
Journal of Automated Reasoning manuscript No.
JARS-D-10-00050

On deciding satisfiability by theorem proving with speculative
inferences

Maria Paola Bonacina · Christopher A. Lynch ·
Leonardo de Moura

Received: February 2010 / Accepted: October 2010

Abstract Applications in software verification often require determining the satisfiability
of first-order formulæ with respect to background theories.During development, conjec-
tures are usually false. Therefore, it is desirable to have atheorem prover that terminates
on satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have proven to be
highly scalable, efficient and suitable for integrated theory reasoning. Inference systems with
resolution and superposition are strong at reasoning with equalities, universally quantified
variables, and Horn clauses. We describe a theorem-provingmethod that tightly integrates
superposition-based inference system and SMT solver. The combination is refutationally
complete if background theory symbols only occur in ground formulæ, and non-ground
clauses are variable-inactive. Termination is enforced byintroducing additional axioms as
hypotheses. The system detects any unsoundness introducedby these speculative inferences
and recovers from it.

Keywords Program checking· Theorem proving· Satisfiability modulo theories·
Combination of theories

1 Introduction

Applications in software verification have benefited greatly from recent advances in au-
tomated reasoning. Reasoning about programs often requires determining the satisfiability
of first-order formulæ with respect to some background theories. In numerous contexts in

The first author was supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione Università
e Ricerca.

Maria Paola Bonacina
Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
E-mail: mariapaola.bonacina@univr.it

Christopher A. Lynch
Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 13699-5815, USA
E-mail: clynch@clarkson.edu

Leonardo de Moura
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
E-mail: leonardo@microsoft.com

2

software verification, quantifiers are also needed. For example, they are used for capturing
frame conditions over loops, axiomatizing type systems, summarizing auxiliary invariants
over heaps, and for supplying axioms of theories that are notalready equipped with decision
procedures for ground formulæ. Thus, many verification problems consist in determining
the satisfiability of a set of formulæR⊎P modulo a background theoryT , whereR is a set
of non-ground clauses without occurrences ofT -symbols, andP is a large ground formula,
or set of ground clauses, that typically containsT -symbols. The set of formulæR can be
viewed as the axiomatization of an application specific theory. The background theoryT
is a combinationT =

⋃n
i=1Ti of theoriesTi , 1≤ i ≤ n, commonly used in hardware and

software verification, such as linear arithmetic.

Satisfiability Modulo Theories (SMT) solvers have proven highly scalable, efficient and
suitable for integrated theory reasoning. Most SMT solversare restricted to ground formulæ,
and integrate the Davis-Putnam-Logemann-Loveland procedure (DPLL) for propositional
logic [26,25], with satellite solvers for ground satisfiability problems in the theoriesTi ,
1 ≤ i ≤ n, that are therefore built into the SMT solver. The resultingintegration is called
DPLL(T), whereT =

⋃n
i=1Ti . General treatments appeared in [55,61]. For quantifiers,

there are situations where the needed instances of universally quantified variables can be
computed without loss of completeness: for instance, for certain fragments of the theories
of arrays [21,17] and pointers [52], or for local theory extensions [63,43]. Otherwise, tech-
niques to guess how to instantiate variables, based on heuristics and user annotations, were
investigated [34,27,39]. They are known as “triggering,” because the terms to be instanti-
ated are called “triggers.” These techniques can be very efficient when they succeed, but
they require expensive user guidance, and their incompleteness causes false positives in the
program verification tools that use the SMT-solver.

In comparison with SMT solvers, generic inference systems based on superposition and
resolution are refutationally complete for first-order logic with equality; they are strong
at reasoning with equalities, universally quantified variables, and Horn clauses. Available
surveys include [10,56,48]. A standard superposition-based inference system was proved to
terminate and hence to be a satisfiability procedure for several theories of data structures,
including arrays and recursive data structures, and their combinations [5,3,15,4].

The DPLL(Γ) system of [28] integrates an SMT solver with a generic inference system
Γ based on superposition and resolution. The DPLL engine works by building a candidate
model: if the construction succeeds, it returns satisfiable; if it fails definitely, it returns un-
satisfiable. The inference systemΓ works by deducing clauses from clauses and removing
redundant clauses: if it generates the empty clause2, that represents contradiction, it re-
turns unsatisfiable. The key to their integration is that theliterals in the candidate model
built by the DPLL engine can occur as premises ofΓ -inferences. The resulting system aims
at uniting the strengths of SMT solvers – propositional efficiency, fast theory solvers, tight
integration – with those of superposition-based theorem provers, especially general reason-
ing about quantifiers without recurring to incomplete heuristics.

However, in general, DPLL(Γ) is not refutationally complete, when bothT andR are
not empty, even whenT -symbols do not occur inR. For example, assumeR = {x≃ a∨x≃
b} andP = /0, and the background theoryT is arithmetic. The clausex≃ a∨x≃ b implies
that any model has a domain with at most two elements, which isclearly incompatible with
any model for arithmetic, that requires an infinite domain. In other words, DPLL(Γ) does
not have a way to detect unsatisfiability due to the lack of models with infinite domain. A
first contribution of this article is a revised version of DPLL(Γ), named DPLL(Γ +T), with
sufficient conditions to make it refutationally complete whenT is not empty.

3

DPLL(Γ +T) has to combine the built-in theories inT =
⋃n

i=1Ti and the axiomatized
theoryR. Combination of built-in theories is usually done by theequality sharingmethod
of [53], later dubbed “Nelson-Oppen scheme” from the names of the authors. This method
has three requirements. First, the theories cannot share function symbols. Second, eachTi

must bestably infinite. A theoryTi is stably infinite if everyTi-satisfiable ground formula
has aTi -model with domain of infinite cardinality. Third, everyTi-solver must be capable
of generating all entailed disjunctions of equalities between shared constants. The third re-
quirement is relaxed inmodel-based theory combination[29], which is a version of equality
sharing, where it is sufficient that eachTi-solver generates the equalities between shared
constants that are true in the current candidateTi-model. Thus, this method requires that
eachTi -solver generates a candidate model. On the other hand, combination of axiomatized
theories in a superposition-based engine requires that they do not share function symbols
and arevariable-inactive: under these hypotheses, if the superposition-based system termi-
nates on satisfiability problems in each theory, it also terminates on satisfiability problems
in their union [3,4]. A second contribution of this article is to explain how to apply known
results on variable inactivity [18,4,17] to combine built-in theories by model-based theory
combination and axiomatized theories in DPLL(Γ +T).

In software verification, during development time, severalconjectures are false because
of errors in the implementation or specification. Therefore, it is desirable to have a theorem
prover that terminates on satisfiable instances. In general, this is not a realistic goal since
pure first-order logic is not decidable, and, even worse, there is no sound and complete
procedure for first-order logic formulæ of linear arithmetic with uninterpreted functions
[41]. Axioms such astransitivity

¬(x⊑ y)∨¬(y⊑ z)∨x⊑ z

andmonotonicity
¬(x⊑ y)∨ f (x)⊑ f (y)

are problematic for any resolution-basedΓ , since they tend to generate an unbounded num-
ber of clauses, even with a selection function that selects negative literals to prevent self-
resolutions. Such axioms may arise in formalizations of type systems for programming lan-
guages. In that context, the symbol⊑ represents a subtype relationship, and the monadic
function f represents a type constructor, such asArray-of.

As an example, assume that the axiomatization contains a monotonicity axiom

¬(x⊑ y)∨ f (x)⊑ f (y).

Unrestricted resolution would resolve it with itself, thatis, with a variant

¬(x′ ⊑ y′)∨ f (x′) ⊑ f (y′)

to generate¬(x⊑ y)∨ f 2(x) ⊑ f 2(y), hence the infinite series

{¬(x⊑ y)∨ f i(x) ⊑ f i(y)}i≥0,

where at each step the original axiom resolves with¬(x⊑ y)∨ f i−1(x) ⊑ f i−1(y) to yield
its successor. A selection function that selects negative literals prevents all these inferences,
becausef (x′)⊑ f (y′) cannot resolve with¬(x⊑ y), if ¬(x′ ⊑ y′) is selected. However, even
resolution with negative selection generates an infinite series

{ f i(a) ⊑ f i(b)}i≥0

4

from monotonicity and each literala⊑ b in the input. In practice, it is seldom the case that
we need to go beyondf (a)⊑ f (b) or f 2(a) ⊑ f 2(b) to show satisfiability.

A third contribution of this article is a new version of DPLL(Γ +T) with speculative
inferences, a feature suggested by [49]. The idea is to allow the prover,or the experimenter,
to guess additional axioms, that avoid infinitary behaviorssuch as that induced by the mono-
tonicity axiom. If the additional axioms are a cause of unsoundness, by turning a satisfiable
set into an unsatisfiable one, the prover detects it and recovers from it automatically. The re-
sulting method yields decision procedures for several axiomatizations of type systems that
are relevant to software verification.

This article is organized as follows. Section 2 provides thebackground. Section 3 shows
how to apply previous results on superposition and variable-inactive theories in DPLL(Γ +
T); it states the requirements on the problemR ⊎P and the background theoryT , setting
the stage for the sequel. Section 4 presents the new DPLL(Γ +T) system with speculative
inferences. Section 6 introduces the notion ofessentially finite theories– a generalization of
thefinite model property– exhibits essentially finite theories, and shows how DPLL(Γ +T)
with speculative inferences yields a decision procedure for them and their combinations.
Section 7 concludes with summary of the results, comparisonwith related work, and direc-
tions for further research. A short version of this article appeared in [20].

