories. ThuS, W M, has a.7-model with infinite do-
main. Since all the requirements for a Nelson-Oppen contibimare fulfilled, these
two models can be combined inA-model ofN by the completeness of equality shar-
ing, establishing thatlauses$F) Ulits(M) is satisfiable. O

All inference systems considered in the sequel have thectieduproperty for counterex-
amples [6,56]. The proof of Theorem 4 shows that the integratf the components in
DPLL(I" + .7) is designed in such a modular way that its completenes®ddsdrom the
completeness of its components.

5 Towards decision procedures: DPLL(+ .7)-strategies

The combination of the transition system DPLL{ .7) with a search plan which con-
trols the application of transition rules, yieldD®LL(I + .7)-strategy or DPLL(™ + .7)-
procedure Similar to DPLL(Y), a search plan for DPLI{+ .7) is a depth-first search
plan. A standard way to ensure fairness with a depth-firsthgaan isiterative deepening
This section describes firstRPLL(™ + .77)-procedure with iterative deepeningnd then a
way to use it withSpeculativelntro to get decision procedures for smooth sets.

Definition 9 For all statedvl | F, for allC € clauses$F), for all implied literalslc € lits(M),
and for all decided literalse lits(M), theinference deptls given by

0 ifCek,
— infDepthC) = ¢ n+1if C=C(y) and
n=max{infDepthD) | D € P(y)} in aDeduce step,
— infDepthlc) =infDepthC) and
— infDepth(l) = min{infDepth(D) | D € clause$F), | € D}.

Informally, the inference depth of a clause indicates thetld®f the inference tree that
produced it; the inference depth of an implied literal isitiference depth of the clause that
implied it; and the inference depth of a decided literal & thinimum inference depth of a
clause that includes it.

In order to have a DPLL{ + .7)-procedure with iterative deepening, both rules suscep-
tible of yielding infinitely many steps need to be bounded:

Definition 10 DPLL(I" +.7) is (kg, ky)-bounded for kq,k, > 0, if Deduce is restricted to
premise<C with inf DepthC) < kg, andSpeculativelntro can be applied at mog, times.

This notion leads to termination:

Theorem 5 (kg, ky)-bounded DPLLI + .7) is guaranteed to terminate for all initial sets
of clauses S ZWP.

Proof By Definition 10, there are only finitely many applications¥duce and Specula-
tivelntro. The other DPLL{") transition rules are known to terminate (e.qg., [55], cfe®h
rems 2.10 and 3.7).

16

Definition 11 DPLL(I" + .7) is stuckat kg in stateM||F if the only applicable transi-
tions areSpeculativelntro transitions andDeduce transitions involving premise€ with
infDepthC) > ky.

A DPLL(I" + 7)-procedure with iterative deepeningbbreviatedD-DPLL(I" 4 .77)-proce-
dure, is a DPLL(" + .7)-procedure where DPLI{+ .7) is (kq, ky)-bounded, andy and

ky are increased whenever DPUL{ .7) gets stuck. The following example shows how
fairness is not obvious without iterative deepening:

Example 1Let " be an inference system with resolution andAginclude the following
clauses:

(1) =p(x,y) v p(f(x), f(¥)) vV p(9(x),9(y)),

(2) p(a,b),

(3) 9(x) #x,

(4) g(c) ~cvg(d) ~d.

Initially, I sees clausegl) and (3), because they are imgclauseéF), while lits;, (M) is
empty. If Decide addsp(a,b) to M, I sees als@2) and may generate

p(f(a), f(b)) v p(g(a),g(b))
from (1) and(2) by resolution. IfDecide addsp(f (a), f (b)) to M, andl" generates

p(f(f(a), f(f(b))) v p(g(f(@)),9(f(b))),

this alternation of decision and resolution steps may yaeldnfinite unfair derivation that
does not detect the unsatisfiability lef. Iterative deepening prevents this kind of behavior:
when the depth of the clauses generated by resolution redohdéound, further such steps
are forbidden and the system is forced to consider stepsclétises of lower depth. When
Decide adds toM first g(c) ~ ¢ and theng(d) ~ d and each yieldsl by resolution with
g(x) £ x, inconsistency is detected.

Let S be a smooth set, and Iet denote a sequence of “speculative axioms,” in the
signature ofS, that are introduced bgpeculativelntro. In order to get a decision proce-
dure, one needs to show that for some sequéhdbere exist boundky andk, such that
(kg, ky)-bounded DPLL[+.7) is guaranteed to terminate in thesatstate, wheneve8is
unsatisfiable, and in a stalé|| F such that DPLL{ + .77) is notstuckat kg, wheneverSis
satisfiable; note that this means théf F is saturated. The second example illustrates this
idea:

Example 2Let Z be
{~XCy)V-(yE2)VXCz =(xCy) vV f(x) C f(y)},

andP be
{aCh, aC f(c), =(aCc)}.

Assumel” features resolution, superposition and simplificatioi$piculativelntro adds
[f(X) =X f(X) =X,

the monotonicity axiom is rewritten to a tautology amd f(c) is also rewritten. Note that
[f(X) ~ x] is a decision literal, antevel [f (x) ~ x]) = 1. Thus, the rewriting steps only
disable the monotonicity axiom aralC f(c), whose scope level is 0, and adléi(x) ~

17

x]>aLC cto F. Resolution generates the conflict clafi$éx) ~ x] 0. In conflict resolution
mode, the literak [f (x) ~ x| is added tM, preventing DPLL{ +.7) from guessing (x) ~
x again. Next, ifSpeculativelntro adds

[F(f(X) =x]>f(f(X)~X,

monotonicity andi C b produce onlyf (a) = f (b), while monotonicity an& L f(c) produce
only f(a) C f(f(c)), which is disabled and replaced by (f(x)) = x| > f(a) C c. Then,
DPLL(I" + .7) reaches a saturated state, and satisfiability is detected.

The third example shows a case whBrepagateEq plays the key role:

Example 3Let I' have hyperresolution, superposition and simplificatiéhbe the theory
of linear integer arithmeticzZ be

{-xCy)v-(yEzVxCz}

andP be
{aC by, by Cc, ~(aCc),by <by,by >by—1}.

UnitPropagate adds the literals oP to M. In the modelmodel (M) maintained by the
linear arithmetic solvermodel a(M)(b1) = model a(M)(b2). Thus,PropagateEq guesses
the equatiorb; ~ by. Sayb, > by in the ordering- of I: simplification rewritesh, C ¢
to by C c. Hyperresolution derivea C ¢ from a C by, by C ¢ and the transitivity axiom,
so that an inconsistency is detected. DRLE(.7") backtracks and adds(b; ~ by) to M.
T-Conflict detects the inconsistency between this literal §bd< by, by > by — 1}. The
conflict resolution rules are applied again and the emptyseas produced.

6 Decision procedures for axiomatizations of type systems

In this section we study specific theories of interest fotvgafe verification and we obtain
decision procedures for them.

Definition 12 A structure @ is essentially finitewith respect to a function symbdi if
range(@(f)) is finite.

Essential finiteness is weaker than finiteness, becausmitsadn infinite domain provided
range(@(f)) is finite.

Theorem 6 If @ is an essentially finite structure with respect to a monadicfion symbol
f, then there existikk, > 0, ky # ko, such that® = £ (x) ~ fk2(x).

Proof For allv € |®|, we call f-chainstarting atv, the sequence:
v=a(f)°(v), 2(F)(v), D(F)’(v),..., D(F)'(V),...

Since®(f) has finite range, there exist, gz, with g1 # gp, such thatb ()% (v) = @(f)%2(v).
Say thatq; > gz. Then we callsize denotedsz(®, f,v), and prefix denotedpr(®, f,v),
of the f-chain starting av, the smallest; and qp, respectively, such thad(f)%(v) =
®(f)%(v) and g1 > 0. We termlassq denotedis(®, f,v), of the f-chain starting av,
the difference between size and prefix, thatldé®, f,v) = sz(®, f,v) — pr(®, f,v). We
say that®(f)"(v) is in the lassoof the f-chain starting av, if n > pr(®, f,v). Clearly,

18

for all elementsw in the lasso of thef-chain starting at, ®(f)"(w) = w, whenn =
Is(®, f,v). Also, for all multiples of the lasso, that is, for all= j-Is(®, f,v) for some
integerj > 0, ®@(f)"(w) = w. Let g = max{pr(®, f,v) | v € range(®(f))} +1 andn =
lem{ls(®, f,v) | v& range(®(f))}, wherelem abbreviates least common multiple. We claim
that @ |= f9(x) ~ f9(x), that is,k; = q+n andk; = g. By way of contradiction, assume
that for somev € |®|, @ ()4 "(v) # ®(f)9(v). Take thef-chain starting at: @ (f)%(v) is

in the lasso of this chain, becauge> pr(®, f,v). Sincen is a multiple ofls(®, f,v), we
have®(f)4"(v) = @(f)"(@(f)4(v)) = @(f)%(v), a contradiction. O

Example 4Let @ be a structure such th&®| = {vo,v1,V2,...,Ve,...}, and let®(f) be
the function defined by the following mappinvp — Vi,V1 +— V2,V — V3,V3 — Vg, Vg —
V2, V5 — Vg, Vg — V7, V7 — Vg, Vg — V5, % — Vg }, Wherex stands for any other element. The
f-chain starting atp haspr(®, f,vp) = 2, sz(®, f,vg) = 5 andlIs(®, f,vp) = 3. The f-
chain starting ats haspr(®, f,vs) = 0, sz(®, f,v5) = 4 andls(®, f,vs) = 4. Then,q =
msax{Z,O} +1=3,n=Icm{3,4} = 12,k; = q+n= 15 andk, = q= 3, and® |= f13(x) ~
f3(x).

To identify classes of problems for which an ID-DPIL§ .7)-procedure is a decision
procedure, we focus on theorigéthat satisfy the following property:

Definition 13 A presentationZ is essentially finitéf its signature contains a single monadic
function symbolf, and for all setd of groundZ-clauses, such tha# v P is satisfiable,
Z 9P has an essentially finite modél with respect tof .

We show that ID-DPLL{ + .77) is a decision procedure for essentially finite theoriebéf t
number of literals in clauses is bounded:

Theorem 7 Let # be an essentially finite presentation. Consider an ID-DRLE(.7)-
procedure where eveSpeculativelntro transition adds an equation fx) ~ f(x) with j >

k, for increasing values of j and k. If there exists an n sudt tio clause generated by
DPLL(" +.77) contains more than n literals, ID-DPLL(+ .7) is a decision procedure for
the satisfiability modulaZ of & -smooth problems? wP.