2 Background

We assume basic notions from logic used in theorem proving. Let Σ be asignaturecon-
sisting of a set offunctionandpredicatesymbols, each with itsarity, denoted byarity(f),
for symbol f . We call 0-arity function symbolsconstantsymbols, and usea, b, c, d for
constants,f , g, h for non-constant function symbols,p for a predicate symbol,x, y, z, u for
variables,≃ for equality, and⊲⊳ for either≃ or 6≃: these three symbols are symmetric. Two
signatures aredisjoint if they share no function or predicate symbol other than≃. Terms,
literals, clauses, sentences and formulæ are defined as usual. A clause (i.e., a disjunction
of literals) ispositiveif all its literals are; it isHorn if it has at most one positive literal.
We uset, s, l , r for terms,l , m for literals,C, D for clauses,2 for the empty clause, which
denotes contradiction, andF , N, P, S for sets of clauses.Var(l) is the set of variables oc-
curring in l . The notationl [t] means thatt appears as subterm ofl . A first-orderΣ -theory
is presented, or axiomatized, by a set ofΣ -sentences. Two theories aredisjoint if their sig-
natures are. We reserve calligraphic letters, such asT andR, for presentations of theories.
A Horn presentationis a set of non-negative Horn clauses.Defined, or interpreted, symbols
are those symbols whose interpretation is restricted to themodels of a theory, whereasfree,
or uninterpreted, symbols are those symbols whose interpretation is unrestricted.

A Σ -structureΦ consists of a non-empty universe, or domain,|Φ |, and an interpreta-
tion for variables and symbols inΣ . We usev, w for elements of|Φ |. For eachf ∈ Σ , the
interpretation off is denoted byΦ(f). For a function symbolf with arity(f) = n, Φ(f)
is ann-ary function on|Φ | with range(Φ(f)) = {w | ∃v∈ |Φ |, Φ(f)(v) = w}. For a pred-
icate symbolp with arity(p) = n, Φ(p) is a subset of|Φ |n. The interpretation of a term
t is denoted byΦ(t). If t is a variable or constant,Φ(t) is an element in|Φ |. Otherwise,
Φ(f (t1, . . . , tn)) = Φ(f)(Φ(t1), . . . ,Φ(tn)). If S is a set of terms,Φ(S) = {Φ(t) | t ∈ S}.
SatisfactionΦ |= C is defined as usual; ifΦ |= C, thenΦ is amodelof C. For refutational
completeness in first-order theorem proving it is sufficientto considerHerbrand interpre-
tations, where the domain is the Herbrand universe and constant and function symbols are
interpreted as themselves.

5

An inference systemΓ is a set of inference rules.Ordering-basedinference systems
use an ordering≻ on terms and literals to restrictexpansion inferences, that expand the
existing set by generating clauses, and to definecontraction inferences, that contract the set
by removing clauses. This ordering is assumed to be acomplete simplification ordering: it is
stable(if s≻ t thensσ ≻ tσ for all substitutionsσ), monotone(if s≻ t thenl [s]≻ l [t] for all
l), it has thesubterm property(l [t] ≻ t for all t andl 6= t), hence it iswell-founded(there is
no infinite decreasing chaint1 ≻ t2 ≻ . . .ti ≻ ti+1 ≻ . . .) [31], and it istotal on ground terms
and literals (ifs 6= t, then eithers≻ t or t ≻ s). The ordering is extended to equations and
clauses by multiset extension, which preserves well-foundedness [33]. Aninference rule
with n premises has amain premiseandn− 1 sidepremises. For an expansion rule, the
main premise yields the conclusion in the context of the sidepremises; such a rule issound
if the conclusion is a logical consequence of the premises. For a contraction rule, the main
premise is reduced to the conclusion or removed; such a rule issoundif the main premise is
a logical consequence of side premises and conclusion, if present. Premises and conclusion
of an inferenceγ are denoted byP(γ) andC(γ), respectively. We writeγ ∈ Γ to say thatγ is
an application of an inference rule inΓ .

Clauses deleted by contraction areredundant. Redundancy is defined based on well-
founded orderings on clauses, whereby a ground clause is redundant in a set of clauses, if
it is entailed by smaller ground clauses in the set, and a clause is redundant if all its ground
instances are [6], or well-founded orderings on proofs, whereby a clause is redundant in
a set of clauses, if it does not affect its minimal proofs [19]. An inference is redundant
if it uses or generates a redundant clause. A clause or inference that is not redundant is
irredundant. A set of clausesN is saturated with respect toΓ , or Γ -saturated, if all Γ -
inferences inN are redundant. Given an input set of clausesS0, aΓ -derivationis a sequence
S0⊢Γ S1⊢Γ . . .Si ⊢Γ Si+1⊢Γ . . . where at each stepSi+1 is derived fromSi by aΓ -inference;
its limit is the set ofpersistent clauses S∞ =

⋃

i≥0
⋂

j≥i Sj . A Γ -derivation isfair, if all expan-
sion inferences from persistent irredundant premises are done eventually. If aΓ -derivation
is fair, its limit is saturated. SinceΓ is non-deterministic, there may be more than oneΓ -
derivation from a givenS0. The combination ofΓ with asearch plan, that controls the choice
of inferences, yields a deterministictheorem-proving strategy, or proof procedure, termed
Γ -strategy, or Γ -procedure, whose derivation is unique givenS0. A strategy or procedure is
fair if all its derivations are. A recent abstract treatmentof these notions, with references to
their history, appeared in [12].

Let I be a mapping, called amodel functor, that assigns to each set of ground clausesN,
not containing2, a Herbrand interpretationIN, called thecandidate model. A clauseC is a
counterexample forIN if IN 6|= C; C is a minimal counterexample if, in addition, there is no
other counterexampleD for IN such thatC ≻ D. An inference systemΓ has thereduction
property for counterexamples, if for all setsN of clauses and counterexamplesC for IN in N,
there is an inference inΓ from N with main premiseC, side premises that are true inIN, and
conclusionD that is a smaller counterexample forIN thanC. This property is used in proofs
of refutational completeness since at least [6] according to the following standard:

Theorem 1 If N is a Γ -saturated set of ground clauses andΓ has the reduction property
for counterexamples, then N is unsatisfiable if and only if itcontains2.

Proof The “if” direction is trivial. To prove the “only if” direction, one proves its contra-
positive: ifN does not contain2, then it is satisfiable. By way of contradiction, assume that
it is not. Then, for every candidate modelIN there is a counterexample inN. Let C be a
minimal counterexample forIN in N. By the reduction property for counterexamples, there
is a smaller counterexampleD, conclusion of aΓ -inference. IfD ∈ N, thenC would not

6

have been minimal to begin with. IfD 6∈ N, thenN is not saturated, which contradicts the
hypothesis. 2

We do not assume a specific inference system:Γ is a parameter for DPLL(Γ +T). Since
examples and proofs for specific theories mention concrete inference rules, and in order to
make this article self-contained, typical expansion and contraction rules are collected in
Figure 1: in contraction, what is above the double inferenceline is replaced by what is
below, whereas in expansion, as usual, what is below the single inference line is added
to what is above. In resolution,l and l ′ are the literalsresolved upon. In paramodulation,
l [s′] (C∨ l [s′]) is the literal (clause)paramodulated into, ands≃ t (D∨ s≃ t) is the literal
(clause)paramodulated from. The same terminology applies to superposition.1 Resolution,
paramodulation and superposition originally appeared in [59], [57] and [45], respectively.
Since then, they were the object of decades of research: contemporary versions of these rules
appeared in [42,60,6,19]; more references and history can be found in [10,56,12,48,11].

In addition to the ordering, expansion inference rules can be restricted by aselection
function, that selects negative literals [6]. A clause can have all, some, or none of its negative
literals selected, depending on the selection function. Inresolution with negative selection,
paramodulation with negative selectionandsuperposition with negative selection, the order-
ing constraint on the negative literal resolved upon, on theliteral paramodulated into (i.e.,
Condition (iii) in Figure 1) and on the literal superposed into (i.e., Condition (v) in Figure 1)
is lifted, and replaced by two requirements: the negative literal resolved upon, the literal
paramodulated into and the literal superposed into must be selected, and the other premise
contains no selected literal. If some negative literal is selected for each clause containing
one, one premise in each resolution, paramodulation or superposition inference will be a
positive clause, yielding apositive strategy; if, in addition, all clauses are Horn, only posi-
tive unit clauses can be resolved upon or superposed or paramodulated from, yielding aunit
strategywith unit resolutionandunit superposition[32]. Contemporary theorem provers, in-
cluding the implementation of DPLL(Γ +T) on top of Z3 [30], use resolution with negative
selection to implementhyperresolution[58]. In hyperresolution, the side premises, termed
satellites, are positive clauses that resolve away all negative literals in the main premise,
termednucleus, generating a positive clause, in a single step with a simultaneous unifier of
all pairs of literals resolved upon.2 A selection function that selects some negative literal
in each clause containing one induces resolution to simulate hyperresolution as a macro in-
ference involving several steps of resolution. In this article, hyperresolution is realized via
resolution with negative selection.

3 Variable inactivity in DPLL(Γ +T)

In this section we see how previous results from [4,18,17] can be imported into DPLL(Γ +
T) to combine a built-in theoryT and an axiomatized theoryR, where bothT andR

can be themselves unions of theories. In a purely rewrite-based approach there is noT
and all axioms are part of the input inR. The ordering≻ of Γ is required to begood [4,
16], meaning thatt ≻ c for all ground compound termt and constantc. A fair Γ -strategy

1 We use superposition when the literal paramodulated into isequational, and paramodulation otherwise.
Other articles reserve superposition to unit clauses or positive equations.

2 This instance of the rule is calledpositive hyperresolution. The dual rule namednegative hyperresolution
operates in the same way with polarities exchanged. Since selection functions are defined to select negative
literals, negative hyperresolution falls outside of this discussion.

7

Resolution
C∨¬l D∨ l ′

(C∨D)σ ∀m∈C : ¬lσ 6� mσ , ∀m∈ D : l ′σ 6� mσ

Factoring
C∨ l ∨ l ′

(C∨ l)σ ∀m∈C : lσ 6� mσ

Paramodulation
C∨ l [s′] D∨s≃ t

(C∨D∨ l [t])σ (i), (ii), (iii)

Superposition
C∨ l [s′] ⊲⊳ r D∨s≃ t

(C∨D∨ l [t] ⊲⊳ r)σ (i), (ii), (iv), (v)

Reflection
C∨s′ 6≃s

Cσ ∀l ∈C : (s′ 6≃s)σ 6≺ lσ

Equational Factoring
C∨s≃ t ∨s′ ≃ t ′

(C∨ t 6≃t ′ ∨s≃ t ′)σ (i), ∀l ∈ {s′ ≃ t ′}∪C : (s≃ t)σ 6≺ lσ

whereσ is the most general unifier (mgu) ofl andl ′ in resolution and factoring, and ofs ands′ in the other
rules;s′ is not a variable in paramodulation and superposition, and the following abbreviations hold:

(i) is sσ 6� tσ ,
(ii) is ∀m∈ D : (s≃ t)σ 6� mσ ,
(iii) is ∀m∈C : l [s′]σ 6� mσ ,
(iv) is l [s′]σ 6� rσ , and
(v) is ∀m∈C : (l [s′] ⊲⊳ r)σ 6� mσ .