Proof If Z4yPis unsatisfiable, then, by refutational completeness, PLL.Z) will reach
the stateunsatwhenky becomes large enough. # @ P is satisfiable, it has an essentially
finite model @, becauseZ is essentially finite. Chooslk, large enough that the axiom
fki(x) ~ fk2(x) satisfied by® according to Theorem 6 is added Byeculativelntro. We
need to prove that iy is large enough, DPLI{ + .7) will not get stuck aky. To do that,
we prove that only a finite number of clauses are generatashfssundedy for the chosen
ky. Say thak; > kp: the axiomfk(x) ~ f%2(x) is applied as a rewrite rulgh (x) — f%2(x) to
simplify® all clauses that contain a terffi(t) with k > k;. This guarantees that no such term
will be kept and that the depth of terms in clauses is boun8ette the number of literals
in clauses is also bounded by the hypothesis that no clamseotdain more than literals,
only a finite number of clauses can be derived for unbourkge@hus, DPLL(+.77) will
halt without getting stuck and will detect satisfiability. O

From now on, unless otherwise statédis superposition with negative selection, hyperres-
olution, factoring and simplification.

5 Of course, this assumes thaffeatures simplification.

19

Lemma 2 If Z is Horn, the number of literals in clauses generated by DFPL(.7") from
a .7 -smoothZ WP is bounded.

Proof In the Horn case, superposition is unit superposition, twiioes not increase the
number of literals, and hyperresolution only generategigesinit clauses. O

If Z is a set of non-equational clauses with no more than twaalgéezach, and is res-
olution, factoring and simplification (to applf/t(x) — f*2(x)), then all generated clauses
contain at most two literals. To give further examples, wedte following:

Definition 14 A clauseC =—l1 V...V =lyVIn1 V... Vinq is ground-preservingf

n+q n
J Var(lj) € [Var(l)).
j=n+1 j=1

A set of clauses iground-preservingf all its clauses are.
In a ground-preserving set the only positive clauses arergtd

Lemma 3 If # is essentially finite and ground-preserving, and ev&fgculativelntro tran-
sition adds an equation’{x) ~ fk(x) with j > k, for increasing values of jand k, DPLL{
) generates finitely many clauses fronasmoothZ 4 P.

Proof Hyperresolution only generates positive ground clausssalise all variables get in-
stantiated by resolving the negative literals with positilauses. Superposition with neg-
ative selection superposes a ground positive clause intound-preserving clause, which
generates either a ground clause, or a non-ground growsgming clause with no more
variable positions than its non-ground parent. It follolwattsuperposition creates no new
non-ground term, and only finitely many non-ground grounesprving clauses can be de-
rived. Since term depth is limited by simplification ¥ (x) — f2(x), only finitely many
ground clauses can be generated. O

Next, we consider some specific theories relevant to thenzadi@aation of type systems
in programming languages. Given the axioms

Reflexivity X C X ()
Transitivity -(XCy)V-(YC 2)VXCz (2)
Anti-Symmetry —~(XCy)V—a(YEX)VX~y 3
Monotonicity =(XCy)V f(x) C f(y) 4)
Tree-Property —(ZEX)V—(zEYy)VXCyVvVyLC X (5)

{(1),(2),(3)} presents a poset (partially ordered skt)= {(1), (2), (3),(4)} a type system
with multiple inheritanceandSI = Ml {(5) } a type system witingle inheritancewhere
C is the subtype relationship arfdis a type constructoMl andSl are essentially finite,
because they satisfy a stronger property:

6 Definition 14 is a weakening of that of positive variable doated clause of [22] (cf. Definition 3.18),
and it is dual to that of ground-preserving clause of [47]ialrequired that negative literals do not contain
variables that do not appear in positive ones. Our definigdior a positive strategy in the non-Horn case,
hence forward reasoning, whereas that of [47] was for lilgaut proofs in the Horn case, hence backward
reasoning.

20

Definition 15 % has thefinite model propertyif for all setsP of ground%-clauses, such
thatZ v P is satisfiableZ W P has a modetp with finite | ®|.

Theorem 8 Sl has the finite model property hence it is essentially finite.

Proof AssumeSIw P is satisfiable, and leb be a model for it. It is sufficient to show there
is a finite model®’. Let Tp be the set of subterms of terms in P, afgdbe the setd(Tp).
SinceP is finite and groundyk is finite. Let|®’| beVp U {vn}, wherevy, is an element not
in V. Then, we defing’(C)(vy,v7) as:

Vo =V Or (V1,V2) € @(C).

Intuitively, v, is @ new maximal element|®’|, @'(C)) is a poset and’ (C) satisfies the
Tree-Property. Now, we define an auxiliary functiog: |@'| — |@'| as:

@(f)(v) if f(t) € Tp, andd(t) =v;
9(v) = { Vm otherwisel?

Let domy, the relevant domain of, be the sef®(t) | f(t) € Te} U {vmn}. With a small
abuse of notation, we useC w to denote(v,w) € @'(C). Then, we defined’(f)(v) as
g(w), wherew is an element if@®’| such thatv C w, w € domy, and for allw/, v C w
andw € dom; imply w C w. This function is well defined becausg € dony, vy, is the
maximal element of®’|, and@®’(C) satisfies thélree-Property, which ensures uniqueness
of the image. Moreove@®'(f) is monotonic with respect t@’'(C). O

Definition 16 Let (A,C) be a poset. ThBedekind-MacNeille completion [5@f (A,C) is
the unique complete lattic@, <) satisfying the following properties:

— There is an injectiom from Ato B such thatv; C v iff a(v1) < a(v2),
— Every subset 0B has greatest and least lower bound, and
— Bis finite if Ais finite. Actually,B is a subset of 2

Theorem 9 Ml has the finite model property hence it is essentially finite.

Proof The construction used f&i does not work foMl, because without tH€ree-Property
the w in the definition of®’(f)(v) may not be unique for a given First, we define an
auxiliary structure®g such thaf ®g| = Vp, ®o(C) = @(C) |y, andPy(f) is defined as:

O(F)(v) if F(t) € Tp, andd(t) = v,
Po(F)(v) = {w otherwiseF,’

wherew is some element ofp. Note that(Vp, ®(C)) is a poset. Letdom; be the set
{®(t) | f(t) € Tp}. Then, following [23] we use the Dedekind-MacNeille contjae to
complete(Vp, Pp(C)) into a complete latticéB, <). We useglb(S) to denote the greatest
lower bound of a subs& of B. Now, we define a finite modeb’ for Miw P with domain
|@'| = B, in the following way:

@'(c) = a(Po(c)) for every constant in Tp,
»'(C) = <,
@' (f)(v) = glb({a(Po(f)(W)) |weVp, we doms, v=a(w)}).

The function®’(f) is monotonic with respect t@’(C). The structurep’ satisfied® because
for every termt in Tp, we have®'(t) = a(®(t)). Moreover, the_-literals in P are satisfied
because the latticéB, <) is a Dedekind-MacNeille completion @b which is a restriction
of @. O

21

Now we show that ID-DPLL{ + .77) is a decision procedure fdil andSl.

Theorem 10 An ID-DPLL(" +.7)-procedure where eveSpeculativelntro transition adds
an equation f(x) ~ f(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability module” of .7-smooth problem#ilw P.

Proof It follows from Theorem 7 and Lemma 2, becaldkis essentially finite and Horn.
O

Theorem 11 An ID-DPLL(" +.7)-procedure where eveSpeculativelntro transition adds
an equation f(x) ~ f¥(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability module” of 7 -smooth problemSIw P.

Proof SinceSl is essentially finite and ground-preserving, exceptReftexivity, it follows
from Theorem 7 and Lemma 3, provid&dflexivity does not affect the result of Lemma 3.
This is the case, since an hyperresolution involMiRaflexivity generates either a tautology
or a subsumed clause or a ground clause. O

In Spec# [7], the axiomatization of the type system alsalitiesTR = {g(x) £ null, h(g(x))

~ X}, whereg represents thé/pe representativef some type. The first axiom states that
the representative is never the constault, which meansiull has no pre-image, hengas
not surjective. The second axiom states thaias a left inverse, hence it is injective. It is
well-known that a set with an injective but not surjectivadtion is infinite (e.g., Lemma 1
in [24]), so that any model of R is infinite.

Theorem 12 An ID-DPLL(" +.7)-procedure where eveSpeculativelntro transition adds
an equation f(x) ~ f(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability module” of .7-smooth problem®l g TRWP andSIW TRW P.

Proof Superposition applied to an axiom R and a ground equation generates a ground
equation smaller than its ground parent in theordering (e.g., under a precedenge-

h = null), so that/” terminates ornT R-satisfiability problems. Sinckll (or SI) and TR are
disjoint and variable inactivd, terminates also on satisfiability problemsNt @ TR (or

SI¥ TR) by Theorem 2. Thus, the combination witlR does not change that only finitely
many clauses can be generated. The claim follows from Thefeand this observation for
problemsM| W TRw P, and from Theorem 11 and this observation for probl&hsTR W P.

O

7 Discussion

The DPLL(" +.77) system integrates DPLIX) with a first-order enginé , to combine the
strengths of DPLL and efficient solvers for special theqrsegh as linear arithmetic, with
those of superposition and resolution. DPIL)-based SMT-solvers and general theorem
provers grew independently for several years. The inangasicognition that their features
are complementary, and necessary to solve frontier prabierfields such as program ver-
ification, is leading to study their interaction.

The rewrite-based approach to satisfiability procedurgsldped in [5,3,18,15,4] was
concerned with using first-order engines as decision proesdor satisfiability problems.
In [14,16] it was generalized from satisfiability problenggyen by sets of ground unit
clauses, to decision problems given by sets of ground ctads$e first-order engine alone

22

was used as decision procedure, with no integration with Mii-Solver. The two-stage
method of [13, 17] lets a first-order engine and an SMT-saleeperate, including allowing
both a unionZ of variable-inactive axiomatized theories, and a uniBrof Nelson-Oppen
built-in theories: the first-order engine was applied aseagpcessor to compil& and re-
duce it to a theory that DPLLY) alone could handle. Thus, the two reasoners were applied
in sequence. The systems in [46,1] explored embeddig-solver for linear arithmetic
into a superposition-based theorem prover, while the stfidgrated schematan [2] offers
another perspective on the integration of propositiondlaithmetical reasoning.

In DPLL(I" +.7) the first-order engin€ is tightly integrated within DPLL{"), result-
ing in one single system. This is a main difference with respethe two-stage approach of
[13,17]. DPLL(+ .77) and systems such as those in [46, 1] can be considered syitimet
in DPLL(I" + .77) the superposition-based engines a satellite of DPLL{); in [46, 1] the
7 -solver is a satellite of the superposition-based enginfirsfversion of DPLL({ + .7)
appeared in [28]. It was called DPLL], because it was known to be refutationally com-
plete only in the case where the background the@ris empty. A first contribution of this
article was to advance the DPUL({+ .77) approach by giving conditions under which it is
refutationally complete when bot## and.Z are not empty.