Strict Subsumption
C D

C
D •> C

Simplification
C[l] s≃ t

C[tσ], s≃ t
l = sσ , sσ ≻ tσ , C[l] ≻ (s≃ t)σ

Deletion
C∨ t ≃ t

whereD •> C if D •≥C andC 6•≥ D; andD •≥C if Cσ ⊆ D (as multisets) for some substitutionσ . In practice,
theorem provers also apply subsumption of variants (ifD •≥C andC •≥ D, the oldest clause is retained) and
tautology deletion (that removes clauses such asC∨ l ∨¬l).

Fig. 1 Sample expansion and contraction rules: in expansion what is below the inference line is added to the
clause set that contains what is above the inference line; incontraction what is above the double inference
line is removed and what is below is added.

is shown to be anR-satisfiability procedure, by showing that it is guaranteedto terminate
on R-satisfiability problemsR ⊎S, whereS is a set of ground unitR-clauses. Variable-
inactivity was introduced in [3,4]:

Definition 1 A clauseC is variable-inactiveif no maximal literal inC is an equationt ≃ x
wherex 6∈Var(t). A set of clauses isvariable-inactiveif all its clauses are.

Definition 2 A theory presentationR is variable-inactivefor an inference systemΓ if the
limit S∞ of a fair Γ -derivation fromS0 = R ⊎S is variable-inactive, whereS is a set of
ground unitR-clauses.

It was proved in [4] (cf. Theorem 4.1 and Corollary 3) that termination ismodular:

Theorem 2 (Armando, Bonacina, Ranise and Schulz 2009) LetR1, . . . ,Rn be disjoint and
variable-inactive forΓ , and letR =

⋃n
i=1Ri . If a fair Γ -strategy terminates onRi -satisfia-

bility problems, for1≤ i ≤ n, then it terminates also onR-satisfiability problems.

8

A cardinality constraintis a clause containing only non-trivial (i.e., other thanx≃ x) posi-
tive equations between variables (e.g.,y≃ x∨ y≃ z). Such a clause is clearly not variable-
inactive. The following key lemma was proved in [18] (cf. Lemma 5.2):

Lemma 1 (Bonacina, Ghilardi, Nicolini, Ranise and Zucchelli 2006)If S0 is a finite satis-
fiable set of clauses, then S0 admits no infinite models if and only if the limit S∞ of a fair
Γ -derivation from S0 contains a cardinality constraint.3

It follows that (cf. Theorem 4.5 in [4]):

Theorem 3 (Armando, Bonacina, Ranise and Schulz 2009) IfR is variable-inactive forΓ ,
then it is stably-infinite.

Thus,Γ reveals the lack of stable infiniteness by generating a cardinality constraint. The
original versions of Theorem 2, Lemma 1 and Theorem 3 were proved in a context where
equality was the only predicate and superposition the main expansion inference rule ofΓ .
It is trivial to extend them to the case where the signature ofR introduces predicate sym-
bols other than equality, andΓ features also resolution and paramodulation. For instance,
for Theorem 2, the essence of the proof is to show that there are only finitely many in-
ferences across theories: disjointness of the signatures prevents not only superpositions,
but also paramodulations from compound terms, and resolutions; variable inactivity pre-
vents not only superpositions, but also paramodulations from variables; thus, the only in-
ferences across theories are superpositions and paramodulations from shared constants, that
are finitely many.

It is useful to import results from the rewrite-based approach to DPLL(Γ +T), applied
to a problemR ⊎P moduloT , because DPLL(Γ +T) usesΓ as anR-solver applied to
R-satisfiability problemsR ⊎S, whereS is a set of ground unitR-clauses. The initial set
of ground clausesP typically contains alsoT -symbols. However,P is subject topurifica-
tion, which is a standard step in the Nelson-Oppen method. This transformation, also known
asseparation[37], separates occurrences of function symbols from different signatures oc-
curring in ground terms, by introducing new constant symbols. For example,f (g(a)) ≃ b,
where f andg belong to different signatures, becomesf (c)≃ b∧g(a) ≃ c, wherec is new.
Since only constants are introduced, the set remains ground. Thus,P is transformed in two
disjoint setsP1 andP2, whereP1 contains onlyR-symbols andP2 only T -symbols. Since a
key feature of DPLL(Γ +T) is thatΓ deals only withnon-ground clausesandground unit
clauses, it is indeed the case thatΓ works on anR-satisfiability problemsR⊎S: initially, S
will be the subset of unit clauses fromP1.

DPLL(Γ + T) needs to combineT1, . . . ,Tn,R in the Nelson-Oppen scheme, which
requires that the theories are disjoint, stably infinite, and each solver generates all entailed
disjunctions of equalities between shared constants. We assume thatT1, . . . ,Tn satisfy these
requirements and thatR is disjoint from each of them. For stable infiniteness ofR, we re-
quire thatR is variable-inactive and apply Theorem 3. In practice, thiscondition is checked
dynamically: in the implementation of DPLL(Γ +T) on top of Z3, the superposition-based
engine is equipped with a test that detects the generation ofvariable-inactive clauses, hence
cardinality constraints, and discovers whetherR is not stably infinite. Such a test also ex-
cludes upfront a situation such asR = {x ≃ a∨ x ≃ b} of the example in Section 1. For
the generation of disjunctions of equalities between shared constants by theR-solverΓ ,

3 Lemma 5.2 in [18] requires that the superposition-based inference system is invariant with respect to
renaming finitely many constants. Most inference systems satisfy a stronger requirement, namely they allow
signature extensions, e.g., to introduce Skolem constants.

9

the fairness of theΓ -derivation ensures that every theorem is implied by some generated
formulæ.4 An explicit proof that the superposition-based engine generates formulæ that en-
tail all disjunctions of equalities between constants in the axiomatized theory was given in
[17] (cf. Theorem 71). If contraction is also done systematically, only irredundant clauses
generated byΓ are kept and passed to the DPLL(T) core.

The following definition summarizes the problem requirements for the sequel:

Definition 3 A set of formulæS= R ⊎P is smoothwith respect to a background theory
T =

⋃n
i=1Ti , or T -smoothfor short, if

– T1, . . . ,Tn andR are pairwise disjoint,
– T1, . . . ,Tn are stably infinite,
– R is variable-inactive, and
– P is a set of ground formulæP1⊎P2, whereP1 contains onlyR-symbols, andP2 only

T -symbols.

Note that uninterpreted symbols areR-symbols. In summary, variable inactivity is an in-
gredient for: (1) modularity of termination ofΓ , whenR is a union of axiomatized theories
[4]; (2) stable infiniteness ofR [18], hence combination of axiomatized theories and built-in
theories; (3) refutational completeness of DPLL(Γ +T) when bothT andR are not empty
(cf. Theorem 4 in the next section).

4 A new DPLL(Γ +T) system with speculative inferences

DPLL(Γ +T) works onhypothetical clausesof the formH ⊲C, whereC is a clause, and the
hypothesis His a set of ground literals. The hypothesis is interpreted asa conjunction, and a
hypothetical clause(l1∧ . . .∧ ln)⊲(l ′1∨ . . .∨ l ′m) is interpreted as¬l1∨ . . .∨¬ln∨ l ′1∨ . . .∨ l ′m.
As we shall see, the literals inH come from the candidate model built by DPLL(Γ +T),
and are the literals thatC depends on, in the sense that they were used as premises to infer
C by Γ -inferences. As it was done in [28] for DPLL(Γ), DPLL(Γ +T) is described as a
transition systemwith two modes:search modeandconflict resolution mode.

In search mode, the state of the system has the formM ||F , whereM is a sequence of
assigned literals, andF a set ofhypothetical clauses. Intuitively, M represents a partial as-
signment to ground literals, possibly with a justification,and therefore it represents a partial
model, or a set of candidate models. An assigned literal can be either adecided literalor
an implied literal. A decided literal represents a guess, and has no justification. An implied
literal lC is a literal l justified by a clauseC: all other literals ofC are false inM so thatl
needs to be true. No assigned literal occurs twice inM nor does it occur negated inM. If
neitherl nor¬l appears inM, thenl is said to beundefined.

In conflict resolution mode, the state has the formM ||F ||C, whereC is a ground clause
whose literals are all false underM. Such a clause is inconflict. If C is l1 ∨ . . .∨ ln, then
¬C is the formula¬l1∧ . . .∧¬ln. We could state thatC is in conflict by writingM |= ¬C.
In DPLL(Γ +T), the DPLL engine accepts only propositional clauses, whereas the theory
solvers accept ground first-order clauses andΓ accepts first-order clauses. To bridge this
gap, anabstraction functionmaps first-order ground atoms to propositional atoms. Thus,
it is customary to writeM |=P ¬C, readM “propositionally satisfies”¬C, to say thatM
satisfies the propositional abstraction of¬C.

4 Fairness guarantees even more: every theorem has a minimal proof in the limit; see [12] for details.

10

Definition 4 Given an input set of clausesS= R ⊎P, aDPLL(Γ +T)-derivation is a se-
quence of state transitions

∆0 =⇒ ∆1 =⇒ . . .∆i =⇒ ∆i+1 =⇒ . . .

where∀i ≥ 0, ∆i is of the formMi ||Fi or Mi ||Fi ||Ci , each transition is determined by a
DPLL(Γ +T)-rule, and∆0 = ||F0 for F0 = { /0⊲C |C∈ S}.

In the sequel, we useC for /0⊲C, clauses(F) to denote the set{C | H ⊲C∈ F}, ngclauses(F)
for the subset of non-ground clauses ofclauses(F), lits(M) to denote the set of assigned lit-
erals,litsR(M) for the subset of assignedR-literals andclauses⋆(M ||F) for ngclauses(F)∪
litsR(M).

4.1 Speculative inferences in DPLL(Γ +T)

In theorem proving applied to mathematics, most conjectures are true. Thus, it is customary
to sacrifice completeness for efficiency, and retain soundness, which is necessary to attribute
unsatisfiability to the input set of clauses if a proof is found. A traditional example isdeletion
by weight[51], where clauses that are too “heavy” are deleted. In theorem proving applied to
verification, most conjectures are false. Thus, it was suggested in [49] to sacrifice soundness
for termination, and retain completeness, which is necessary to establish satisfiability if
a proof isnot found. Dually to deletion by weight, an unsound inference could suppress
literals in clauses that are too heavy. We callspeculativean inference that may turn out to
be unsound.

We consider a single speculative inference rule: adding an arbitrary clauseC. Such a
step may be unsound becauseC may not be implied by the given set. This rule is simple,
but can simulate different kinds of speculative inferences. Suppose we want to suppress the
literalsD in C∨D, then we can simply addC, which subsumesC∨D. Suppose a clauseC[t]
contains a deep termt, and we want to replace it with a constanta. We can accomplish this
by addingt ≃ a.

The idea is to extend DPLL(Γ +T) with areversibletransition ruleSpeculativeIntro for
speculative inferences. Rather than merely adding a clauseC, SpeculativeIntro introduces a
hypothetical clause⌈C⌉⊲C into F and it adds⌈C⌉ to M: ⌈C⌉ is a new propositional variable
used as a label for clauseC. By adding⌈C⌉ to M, the system records the fact that it isguess-
ing C. SpeculativeIntro is reversible, because the system uses⌈C⌉ to track the consequences
of having addedC. The hypothetical clause⌈C⌉⊲C is semantically equivalent to¬⌈C⌉∨C.
This clause does not change the satisfiability of the input formula because⌈C⌉ is a new
propositional variable:

SpeculativeIntro

M ||F =⇒ M ⌈C⌉ ||F, ⌈C⌉⊲C if

C 6∈ clauses(F),
⌈C⌉ is new,
⌈C⌉,¬⌈C⌉ 6∈ M.

Note that⌈C⌉ is added toM as a decided literal. The first condition says that we do not guess
a clause that we already have. The second condition requires⌈C⌉ to be a new symbol with
respect to the initial signature. The third condition prevents the system from addingC, if it
was already done (⌈C⌉ ∈ M), or if the addition was already discovered to be inconsistent
with the current partial modelM (¬⌈C⌉ ∈ M).

11

4.2 Model-based theory combination in DPLL(Γ +T)

In order to combine the theories inT =
⋃n

i=1Ti andR in the Nelson-Oppen scheme, every
Ti-solver, 1≤ i ≤ n, needs to communicate to the other theories, includingR, the (dis-
junctions of) equalities between shared constants entailed by Ti andP. The next transition
rule takes care of this requirement, according to model-based theory combination [29]. We
assume that everyTi-solver builds a specific candidateTi-model forM, that we denote by
modeli(M). For instance, solvers for linear arithmetic satisfy this requirement [35]. The idea
is to inspectmodeli(M) and propagate all the equalities it implies, hedging that they are
consistent with the other theories, includingR. Since these equalities areguesses, if one of
them turns out to be inconsistent, backtracking will be usedto fix modeli(M). The rationale
for this approach is practical: it is generally far less expensive to enumerate the equalities
satisfied in a particularTi-model than those satisfied by allTi-models consistent withM; in
most experiments, the number of equalities that are really relevant turns out to be small.

PropagateEq

M ||F =⇒ M t ≃ s||F if

t andsare ground,
t,s occur inF,

(t ≃ s) is undefined inM,

modeli(M)(t) = modeli(M)(s),

for every theoryTi , 1≤ i ≤ n. Since theTi-solvers only deal with ground clauses, this rule
treats only ground equalities, and therefore only ground terms that appear inF . The reason
why it adds equalities between ground terms and not only between shared constants will be
explained in relation to theDeduce rule.

4.3 The core transition rules of DPLL(Γ +T)

Figure 2 reports the basic and theory propagation rules of DPLL(Γ +T) from [28].
TheDecide rule is not concerned with literals in hypotheses, since such literals already

come fromM. TheDeduce rule realizes the interface withΓ : assumeγ is an inference ofΓ
with n premises,{H1 ⊲C1, . . . ,Hm⊲Cm} is a set of hypothetical clauses inF , {lm+1, . . . , ln}
is a set of assigned literals inM, andH(γ) denotes the setH1∪ . . .∪Hm∪{lm+1, . . . , ln};
if γ with premisesP(γ) = {C1, . . . ,Cm, lm+1, . . . , ln} yieldsC(γ), the latter is added toF as
H(γ)⊲C(γ). The hypotheses of the clausesHi ⊲Ci are hidden from the inference rules inΓ .
OurDeduce rule differs from its predecessor in [28], namedDeduce♯, in the range of allowed
premises fromF . Deduce♯ allowedΓ to use as premiseslits(M), and non-ground clauses and
ground unit clauses fromclauses(F). Our Deduce allowsΓ to use onlyclauses⋆(M ||F) =
ngclauses(F)∪ litsR(M). This is a consequence of the addition ofPropagateEq, which adds
the relevant ground unit clauses directly toM, so thatΓ finds them inlitsR(M). This is the
reason why we letPropagateEq add equalities between ground terms and not only between
shared constants.

A hypothetical clauseH ⊲C is in conflict if every literal inC is complementary to an
assigned literal. TheConflict rule converts a hypothetical conflict clauseH ⊲C into a regular
clause by negating its hypotheses, and puts the DPLL(Γ +T) system in conflict resolution
mode. TheExplain rule unfolds literals from conflict clauses that were produced by unit
propagation. Any clause derived byExplain can be added toF by theLearn rule, because
it is a logical consequence of the original set of clauses. The Backjump rule drives the
DPLL(Γ +T) system back from conflict resolution mode to search mode, and it unassigns

12

Decide

M ||F =⇒M l ||F if

l is ground,
l or ¬l occurs inF,
l is undefined inM.

UnitPropagate

M ||F,H ⊲ (C∨ l) =⇒M lH⊲(C∨l) ||F,H ⊲ (C∨ l) if

l is ground,
M |=P ¬C,
l is undefined inM.

Deduce

M ||F =⇒M ||F,H(γ)⊲C(γ) if

γ ∈ Γ ,
P(γ) ⊆ clauses⋆(M ||F),
C(γ) 6∈ clauses(F).

Conflict

M ||F,H ⊲C =⇒M ||F,H ⊲C||¬H ∨C if M |=P ¬C
Explain

M ||F ||C∨ l̄ =⇒M ||F ||¬H ∨D∨C if lH⊲(D∨l) ∈ M
Learn

M ||F ||C =⇒M ||F,C||C if C 6∈ clauses(F)
Backjump

M l ′ M′ ||F ||C∨ l =⇒M lC∨l ||F ′ if

M |=P ¬C,
l is undefined inM,

F ′ =

{

H ⊲C∈ F |
H ∩ lits(l ′ M′) = /0

}

Unsat

M ||F ||2 =⇒unsat
T-Propagate

M ||F =⇒M l(¬l1∨...∨¬ln∨l) ||F if

l is ground and occurs inF,
l is undefined inM,
l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T l .

T-Conflict

M ||F =⇒M ||F ||¬l1 ∨ . . .∨¬ln if
{

l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T false.

Fig. 2 Basic and theory propagation rules of DPLL(Γ +T).

at least one decided literal, namedl ′ in the rule definition in Figure 2. A typical choice is that
l ′ be the least recently decided literal that satisfies the conditions of the rule. All hypothetical
clausesH ⊲C which contain hypotheses that will be unassigned by theBackjump rule are
deleted. Note that a learnt clauseD may contain¬⌈C⌉. In this case, the clauseD is recording
the context where guessing the clauseC is unsound.

Figure 3 reproduces from [28] thecontraction transitionsthat import the contraction
rules ofΓ in DPLL(Γ +T): note that they apply only in search mode. These transitions
and their explanation, that follows, refer to generic contraction rules schemas, and not to
the concrete contraction rules of Figure 1, in order to show that this way of integrating
contraction is general, and applies to the contraction rules of Figure 1 as well as to others.
Any sound contraction inference taking a single premise (e.g., tautology deletion) can be
easily incorporated into DPLL(Γ +T). Given a hypothetical clauseH ⊲C, such a rule is
just applied toC. Contraction rules with more than one premise need special treatment. We
useγd(C,C2, . . . ,Cm) to denote the application of a generic sound deletion rule

C,C2, . . . ,Cm

C2, . . .Cm

13

Delete

M ||F,H ⊲C =⇒ M ||F if
{

γd(C,C2, . . . , ln), n≥ 2
level(H) ≥ level(H′)

Disable

M ||F,H ⊲C =⇒ M ||F, [H ⊲C]level(H ′) if
{

γd(C,C2, . . . , ln), n≥ 2
level(H) < level(H′)

Simplify

M ||F,H ⊲C =⇒ M ||F,(H ∪H′)⊲C′ if
{

γs(C,C2, . . . , ln,C′), n≥ 2
level(H) ≥ level(H′)

Simplify-disable
M ||F,H ⊲C =⇒ M ||F, [H ⊲C]level(H ′),(H ∪H′)⊲C′

if
{

γs(C,C2, . . . , ln,C′), n≥ 2
level(H) < level(H′)

Fig. 3 Contraction transitions of DPLL(Γ +T): the notation in the conditions is explained in the text.

where a redundant main premiseC is deleted, andγs(C,C2, . . . ,Cm,C′) to denote the appli-
cation of a generic sound simplification rule

C,C2, . . . ,Cm

C′,C2, . . .Cm

where a redundant main premiseC is replaced byC′. DPLL(Γ +T) assigns ascope level
to each literal inM:

Definition 5 Thescope levelof a literall , denotedlevel(l), in M l M ′, is equal to the number
of decided literals inM l . Thescope levelof a set of literalsH is

level(H) =

{

max{level(l) | l ∈ H} if H 6= /0,
0 otherwise.