Combination of theories is of paramount importance to readmut software. In previ-
ous work, it was known how to combine built-in theories, adoag to the equality sharing
method pioneered by Nelson and Oppen [53], and studied gieceby many authors (e.g.,
[37,54,65] for some of the most recent extensions). Thie stfycombination requires one
to embed in the prover a decision procedure for each thednterest. While decision pro-
cedures are available for several theories, it might nobheease for each and every group of
axioms that may appear in program checking problems. Tkisnain reason why we need
an axiomatized theory? andl” to reason about it. A second main contribution of this arti-
cle was to show how to let combination of built-in theorida &lelson-Oppen, and union of
axiomatized theories under variable inactivity, coexisd aork together in DPLLU{ + .7).

We presented a new DPLL(+ .7) system that combines DPLL(+ .7) with specula-
tive inferences. The purpose is to enforce termination bydéucing additional axioms as
hypotheses. This idea was inspired by the “unsound theorewing” concept of [49]. The
additional axioms may cause unsoundness, by making ufisbligswhat was a satisfiable
set. We provided a mechanism for the prover to detect anyumasess introduced by the
added axioms and recover from it. This mechanism is baseledvecktracking scheme that
is native of a DPLL search: an inconsistency due to a speeelliaference is atunnatural
failure” that the prover treats like"aatural failure” (a proper inconsistency) by backtrack-
ing. Furthermore, it keeps memory of the failure to avoicemg it. An idea of speculative
inferences may be implicit in bottom-up model generatioprepches [9]. In those contexts
the speculation consists of trying in turn each case in a aaa#ysis. In our method, the
speculative inferences assert additional clauses, onftthie mative case analysis of DPLL
on the input clauses. Considering each of the two horns of@aaalysis can be seen either
as an inference step or as a search step on existing datap&uiative inferences are more
like guessing additional features that a model may satisfy.

DPLL(I +.7) equipped with an iterative deepening search plan formB&pPLL(I" +
7)-procedure We showed that ID-DPLLJ + .77) with speculative inferences is a decision
procedure for theories that axiomatize type systems reteieaprogram checking. Their
crucial feature is that they aessentially finitethey have one unary function symbol whose
range is finite. However, we gave examples where ID-DIPL(7) is a decision procedure
also when more function symbols are involved via combimagibtheories. Another way to
approach the axiomatizations in Section ocality, proposed for Horn theories [40], and

23

then extended beyond the Horn case and developed in [8,83,641]. In a local theory,
validity of a conjecture can be decided by considering oriytdly many of its ground
instances. We emphasize that DPLL{ .7") yields a decision procedure for the axiomati-
zations in Section 6 united with an arbitrary built-i, provided the problen?V W Z WP is
7 -smooth. In applications, there is no guarantee that adlvegit instances of/ W % will
be local. Thus, speculative inferences and locality carobsidered complementary.

There are several directions for future work. One is to extdre approach to more
presentations, including cases where the signatuge fefatures also non-monadic function
symbols. For example, consider the axipMm xAuC z= mapx, u) C mapy, z), whereC is
a subtype relation, antiapx, u) represents the type of maps from typw typeu. If y C X,
a value of typey can be used whenever a value of typs used. For map$ € map(x,u)
andg € mapy,z) this is the case if C x, which meansf can take whateveg takes, and
u C z, which means whatevdryields is within whatg yields. Such an axiom with a dyadic
function symbol may be useful for an axiomatization of majsother open issue is the
duplication of reasoning on ground unit equational claus&PLL(I" +.7), due to the fact
that they are seen by bofhand the congruence closure (CC) algorithm within DREZL)(
Using the CC algorithm to compute the completion of the segrouind equations [38,
62], and pass the resulting canonical systeifi tavould not solve the problem, because this
solution is noincremental as the addition of a single ground equation requires reating
the canonical system. It would be ideal to automate the ehofcclauses to be added by
Speculativelntro. However, this manual component of DPILL{ 7) is at a higher level of
abstraction than triggering, and it is certainly not heavie

Another topic for future investigation is how to improve tbapability of the system
to discover unsatisfiability due to the lack of finite moddy. detecting the generation of
a cardinality constraint by, DPLL(I" +.7") can discover that an axiomatized thec#
is not variable-inactive and not stably infinite. In otherrd& it can discover the lack of
infinite models. On the other hand, it does not have a geneglte discover the lack of
finite models, or that there are only models with the “wrongfdinality: for exampleZ
only features models with a certain finite cardinality, wh&nrequires a different finite
cardinality.

The class of formulae that can be decided by DRLI(.Z) includes axiomatizations of
type systems, used in tools such as ESC/Java [36] and Sgewa#|@h represents significant
evidence of the relevance of this work to applications.

Acknowledgements Part of this research initiated during a visit of the firstrewtwith the Software Re-
liability Group of Microsoft Research in Redmond. We thahk enonymous reviewers whose suggestions
allowed us to improve an earlier version of this article.

References

1. Ernst Althaus, Evgeny Kruglov, and Christoph Weidenba&uperposition modulo linear arithmetic
SUP(LA). In Silvio Ghilardi and Roberto Sebastiani, editd?roceedings of the Seventh Symposium on
Frontiers of Combining Systems (FroCo®)lume 5749 of.ecture Notes in Artificial Intelligenceages
84-99. Springer, 2009.