A contraction inferenceγ from Γ is generalized to hypothetical clauses as follows: given
main premiseH ⊲C, taken fromngclauses(F), and side premisesH2 ⊲C2, . . . ,Hm ⊲Cm,
lm+1, . . . , ln, taken fromngclauses(F) and litsR(M), respectively, letH ′ = H2∪ . . .∪Hm∪
{lm+1, . . . , ln}. Assume thatγ has premisesC,C2, . . . ,Cm, lm+1, . . . , ln. First, for a simplifica-
tion γs, H ⊲C is replaced by(H ∪H ′)⊲C′. Second, for bothγd andγs, H ⊲C is deleted only
if level(H) ≥ level(H ′). Indeed, this condition prevents the situation where backjumping
removes side premises (e.g., simplifiers or subsumers) before removing the main premise
H ⊲C (i.e., the simplified or subsumed clause). Such a situation must be prevented, be-
cause otherwise the system would reach an unsound state, where H ⊲C was deleted, but the
clauses that made it redundant and justified its deletion areno longer there. For this reason,
if level(H) < level(H ′), thenH ⊲C is only disabled. In Figure 3 a disabled clause is sur-
rounded by square brackets and bears as subscript the level of the set of side premises that
disabled it. A disabled clause is not deleted, but it is not used as premise. Whenlevel(H ′)
is backjumped, all disabled clauses with subscriptlevel(H ′) will be re-enabled and will be
available again as premises.

4.4 Refutational completeness of DPLL(Γ +T)

It was proved in [28] that DPLL(Γ) is refutationally complete whenT is empty. We prove
a stronger result for the case where bothT andR are not empty. We start with definitions

14

that adapt to DPLL(Γ + T) the classical notions of redundancy, fairness and saturation
(cf. Section 2). We useΓ -based transitionsfor Deduce and the contraction transitions of
Figure 3.

Definition 6 A Γ -based transition isredundantin stateM ||F if the correspondingΓ -infe-
rence is redundant inclauses⋆(M ||F).

Note thatΓ -based transitions apply only in search mode.

Definition 7 A DPLL(Γ + T)-derivation isfair if all applicable transitions are applied
eventually, exceptSpeculativeIntro and redundantΓ -based transitions.

We recall that: (1) contraction rules are part ofΓ ; (2) Γ , and therefore contraction rules,
only seesclauses⋆(M ||F) = ngclauses(F)∪ litsR(M); (3) contraction inferences delete only
clauses inngclauses(F). All other transitions do not usengclauses(F) and are therefore
sheltered from contraction. Thus, the only transitions that are affected by contraction, and
for which we need to stipulate that only irredundant inferences are considered, areΓ -based
transitions.

Definition 8 A DPLL(Γ +T) state issaturatedif it is

– eitherunsat
– or a stateM ||F such that the only applicable transitions areSpeculativeIntro transitions

or redundantΓ -based transitions.

Clearly, a fair derivation yields a saturated state eventually. In order to prove refutational
completeness – whenever the input setS is unsatisfiable, DPLL(Γ +T) reaches theunsat
state – we prove as usual its contrapositive:

Theorem 4 If the initial set of clauses S= R ⊎P is T -smooth, andΓ has the reduction
property for counterexamples, whenever DPLL(Γ +T) reaches a saturated state M||F, the
input set S is satisfiable moduloT .

Proof We need to show that ifM ||F is saturated, thenclauses(F)∪ lits(M) is satisfiable.
Satisfiability ofSwill follow, because the transition rules in DPLL(Γ +T) are sound and
therefore preserve satisfiability. LetN beclauses(F)∪ lits(M). The setN has the formR ′⊎
M1⊎G1⊎M2⊎G2, whereR ′ contains non-ground clauses (i.e.,R ′ = ngclauses(F)), M1⊎
G1⊎M2⊎G2 is ground,M1⊎M2 = lits(M), R ′ ⊎G1⊎G2 = clauses(F), G1⊎M1 contains
only R-symbols (i.e.,M1 = litsR(M)), andG2⊎M2 contains onlyT -symbols.

– We consider firstR ′ ⊎G1 ⊎M1. In a standard proof of completeness forΓ alone, we
would have thatR ′ ⊎ G1 ⊎ M1 is Γ -saturated, because theΓ -derivation is fair. For
DPLL(Γ +T) we need to show thatR ′⊎G1⊎M1 is Γ -saturated, even ifΓ -based tran-
sitions do not useG1. SinceM ||F is saturated, for every clauseC ∈ Gi , for i ∈ {1,2},
there is a literall of C in Mi . Indeed, if this were not the case, theDecide rule could apply,
violating the hypothesis thatM ||F is saturated. Thus, every clauseC ∈ G1 is subsumed
by a literal inM1, therefore it is redundant inM1⊎G1, and everyΓ -based transition that
usesC is redundant. Then,R ′ ⊎M1 alone isΓ -saturated: if it were not, an irredundant
Γ -based transition could apply, violating the hypothesis that M ||F is saturated. It fol-
lows thatR ′⊎G1⊎M1 isΓ -saturated. SinceR ′⊎G1⊎M1 does not contain2, andΓ has
the reduction property for counterexamples,R ′⊎G1⊎M1 is satisfiable by Theorem 1.

15

– We consider nextG2⊎M2: this set is satisfiable moduloT , because if it were not, the
T-Conflict rule would apply, andM ||F would not be saturated.

– By the hypothesis that the initial setS= R ⊎P is T -smooth (cf. Definition 3),R is
variable-inactive. By Definition 2,R ′, which is derived fromR and ground unitR-
clauses, is also variable-inactive, hence stably infinite by Theorem 3. Thus,R ′⊎G1⊎M1

has a model with infinite domain. Again by the hypothesis thatR ⊎P is T -smooth,T
is a union of stably infinite theories. Thus,G2 ⊎M2 has aT -model with infinite do-
main. Since all the requirements for a Nelson-Oppen combination are fulfilled, these
two models can be combined in aT -model ofN by the completeness of equality shar-
ing, establishing thatclauses(F)∪ lits(M) is satisfiable. 2

All inference systems considered in the sequel have the reduction property for counterex-
amples [6,56]. The proof of Theorem 4 shows that the integration of the components in
DPLL(Γ +T) is designed in such a modular way that its completeness descends from the
completeness of its components.

5 Towards decision procedures: DPLL(Γ +T)-strategies

The combination of the transition system DPLL(Γ + T) with a search plan, which con-
trols the application of transition rules, yields aDPLL(Γ +T)-strategy, or DPLL(Γ +T)-
procedure. Similar to DPLL(T), a search plan for DPLL(Γ + T) is a depth-first search
plan. A standard way to ensure fairness with a depth-first search plan isiterative deepening.
This section describes first aDPLL(Γ +T)-procedure with iterative deepening, and then a
way to use it withSpeculativeIntro to get decision procedures for smooth sets.

Definition 9 For all statesM ||F , for all C∈ clauses(F), for all implied literalslC ∈ lits(M),
and for all decided literalsl ∈ lits(M), theinference depthis given by

– in f Depth(C) =

0 if C∈ F0,
n+1 if C = C(γ) and

n = max{in f Depth(D) | D ∈ P(γ)} in aDeduce step,
– in f Depth(lC) = in f Depth(C) and
– in f Depth(l) = min{in f Depth(D) | D ∈ clauses(F), l ∈ D}.

Informally, the inference depth of a clause indicates the depth of the inference tree that
produced it; the inference depth of an implied literal is theinference depth of the clause that
implied it; and the inference depth of a decided literal is the minimum inference depth of a
clause that includes it.

In order to have a DPLL(Γ +T)-procedure with iterative deepening, both rules suscep-
tible of yielding infinitely many steps need to be bounded:

Definition 10 DPLL(Γ +T) is 〈kd,ku〉-bounded, for kd,ku > 0, if Deduce is restricted to
premisesC with in f Depth(C) < kd, andSpeculativeIntro can be applied at mostku times.

This notion leads to termination:

Theorem 5 〈kd,ku〉-bounded DPLL(Γ +T) is guaranteed to terminate for all initial sets
of clauses S= R ⊎P.

Proof By Definition 10, there are only finitely many applications ofDeduce andSpecula-

tiveIntro. The other DPLL(T) transition rules are known to terminate (e.g., [55], cf. Theo-
rems 2.10 and 3.7).

16

Definition 11 DPLL(Γ + T) is stuck at kd in stateM ||F if the only applicable transi-
tions areSpeculativeIntro transitions andDeduce transitions involving premisesC with
in f Depth(C) ≥ kd.

A DPLL(Γ +T)-procedure with iterative deepening, abbreviatedID-DPLL(Γ +T)-proce-
dure, is a DPLL(Γ +T)-procedure where DPLL(Γ +T) is 〈kd,ku〉-bounded, andkd and
ku are increased whenever DPLL(Γ + T) gets stuck. The following example shows how
fairness is not obvious without iterative deepening:

Example 1Let Γ be an inference system with resolution and letF0 include the following
clauses:
(1) ¬p(x,y)∨ p(f (x), f (y))∨ p(g(x),g(y)),
(2) p(a,b),
(3) g(x) 6≃x,
(4) g(c) ≃ c∨g(d) ≃ d.
Initially, Γ sees clauses(1) and(3), because they are inngclauses(F), while litsR(M) is
empty. IfDecide addsp(a,b) to M, Γ sees also(2) and may generate

p(f (a), f (b))∨ p(g(a),g(b))

from (1) and(2) by resolution. IfDecide addsp(f (a), f (b)) to M, andΓ generates

p(f (f (a)), f (f (b)))∨ p(g(f (a)),g(f (b))),

this alternation of decision and resolution steps may yieldan infinite unfair derivation that
does not detect the unsatisfiability ofF0. Iterative deepening prevents this kind of behavior:
when the depth of the clauses generated by resolution reaches the bound, further such steps
are forbidden and the system is forced to consider steps withclauses of lower depth. When
Decide adds toM first g(c) ≃ c and theng(d) ≃ d and each yields2 by resolution with
g(x) 6≃x, inconsistency is detected.

Let S be a smooth set, and letU denote a sequence of “speculative axioms,” in the
signature ofS, that are introduced bySpeculativeIntro. In order to get a decision proce-
dure, one needs to show that for some sequenceU , there exist boundskd andku, such that
〈kd,ku〉-bounded DPLL(Γ +T) is guaranteed to terminate in theunsatstate, wheneverS is
unsatisfiable, and in a stateM ||F such that DPLL(Γ +T) is notstuckat kd, wheneverS is
satisfiable; note that this means thatM ||F is saturated. The second example illustrates this
idea:

Example 2Let R be

{¬(x⊑ y)∨¬(y⊑ z)∨x⊑ z, ¬(x⊑ y)∨ f (x)⊑ f (y)},

andP be
{a⊑ b, a⊑ f (c), ¬(a⊑ c)}.

AssumeΓ features resolution, superposition and simplification. IfSpeculativeIntro adds

⌈ f (x)≃ x⌉⊲ f (x)≃ x,

the monotonicity axiom is rewritten to a tautology anda⊑ f (c) is also rewritten. Note that
⌈ f (x) ≃ x⌉ is a decision literal, andlevel(⌈ f (x) ≃ x⌉) = 1. Thus, the rewriting steps only
disable the monotonicity axiom anda ⊑ f (c), whose scope level is 0, and add⌈ f (x) ≃

17

x⌉⊲a⊑ c to F . Resolution generates the conflict clause⌈ f (x)≃ x⌉⊲2. In conflict resolution
mode, the literal¬⌈ f (x)≃ x⌉ is added toM, preventing DPLL(Γ +T) from guessingf (x)≃
x again. Next, ifSpeculativeIntro adds

⌈ f (f (x))≃ x⌉⊲ f (f (x))≃ x,

monotonicity anda⊑ bproduce onlyf (a)⊑ f (b), while monotonicity anda⊑ f (c) produce
only f (a) ⊑ f (f (c)), which is disabled and replaced by⌈ f (f (x)) = x⌉ ⊲ f (a) ⊑ c. Then,
DPLL(Γ +T) reaches a saturated state, and satisfiability is detected.

The third example shows a case wherePropagateEq plays the key rôle:

Example 3Let Γ have hyperresolution, superposition and simplification,T be the theory
of linear integer arithmetic,R be

{¬(x⊑ y)∨¬(y⊑ z)∨x⊑ z}

andP be
{a⊑ b1, b2 ⊑ c, ¬(a⊑ c),b1 ≤ b2,b1 > b2−1}.

UnitPropagate adds the literals ofP to M. In the modelmodelLA(M) maintained by the
linear arithmetic solver,modelLA(M)(b1) = modelLA(M)(b2). Thus,PropagateEq guesses
the equationb1 ≃ b2. Sayb2 ≻ b1 in the ordering≻ of Γ : simplification rewritesb2 ⊑ c
to b1 ⊑ c. Hyperresolution derivesa ⊑ c from a ⊑ b1, b1 ⊑ c and the transitivity axiom,
so that an inconsistency is detected. DPLL(Γ +T) backtracks and adds¬(b1 ≃ b2) to M.
T-Conflict detects the inconsistency between this literal and{b1 ≤ b2,b1 > b2 − 1}. The
conflict resolution rules are applied again and the empty clause is produced.

6 Decision procedures for axiomatizations of type systems

In this section we study specific theories of interest for software verification and we obtain
decision procedures for them.

Definition 12 A structureΦ is essentially finitewith respect to a function symbolf if
range(Φ(f)) is finite.

Essential finiteness is weaker than finiteness, because it admits an infinite domain provided
range(Φ(f)) is finite.

Theorem 6 If Φ is an essentially finite structure with respect to a monadic function symbol
f , then there exist k1,k2 ≥ 0, k1 6= k2, such thatΦ |= f k1(x) ≃ f k2(x).

Proof For allv∈ |Φ |, we call f -chainstarting atv, the sequence:

v = Φ(f)0(v), Φ(f)1(v), Φ(f)2(v), . . ., Φ(f)i(v), . . .

SinceΦ(f) has finite range, there existq1,q2, with q1 6= q2, such thatΦ(f)q1(v) = Φ(f)q2(v).
Say thatq1 > q2. Then we callsize, denotedsz(Φ , f ,v), andprefix, denotedpr(Φ , f ,v),
of the f -chain starting atv, the smallestq1 and q2, respectively, such thatΦ(f)q1(v) =
Φ(f)q2(v) and q1 > q2. We term lasso, denotedls(Φ , f ,v), of the f -chain starting atv,
the difference between size and prefix, that is,ls(Φ , f ,v) = sz(Φ , f ,v)− pr(Φ , f ,v). We
say thatΦ(f)n(v) is in the lassoof the f -chain starting atv, if n ≥ pr(Φ , f ,v). Clearly,

18

for all elementsw in the lasso of thef -chain starting atv, Φ(f)n(w) = w, when n =
ls(Φ , f ,v). Also, for all multiples of the lasso, that is, for alln = j · ls(Φ , f ,v) for some
integer j > 0, Φ(f)n(w) = w. Let q = max{pr(Φ , f ,v) | v ∈ range(Φ(f))}+ 1 andn =
lcm{ls(Φ , f ,v) | v∈ range(Φ(f))}, wherelcm abbreviates least common multiple. We claim
thatΦ |= f q+n(x) ≃ f q(x), that is,k1 = q+n andk2 = q. By way of contradiction, assume
that for somev∈ |Φ |, Φ(f)q+n(v) 6= Φ(f)q(v). Take thef -chain starting atv: Φ(f)q(v) is
in the lasso of this chain, becauseq > pr(Φ , f ,v). Sincen is a multiple ofls(Φ , f ,v), we
haveΦ(f)q+n(v) = Φ(f)n(Φ(f)q(v)) = Φ(f)q(v), a contradiction. 2

Example 4Let Φ be a structure such that|Φ | = {v0,v1,v2, . . . ,v9, . . .}, and letΦ(f) be
the function defined by the following mapping:{v0 7→ v1,v1 7→ v2,v2 7→ v3,v3 7→ v4,v4 7→
v2,v5 7→ v6,v6 7→ v7,v7 7→ v8,v8 7→ v5,∗ 7→ v9}, where∗ stands for any other element. The
f -chain starting atv0 haspr(Φ , f ,v0) = 2, sz(Φ , f ,v0) = 5 and ls(Φ , f ,v0) = 3. The f -
chain starting atv5 haspr(Φ , f ,v5) = 0, sz(Φ , f ,v5) = 4 andls(Φ , f ,v5) = 4. Then,q =
max{2,0}+1 = 3, n = lcm{3,4} = 12,k1 = q+n = 15 andk2 = q = 3, andΦ |= f 15(x) ≃
f 3(x).

To identify classes of problems for which an ID-DPLL(Γ + T)-procedure is a decision
procedure, we focus on theoriesR that satisfy the following property:

Definition 13 A presentationR isessentially finiteif its signature contains a single monadic
function symbol f , and for all setsP of groundR-clauses, such thatR ⊎P is satisfiable,
R ⊎P has an essentially finite modelΦ with respect tof .

We show that ID-DPLL(Γ +T) is a decision procedure for essentially finite theories if the
number of literals in clauses is bounded:

Theorem 7 Let R be an essentially finite presentation. Consider an ID-DPLL(Γ + T)-
procedure where everySpeculativeIntro transition adds an equation fj(x)≃ f k(x) with j >
k, for increasing values of j and k. If there exists an n such that no clause generated by
DPLL(Γ +T) contains more than n literals, ID-DPLL(Γ +T) is a decision procedure for
the satisfiability moduloT of T -smooth problemsR⊎P.

Proof If R⊎P is unsatisfiable, then, by refutational completeness, DPLL(Γ +T) will reach
the stateunsatwhenkd becomes large enough. IfR ⊎P is satisfiable, it has an essentially
finite modelΦ , becauseR is essentially finite. Chooseku large enough that the axiom
f k1(x) ≃ f k2(x) satisfied byΦ according to Theorem 6 is added bySpeculativeIntro. We
need to prove that ifkd is large enough, DPLL(Γ +T) will not get stuck atkd. To do that,
we prove that only a finite number of clauses are generated forunboundedkd for the chosen
ku. Say thatk1 > k2: the axiomf k1(x)≃ f k2(x) is applied as a rewrite rulef k1(x)→ f k2(x) to
simplify5 all clauses that contain a termf k(t) with k> k1. This guarantees that no such term
will be kept and that the depth of terms in clauses is bounded.Since the number of literals
in clauses is also bounded by the hypothesis that no clause can contain more thann literals,
only a finite number of clauses can be derived for unboundedkd. Thus, DPLL(Γ +T) will
halt without getting stuck and will detect satisfiability. 2

From now on, unless otherwise stated,Γ is superposition with negative selection, hyperres-
olution, factoring and simplification.

5 Of course, this assumes thatΓ features simplification.

19

Lemma 2 If R is Horn, the number of literals in clauses generated by DPLL(Γ +T) from
a T -smoothR ⊎P is bounded.

Proof In the Horn case, superposition is unit superposition, which does not increase the
number of literals, and hyperresolution only generates positive unit clauses. 2

If R is a set of non-equational clauses with no more than two literals each, andΓ is res-
olution, factoring and simplification (to applyf k1(x) → f k2(x)), then all generated clauses
contain at most two literals. To give further examples, we need the following:

Definition 14 A clauseC = ¬l1∨ . . .∨¬ln∨ ln+1∨ . . .∨ ln+q is ground-preservingif

n+q
⋃

j=n+1

Var(l j) ⊆
n

⋃

j=1

Var(l j).

A set of clauses isground-preservingif all its clauses are.

In a ground-preserving set the only positive clauses are ground.6

Lemma 3 If R is essentially finite and ground-preserving, and everySpeculativeIntro tran-
sition adds an equation fj(x)≃ f k(x) with j > k, for increasing values of j and k, DPLL(Γ +
T) generates finitely many clauses from aT -smoothR ⊎P.