2. Vincent Aravantinos, Ricardo Caferra, and Nicolas Bel# decidable class of nested iterated schemata.
In Jurgen Giesl and Reiner Hahnle, editd?Psoceedings of the Fifth International Joint Conference on
Automated Reasoning (IJCARplume 6173 ofecture Notes in Artificial Intelligencepages 293-308.
Springer, 2010.

3. Alessandro Armando, Maria Paola Bonacina, Silvio Rarasel Stephan Schulz. On a rewriting ap-
proach to satisfiability procedures: extension, combimatf theories and an experimental appraisal.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

In Bernhard Gramlich, editoi?roceedings of the Fifth Workshop on Frontiers of CombirBygtems
(FroCoS) volume 3717 of_ecture Notes in Atrtificial Intelligencgpages 65-80. Springer, 2005.

. Alessandro Armando, Maria Paola Bonacina, Silvio Rarisd Stephan Schulz. New results on rewrite-

based satisfiability procedureACM Transactions on Computational Logi(1):129-179, 2009.

. Alessandro Armando, Silvio Ranise, and Michaél Rusitaw A rewriting approach to satisfiability

proceduresinformation and Computatiqrii83(2):140-164, 2003.

. Leo Bachmair and Harald Ganzinger. Rewrite-based empadtiheorem proving with selection and

simplification. Journal of Logic and Computatior(3):217-247, 1994.

. Michael Barnett, K. Rustan M. Leino, and Wolfram Schult€he Speg programming system: An

overview. In Gilles Barthe, Lilian Burdy, Marieke Huismaigan-Louis Lanet, and Traian Muntean,
editors, Proceedings of the Workshop on Construction and AnalysiSafé, Secure, and Interopera-
ble Smart Devices (CASSIS 20049lume 3362 of_ecture Notes in Computer Sciengages 49-69.
Springer, 2005.

. David A. Basin and Harald Ganzinger. Automated compfeaitalysis based on ordered resolution.

Journal of the ACM48(1):70-109, 2001.

. Peter Baumgartner and Renate A. Schmidt. Blocking aner @hhancements for bottom-up model

generation methods. In Ulrich Furbach and Natarajan Shae##@ors,Proceedings of the Third Inter-
national Joint Conference on Automated Reasoning (1JC@¢tyme 4130 ot ecture Notes in Atrtificial
Intelligence pages 125-139. Springer, 2006.

Maria Paola Bonacina. A taxonomy of theorem-provingtsgies. In Michael J. Wooldridge and
Manuela Veloso, editorgyrtificial Intelligence Today — Recent Trends and Develapsyeolume 1600

of Lecture Notes in Atrtificial Intelligencepages 43—84. Springer, 1999.

Maria Paola Bonacina. On theorem proving for prograntking — historical perspective and recent
developments. In Maribel Fernandez, edit®rpceedings of the Twelfth International Symposium on
Principles and Practice of Declarative Programming (PPDPages 1-11. ACM Press, July 2010.
Maria Paola Bonacina and Nachum Dershowitz. Abstravbrmaal inference.ACM Transactions on
Computational Logic8(1):180-208, 2007.

Maria Paola Bonacina and Mnacho Echenitftdecision by decomposition. In Frank Pfenning, editor,
Proceedings of the Twenty-first Conference on Automatedi@iedt (CADE) volume 4603 ol ecture
Notes in Artificial Intelligencepages 199-214. Springer, 2007.

Maria Paola Bonacina and Mnacho Echenim. Rewrite-bdsetsion procedures. In Myla Archer,
Thierry Boy de la Tour, and Cesar Munoz, editdPsoceedings of the Sixth Workshop on Strategies in
Automated Deduction (STRATEGIES), Federated Logic Cemfer2006volume 174(11) oElectronic
Notes in Theoretical Computer Scienpages 27-45. Elsevier, 2007.

Maria Paola Bonacina and Mnacho Echenim. Rewrite-baagsfiability procedures for recursive data
structures. In Byron Cook and Roberto Sebastiani, edifersceedings of the Fourth Workshop on
Pragmatics of Decision Procedures in Automated ReasorifigPAR), Federated Logic Conference
2006 volume 174(8) oElectronic Notes in Theoretical Computer Scienuages 55-70. Elsevier, 2007.
Maria Paola Bonacina and Mnacho Echenim. On varialaletivity and polynomial T-satisfiability
proceduresJournal of Logic and Computatiori8(1):77-96, 2008.

Maria Paola Bonacina and Mnacho Echenim. Theory dectsyodecompositionJournal of Symbolic
Computation 45(2):229-260, 2010.

Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicoji§ilvio Ranise, and Daniele Zucchelli. Decid-
ability and undecidability results for Nelson-Oppen andrite-based decision procedures. In Ulrich
Furbach and Natarajan Shankar, editehgceedings of the Third International Joint Conferencefen
tomated Reasoning (IJCARJolume 4130 ofLecture Notes in Artificial Intelligencgpages 513-527.
Springer, 2006.

Maria Paola Bonacina and Jieh Hsiang. Towards a fowordaficompletion procedures as semidecision
proceduresTheoretical Computer Scienc46:199-242, 1995.