Proof Hyperresolution only generates positive ground clauses, because all variables get in-
stantiated by resolving the negative literals with positive clauses. Superposition with neg-
ative selection superposes a ground positive clause into a ground-preserving clause, which
generates either a ground clause, or a non-ground ground-preserving clause with no more
variable positions than its non-ground parent. It follows that superposition creates no new
non-ground term, and only finitely many non-ground ground-preserving clauses can be de-
rived. Since term depth is limited by simplification byf k1(x) → f k2(x), only finitely many
ground clauses can be generated. 2

Next, we consider some specific theories relevant to the axiomatization of type systems
in programming languages. Given the axioms

Reflexivity x⊑ x (1)

Transitivity ¬(x⊑ y)∨¬(y⊑ z)∨x⊑ z (2)

Anti-Symmetry ¬(x⊑ y)∨¬(y⊑ x)∨x≃ y (3)

Monotonicity ¬(x⊑ y)∨ f (x)⊑ f (y) (4)

Tree-Property ¬(z⊑ x)∨¬(z⊑ y)∨x⊑ y∨y⊑ x (5)

{(1),(2),(3)} presents a poset (partially ordered set),MI = {(1),(2),(3),(4)} a type system
with multiple inheritance, andSI = MI⊎{(5)} a type system withsingle inheritance, where
⊑ is the subtype relationship andf is a type constructor.MI andSI are essentially finite,
because they satisfy a stronger property:

6 Definition 14 is a weakening of that of positive variable dominated clause of [22] (cf. Definition 3.18),
and it is dual to that of ground-preserving clause of [47], which required that negative literals do not contain
variables that do not appear in positive ones. Our definitionis for a positive strategy in the non-Horn case,
hence forward reasoning, whereas that of [47] was for linearinput proofs in the Horn case, hence backward
reasoning.

20

Definition 15 R has thefinite model property, if for all setsP of groundR-clauses, such
thatR ⊎P is satisfiable,R⊎P has a modelΦ with finite |Φ |.

Theorem 8 SI has the finite model property hence it is essentially finite.

Proof AssumeSI⊎P is satisfiable, and letΦ be a model for it. It is sufficient to show there
is a finite modelΦ ′. Let TP be the set of subterms of terms in P, andVP be the setΦ(TP).
SinceP is finite and ground,VP is finite. Let|Φ ′| beVP∪{vm}, wherevm is an element not
in VP. Then, we defineΦ ′(⊑)(v1,v2) as:

v2 = vm or (v1,v2) ∈ Φ(⊑).

Intuitively, vm is a new maximal element.〈|Φ ′|,Φ ′(⊑)〉 is a poset andΦ ′(⊑) satisfies the
Tree-Property. Now, we define an auxiliary functiong: |Φ ′| → |Φ ′| as:

g(v) =

{

Φ(f)(v) if f (t) ∈ TP, andΦ(t) = v;
vm otherwise.

Let dom f , the relevant domain off , be the set{Φ(t) | f (t) ∈ TP} ∪ {vm}. With a small
abuse of notation, we usev ⊑ w to denote(v,w) ∈ Φ ′(⊑). Then, we defineΦ ′(f)(v) as
g(w), wherew is an element in|Φ ′| such thatv ⊑ w, w ∈ dom f , and for allw′, v ⊑ w′

andw′ ∈ dom f imply w ⊑ w′. This function is well defined becausevm ∈ domf , vm is the
maximal element of|Φ ′|, andΦ ′(⊑) satisfies theTree-Property, which ensures uniqueness
of the image. Moreover,Φ ′(f) is monotonic with respect toΦ ′(⊑). 2

Definition 16 Let 〈A,⊑〉 be a poset. TheDedekind-MacNeille completion [50]of 〈A,⊑〉 is
the unique complete lattice〈B,�〉 satisfying the following properties:

– There is an injectionα from A to B such that:v1 ⊑ v2 iff α(v1) � α(v2),
– Every subset ofB has greatest and least lower bound, and
– B is finite if A is finite. Actually,B is a subset of 2A.

Theorem 9 MI has the finite model property hence it is essentially finite.

Proof The construction used forSI does not work forMI, because without theTree-Property

the w in the definition ofΦ ′(f)(v) may not be unique for a givenv. First, we define an
auxiliary structureΦ0 such that|Φ0| = VP, Φ0(⊑) = Φ(⊑)|VP, andΦ0(f) is defined as:

Φ0(f)(v) =

{

Φ(f)(v) if f (t) ∈ TP, andΦ(t) = v,
w otherwise,

wherew is some element ofVP. Note that〈VP,Φ0(⊑)〉 is a poset. Letdom f be the set
{Φ(t) | f (t) ∈ TP}. Then, following [23] we use the Dedekind-MacNeille completion to
complete〈VP,Φ0(⊑)〉 into a complete lattice〈B,�〉. We useglb(S) to denote the greatest
lower bound of a subsetS of B. Now, we define a finite modelΦ ′ for MI⊎P with domain
|Φ ′| = B, in the following way:

Φ ′(c) = α(Φ0(c)) for every constantc in TP,
Φ ′(⊑) = �,

Φ ′(f)(v) = glb({α(Φ0(f)(w)) | w∈VP, w∈ dom f , v� α(w)}).

The functionΦ ′(f) is monotonic with respect toΦ ′(⊑). The structureΦ ′ satisfiesP because
for every termt in TP, we haveΦ ′(t) = α(Φ(t)). Moreover, the⊑-literals inP are satisfied
because the lattice〈B,�〉 is a Dedekind-MacNeille completion ofΦ0 which is a restriction
of Φ . 2

21

Now we show that ID-DPLL(Γ +T) is a decision procedure forMI andSI.

Theorem 10 An ID-DPLL(Γ +T)-procedure where everySpeculativeIntro transition adds
an equation fj(x) ≃ f k(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability moduloT of T -smooth problemsMI⊎P.

Proof It follows from Theorem 7 and Lemma 2, becauseMI is essentially finite and Horn.
2

Theorem 11 An ID-DPLL(Γ +T)-procedure where everySpeculativeIntro transition adds
an equation fj(x) ≃ f k(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability moduloT of T -smooth problemsSI⊎P.

Proof SinceSI is essentially finite and ground-preserving, except forReflexivity, it follows
from Theorem 7 and Lemma 3, providedReflexivity does not affect the result of Lemma 3.
This is the case, since an hyperresolution involvingReflexivity generates either a tautology
or a subsumed clause or a ground clause. 2

In Spec# [7], the axiomatization of the type system also includesTR = {g(x) 6≃ null, h(g(x))
≃ x}, whereg represents thetype representativeof some type. The first axiom states that
the representative is never the constantnull, which meansnull has no pre-image, henceg is
not surjective. The second axiom states thatg has a left inverse, hence it is injective. It is
well-known that a set with an injective but not surjective function is infinite (e.g., Lemma 1
in [24]), so that any model ofTR is infinite.

Theorem 12 An ID-DPLL(Γ +T)-procedure where everySpeculativeIntro transition adds
an equation fj(x) ≃ f k(x) with j > k, for increasing values of j and k, is a decision proce-
dure for the satisfiability moduloT of T -smooth problemsMI⊎TR⊎P andSI⊎TR⊎P.

Proof Superposition applied to an axiom inTR and a ground equation generates a ground
equation smaller than its ground parent in the≻ ordering (e.g., under a precedenceg ≻
h≻ null), so thatΓ terminates onTR-satisfiability problems. SinceMI (or SI) andTR are
disjoint and variable inactive,Γ terminates also on satisfiability problems inMI⊎TR (or
SI⊎TR) by Theorem 2. Thus, the combination withTR does not change that only finitely
many clauses can be generated. The claim follows from Theorem 10 and this observation for
problemsMI⊎TR⊎P, and from Theorem 11 and this observation for problemsSI⊎TR⊎P.
2

7 Discussion

The DPLL(Γ +T) system integrates DPLL(T) with a first-order engineΓ , to combine the
strengths of DPLL and efficient solvers for special theories, such as linear arithmetic, with
those of superposition and resolution. DPLL(T)-based SMT-solvers and general theorem
provers grew independently for several years. The increasing recognition that their features
are complementary, and necessary to solve frontier problems in fields such as program ver-
ification, is leading to study their interaction.

The rewrite-based approach to satisfiability procedures developed in [5,3,18,15,4] was
concerned with using first-order engines as decision procedures for satisfiability problems.
In [14,16] it was generalized from satisfiability problems,given by sets of ground unit
clauses, to decision problems given by sets of ground clauses. The first-order engine alone

22

was used as decision procedure, with no integration with an SMT-solver. The two-stage
method of [13,17] lets a first-order engine and an SMT-solvercooperate, including allowing
both a unionR of variable-inactive axiomatized theories, and a unionT of Nelson-Oppen
built-in theories: the first-order engine was applied as a pre-processor to compileR and re-
duce it to a theory that DPLL(T) alone could handle. Thus, the two reasoners were applied
in sequence. The systems in [46,1] explored embedding aT -solver for linear arithmetic
into a superposition-based theorem prover, while the studyof iterated schematain [2] offers
another perspective on the integration of propositional and arithmetical reasoning.

In DPLL(Γ +T) the first-order engineΓ is tightly integrated within DPLL(T), result-
ing in one single system. This is a main difference with respect to the two-stage approach of
[13,17]. DPLL(Γ +T) and systems such as those in [46,1] can be considered symmetric:
in DPLL(Γ +T) the superposition-based engineΓ is a satellite of DPLL(T); in [46,1] the
T -solver is a satellite of the superposition-based engine. Afirst version of DPLL(Γ +T)
appeared in [28]. It was called DPLL(Γ), because it was known to be refutationally com-
plete only in the case where the background theoryT is empty. A first contribution of this
article was to advance the DPLL(Γ +T) approach by giving conditions under which it is
refutationally complete when bothR andT are not empty.

Combination of theories is of paramount importance to reason about software. In previ-
ous work, it was known how to combine built-in theories, according to the equality sharing
method pioneered by Nelson and Oppen [53], and studied sincethen by many authors (e.g.,
[37,54,65] for some of the most recent extensions). This style of combination requires one
to embed in the prover a decision procedure for each theory ofinterest. While decision pro-
cedures are available for several theories, it might not be the case for each and every group of
axioms that may appear in program checking problems. This isa main reason why we need
an axiomatized theoryR andΓ to reason about it. A second main contribution of this arti-
cle was to show how to let combination of built-in theories àla Nelson-Oppen, and union of
axiomatized theories under variable inactivity, coexist and work together in DPLL(Γ +T).