Maria Paola Bonacina, Christopher A. Lynch, and Leomatel Moura. On deciding satisfiability by
DPLL(I + .7) and unsound theorem proving. In Renate Schmidt, edtmceedings of the Twenty-
second Conference on Automated Deduction (CAR&YmMe 5663 oLecture Notes in Artificial Intel-
ligence pages 35-50. Springer, 2009.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Widgsidable about arrays? In E. Allen
Emerson and Kedar S. Namjoshi, editdPspceedings of the Seventh Conference on Verification, Mode
Checking, and Abstract Interpretation (VMCAVplume 3855 ofLecture Notes in Computer Science
pages 427-442. Springer, 2006.

Ricardo Caferra, Alexander Leitsch, and Nicolas Relfieatomated Model BuildingKluwer Academic
Publishers, Amsterdam, The Netherlands, 2004.

Domenico Cantone and Calogero G. Zarba. A decision guwedor monotone functions over bounded
and complete lattices. In Harrie de Swart, editorpc. TARSKI 1) volume 4342 ofLecture Notes in
Artificial Intelligence pages 318-333. Springer, 2006.

25

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Koen Claessen and Ann Lilliestrom. Automated infeeeatfinite unsatisfiability. In Renate Schmidt,
editor, Proceedings of the Twenty-second Conference on Automaggciion (CADE)volume 5663 of
Lecture Notes in Artificial Intelligencepages 388-403. Springer, 2009.

Martin Davis, George Logemann, and Donald Loveland. Ahire program for theorem-proving.
Communications of the ACNB(7):394-397, 1962.

Martin Davis and Hilary Putnam. A computing procedurnegieantification theoryJournal of the ACM
7:201-215, 1960.

Leonardo de Moura and Nikolaj Bjgrner. Efficient E-matghfor SMT-solvers. In Frank Pfenning,
editor, Proceedings of the Twenty-first Conference on Automatedi@iet (CADE) volume 4603 of
Lecture Notes in Artificial Intelligencepages 183-198. Springer, 2007.

Leonardo de Moura and Nikolaj Bjgrner. Engineering DPDL+ saturation. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editétmceedings of the Fourth International Joint Conference
on Automated Reasoning (IJCARdlume 5195 ol ecture Notes in Atrtificial Intelligencepages 475-
490. Springer, 2008.

Leonardo de Moura and Nikolaj Bjgrner. Model-based theombination. In Sava Krsti¢ and Albert
Oliveras, editorsProceedings of the Fifth Workshop on Satisfiability Moduledries (SMT), Con-
ference on Automated Verification 2Q00lume 198(2) ofElectronic Notes in Theoretical Computer
Sciencepages 37-49. Elsevier, 2008.

Leonardo de Moura and Nikolaj Bjgrner. Z3: an efficient’Sédlver. In C. R. Ramakrishnan and Jakob
Rehof, editorsProceedings of the Fourteenth Conference on Tools and isifigos for the construction
and analysis of systems (TACA®)Ilume 4963 oLecture Notes in Computer Sciengages 337-340.
Springer, 2008.

Nachum Dershowitz. Orderings for term-rewriting systeTheoretical Computer Science7(3):279—
301, 1982.

Nachum Dershowitz. A maximal-literal unit strategy fftwrn clauses. In Stephan Kaplan and Mitsuhiro
Okada, editorsProceedings of the Second Workshop on Conditional and Tiged Rewriting Systems
(CTRS 1990Q)volume 516 of_ecture Notes in Computer Sciengages 14—25. Springer, 1991.
Nachum Dershowitz and Zohar Manna. Proving terminatith multiset orderings Communications
of the ACM 22(8):465476, 1979.

David L. Detlefs, Greg Nelson, and James B. Saxe. Siyn@itheorem prover for program checking.
Journal of the ACM52(3):365-473, 2005.

Bruno Dutertre and Leonardo de Moura. A fast lineaharétic solver for DPLL(T). In Tom Ball and
R. B. Jones, editor®roceedings of the Eighteenth Conference on Automatetic#tion (CAV) volume
4144 ofLecture Notes in Computer Scienpages 81-94. Springer, 2006.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridgere@ Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In Laurie J. Hemadzditor, ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLpdges 234-245, 2002.

Pascal Fontaine. Combinations of theories for dectddtalyments of first-order logic. In Silvio Ghi-
lardi and Roberto Sebastiani, editoPspceedings of the Seventh Symposium on Frontiers of Cargbin
Systems (FroCoSyolume 5749 ofLecture Notes in Atrtificial Intelligencepages 263—-278. Springer,
2009.

Jean Gallier, Paliath Narendran, David A. Plaistedn &aatz, and Wayne Snyder. Finding canonical
rewriting systems equivalent to a finite set of ground equatin polynomial timeJournal of the ACM
40(1):1-16, 1993.

Yeting Ge, Clark Barrett, and Cesare Tinelli. Solvinguiified verification conditions using satisfiability
modulo theories. In Frank Pfenning, editBroceedings of the Twenty-first Conference on Automated
Deduction (CADE)volume 4603 ofLecture Notes in Artificial Intelligencepages 167—-182. Springer,
2007.

Robert Givan and David A. McAllester. Polynomial-timengputation via local inference relatiorSCM
Transactions on Computational Logig(4):521-541, 2002.

Joseph Y. Halpern. Presburger arithmetic with unargipates isre- complete. Journal of Symbolic
Logic, 56:637-642, 1991.

Jieh Hsiang and Michaél Rusinowitch. Proving refote completeness of theorem proving strategies:
the transfinite semantic tree methddurnal of the ACM38(3):559-587, 1991.

Carsten Ihlemann, Swen Jacobs, and Viorica Sofromikk&tmans. On local reasoning in verification.
In C. R. Ramakrishnan and Jakob Rehof, editehsceedings of the Fourteenth Conference on Tools
and algorithms for the construction and analysis of systEFASCAS) volume 4963 ol ecture Notes in
Computer Sciencgpages 265-281. Springer, 2008.

Swen Jacobs. Incremental instance generation in leeabning. In Franz Baader, Silvio Ghilardi,
Miki Hermann, Ulrike Sattler, and Viorica Sofronie-Stokkeans, editorsNotes of the First Workshop
on Complexity, Expressibility and Decidability (CEDARjtdrnational Joint Conference on Automated
Reasoning 20Q&ages 4762, 2008.

26

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Donald E. Knuth and Peter B. Bendix. Simple word problémsniversal algebras. In J. Leech, ed-
itor, Proceedings of the Conference on Computational Problerdshstract Algebraspages 263-298.
Pergamon Press, 1970.

Konstantin Korovin and Andrei Voronkov. Integratingdar arithmetic into superposition calculus. In
Jacques Duparc and Thomas A. Henzinger, editersceedings of the Sixteenth EACSL Annual Con-
ference on Computer Science Logic (CSlglume 4646 ol ecture Notes in Computer Sciengages
223-237. Springer, 2007.

Emmanuel Kounalis and Michaél Rusinowitch. On wordjems in Horn theorieslournal of Symbolic
Computation 11(1-2):113-128, 1991.

Vladimir Lifschitz, Leora Morgenstern, and David A. Bted. Knowledge representation and classical
logic. In Frank van Harmelen, Vladimir Lifschitz, and BruPerter, editorsHandbook of Knowledge
Representatignvolume 1, pages 3—88. Elsevier, 2008.

Christopher A. Lynch. Unsound theorem proving. In Jamdiutdowski and Andrzej Tarlecki, editors,
Proceedings of the Thirteenth EACSL Annual Conference anpQter Science Logic (CSLyolume
3210 ofLecture Notes in Computer Sciengages 473-487. Springer, 2004.

Holbrook Mann MacNeille. Partially ordered sets.Thansactions of the American Mathematical Soci-
ety, volume 42, pages 416-460, 1937.

William W. McCune. Otter 3.3 reference manual. TechriRegport ANL/MCS-TM-263, MCS Division,
Argonne National Laboratory, Argonne, IL, USA, 2003.

Scott McPeak and George C. Necula. Data structure spaifis via local equality axioms. In Kousha
Etessami and Sriram. K. Rajamani, editdPspceedings of the Seventeenth Conference on Automated
Verification (CAV)volume 3576 otecture Notes in Computer Scienpages 476-490. Springer, 2005.
Greg Nelson and Derek C. Oppen. Simplification by codjperaecision procedureACM Transactions
on Programming Languages and Systef{®):245-257, 1979.

Enrica Nicolini, Christoph Ringeissen, and MichaésRowitch. Data structures with arithmetic con-
straints: a non-disjoint combination. In Silvio GhilardicaRoberto Sebastiani, editof3toceedings of
the Seventh Symposium on Frontiers of Combining SystemSd¢5) volume 5749 of_ecture Notes in
Artificial Intelligence pages 319-334. Springer, 2009.

Robert Nieuwenhuis, Albert Oliveras, and Cesare TinBblving SAT and SAT modulo theories: from
an abstract Davis-Putham-Logemann-Loveland procedud®td (T). Journal of the ACM53(6):937—
977, 2006.

Robert Nieuwenhuis and Albert Rubio. Paramodulatiasell theorem proving. In Alan Robinson and
Andrei Voronkov, editorsHandbook of Automated Reasoninglume 1, pages 371-443. Elsevier, 2001.
G. Robinson and Larry Wos. Paramodulation and theorewir in first-order theories with equal-
ity. In D. Michie and R. Meltzer, editorgylachine Intelligencevolume IV, pages 135-150. Edinburgh
University Press, 1969.

J. Alan Robinson. Automatic deduction with hyper-raoh. International Journal of Computer Math-
ematics 1:227-234, 1965.

J. Alan Robinson. A machine oriented logic based on tkeluton principle. Journal of the ACM
12(1):23-41, 1965.

Michaél Rusinowitch. Theorem-proving with resolatiand superpositionJournal of Symbolic Com-
putation 11:21-50, 1991.

Roberto Sebastiani. Lazy satisfiability modulo thenrdeurnal of Satisfiability, Boolean Modeling and
Computation 3:141-224, 2007.

Wayne Snyder. A fast algorithm for generating reducediigd rewriting systems from a set of ground
equationsJournal of Symbolic Computatipd5(4):415-450, 1993.

Viorica Sofronie-Stokkermans. Hierarchic reasonimtpcal theory extensions. In Robert Nieuwenhuis,
editor, Proceedings of the Twentieth Conference on Automated Biedu@CADE) volume 3632 of
Lecture Notes in Artificial Intelligencepages 219-234. Springer, 2005.

Viorica Sofronie-Stokkermans and Carsten lhlemanrtosvated reasoning in some local extensions of
ordered structureslournal of Multiple-Valued Logics and Soft Computii@(4—6):397-414, 2007.
Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combpiriireories with shared set operations. In
Silvio Ghilardi and Roberto Sebastiani, editoPspceedings of the Seventh Symposium on Frontiers of
Combining Systems (FroCqSjplume 5749 ol ecture Notes in Atrtificial Intelligencepages 366—382.
Springer, 2009.