We presented a new DPLL(Γ +T) system that combines DPLL(Γ +T) with specula-
tive inferences. The purpose is to enforce termination by introducing additional axioms as
hypotheses. This idea was inspired by the “unsound theorem proving” concept of [49]. The
additional axioms may cause unsoundness, by making unsatisfiable what was a satisfiable
set. We provided a mechanism for the prover to detect any unsoundness introduced by the
added axioms and recover from it. This mechanism is based on the backtracking scheme that
is native of a DPLL search: an inconsistency due to a speculative inference is an“unnatural
failure” that the prover treats like a“natural failure” (a proper inconsistency) by backtrack-
ing. Furthermore, it keeps memory of the failure to avoid repeating it. An idea of speculative
inferences may be implicit in bottom-up model generation approaches [9]. In those contexts
the speculation consists of trying in turn each case in a caseanalysis. In our method, the
speculative inferences assert additional clauses, on top of the native case analysis of DPLL
on the input clauses. Considering each of the two horns of a case analysis can be seen either
as an inference step or as a search step on existing data. Our speculative inferences are more
like guessing additional features that a model may satisfy.

DPLL(Γ +T) equipped with an iterative deepening search plan forms anID-DPLL(Γ +
T)-procedure. We showed that ID-DPLL(Γ +T) with speculative inferences is a decision
procedure for theories that axiomatize type systems relevant to program checking. Their
crucial feature is that they areessentially finite: they have one unary function symbol whose
range is finite. However, we gave examples where ID-DPLL(Γ +T) is a decision procedure
also when more function symbols are involved via combination of theories. Another way to
approach the axiomatizations in Section 6 islocality, proposed for Horn theories [40], and

23

then extended beyond the Horn case and developed in [8,63,64,43,44]. In a local theory,
validity of a conjecture can be decided by considering only finitely many of its ground
instances. We emphasize that DPLL(Γ +T) yields a decision procedure for the axiomati-
zations in Section 6 united with an arbitrary built-inT , provided the problemT ⊎R⊎P is
T -smooth. In applications, there is no guarantee that all relevant instances ofT ⊎R will
be local. Thus, speculative inferences and locality can be considered complementary.

There are several directions for future work. One is to extend the approach to more
presentations, including cases where the signature ofR features also non-monadic function
symbols. For example, consider the axiomy⊑ x∧u⊑ z⇒map(x,u)⊑map(y,z), where⊑ is
a subtype relation, andmap(x,u) represents the type of maps from typex to typeu. If y⊑ x,
a value of typey can be used whenever a value of typex is used. For mapsf ∈ map(x,u)
andg ∈ map(y,z) this is the case ify ⊑ x, which meansf can take whateverg takes, and
u⊑ z, which means whateverf yields is within whatg yields. Such an axiom with a dyadic
function symbol may be useful for an axiomatization of maps.Another open issue is the
duplication of reasoning on ground unit equational clausesin DPLL(Γ +T), due to the fact
that they are seen by bothΓ and the congruence closure (CC) algorithm within DPLL(T).
Using the CC algorithm to compute the completion of the set ofground equations [38,
62], and pass the resulting canonical system toΓ , would not solve the problem, because this
solution is notincremental, as the addition of a single ground equation requires recomputing
the canonical system. It would be ideal to automate the choice of clauses to be added by
SpeculativeIntro. However, this manual component of DPLL(Γ +T) is at a higher level of
abstraction than triggering, and it is certainly not heavier.

Another topic for future investigation is how to improve thecapability of the system
to discover unsatisfiability due to the lack of finite models.By detecting the generation of
a cardinality constraint byΓ , DPLL(Γ + T) can discover that an axiomatized theoryR

is not variable-inactive and not stably infinite. In other words, it can discover the lack of
infinite models. On the other hand, it does not have a general way to discover the lack of
finite models, or that there are only models with the “wrong” cardinality: for example,R
only features models with a certain finite cardinality, whenT requires a different finite
cardinality.

The class of formulæ that can be decided by DPLL(Γ +T) includes axiomatizations of
type systems, used in tools such as ESC/Java [36] and Spec# [7], which represents significant
evidence of the relevance of this work to applications.

Acknowledgements Part of this research initiated during a visit of the first author with the Software Re-
liability Group of Microsoft Research in Redmond. We thank the anonymous reviewers whose suggestions
allowed us to improve an earlier version of this article.

References

1. Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition modulo linear arithmetic
SUP(LA). In Silvio Ghilardi and Roberto Sebastiani, editors,Proceedings of the Seventh Symposium on
Frontiers of Combining Systems (FroCoS), volume 5749 ofLecture Notes in Artificial Intelligence, pages
84–99. Springer, 2009.

2. Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A decidable class of nested iterated schemata.
In Jürgen Giesl and Reiner Hähnle, editors,Proceedings of the Fifth International Joint Conference on
Automated Reasoning (IJCAR), volume 6173 ofLecture Notes in Artificial Intelligence, pages 293–308.
Springer, 2010.

3. Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. On a rewriting ap-
proach to satisfiability procedures: extension, combination of theories and an experimental appraisal.

24

In Bernhard Gramlich, editor,Proceedings of the Fifth Workshop on Frontiers of CombiningSystems
(FroCoS), volume 3717 ofLecture Notes in Artificial Intelligence, pages 65–80. Springer, 2005.

4. Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. New results on rewrite-
based satisfiability procedures.ACM Transactions on Computational Logic, 10(1):129–179, 2009.

5. Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach to satisfiability
procedures.Information and Computation, 183(2):140–164, 2003.

6. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

7. Michael Barnett, K. Rustan M. Leino, and Wolfram Schulte.The Spec♯ programming system: An
overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman,Jean-Louis Lanet, and Traian Muntean,
editors,Proceedings of the Workshop on Construction and Analysis ofSafe, Secure, and Interopera-
ble Smart Devices (CASSIS 2004), volume 3362 ofLecture Notes in Computer Science, pages 49–69.
Springer, 2005.

8. David A. Basin and Harald Ganzinger. Automated complexity analysis based on ordered resolution.
Journal of the ACM, 48(1):70–109, 2001.

9. Peter Baumgartner and Renate A. Schmidt. Blocking and other enhancements for bottom-up model
generation methods. In Ulrich Furbach and Natarajan Shankar, editors,Proceedings of the Third Inter-
national Joint Conference on Automated Reasoning (IJCAR), volume 4130 ofLecture Notes in Artificial
Intelligence, pages 125–139. Springer, 2006.

10. Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Michael J. Wooldridge and
Manuela Veloso, editors,Artificial Intelligence Today – Recent Trends and Developments, volume 1600
of Lecture Notes in Artificial Intelligence, pages 43–84. Springer, 1999.

11. Maria Paola Bonacina. On theorem proving for program checking – historical perspective and recent
developments. In Maribel Fernandez, editor,Proceedings of the Twelfth International Symposium on
Principles and Practice of Declarative Programming (PPDP), pages 1–11. ACM Press, July 2010.

12. Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference.ACM Transactions on
Computational Logic, 8(1):180–208, 2007.

13. Maria Paola Bonacina and Mnacho Echenim.T -decision by decomposition. In Frank Pfenning, editor,
Proceedings of the Twenty-first Conference on Automated Deduction (CADE), volume 4603 ofLecture
Notes in Artificial Intelligence, pages 199–214. Springer, 2007.

14. Maria Paola Bonacina and Mnacho Echenim. Rewrite-baseddecision procedures. In Myla Archer,
Thierry Boy de la Tour, and Cesar Munoz, editors,Proceedings of the Sixth Workshop on Strategies in
Automated Deduction (STRATEGIES), Federated Logic Conference 2006, volume 174(11) ofElectronic
Notes in Theoretical Computer Science, pages 27–45. Elsevier, 2007.

15. Maria Paola Bonacina and Mnacho Echenim. Rewrite-basedsatisfiability procedures for recursive data
structures. In Byron Cook and Roberto Sebastiani, editors,Proceedings of the Fourth Workshop on
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR), Federated Logic Conference
2006, volume 174(8) ofElectronic Notes in Theoretical Computer Science, pages 55–70. Elsevier, 2007.

16. Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity and polynomial T-satisfiability
procedures.Journal of Logic and Computation, 18(1):77–96, 2008.

17. Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposition.Journal of Symbolic
Computation, 45(2):229–260, 2010.

18. Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli. Decid-
ability and undecidability results for Nelson-Oppen and rewrite-based decision procedures. In Ulrich
Furbach and Natarajan Shankar, editors,Proceedings of the Third International Joint Conference onAu-
tomated Reasoning (IJCAR), volume 4130 ofLecture Notes in Artificial Intelligence, pages 513–527.
Springer, 2006.

19. Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion procedures as semidecision
procedures.Theoretical Computer Science, 146:199–242, 1995.

20. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satisfiability by
DPLL(Γ + T) and unsound theorem proving. In Renate Schmidt, editor,Proceedings of the Twenty-
second Conference on Automated Deduction (CADE), volume 5663 ofLecture Notes in Artificial Intel-
ligence, pages 35–50. Springer, 2009.

21. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’sdecidable about arrays? In E. Allen
Emerson and Kedar S. Namjoshi, editors,Proceedings of the Seventh Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 3855 ofLecture Notes in Computer Science,
pages 427–442. Springer, 2006.

22. Ricardo Caferra, Alexander Leitsch, and Nicolas Peltier. Automated Model Building. Kluwer Academic
Publishers, Amsterdam, The Netherlands, 2004.

23. Domenico Cantone and Calogero G. Zarba. A decision procedure for monotone functions over bounded
and complete lattices. In Harrie de Swart, editor,Proc. TARSKI II, volume 4342 ofLecture Notes in
Artificial Intelligence, pages 318–333. Springer, 2006.

25

24. Koen Claessen and Ann Lillieström. Automated inference of finite unsatisfiability. In Renate Schmidt,
editor,Proceedings of the Twenty-second Conference on Automated Deduction (CADE), volume 5663 of
Lecture Notes in Artificial Intelligence, pages 388–403. Springer, 2009.

25. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

26. Martin Davis and Hilary Putnam. A computing procedure for quantification theory.Journal of the ACM,
7:201–215, 1960.

27. Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for SMT-solvers. In Frank Pfenning,
editor, Proceedings of the Twenty-first Conference on Automated Deduction (CADE), volume 4603 of
Lecture Notes in Artificial Intelligence, pages 183–198. Springer, 2007.

28. Leonardo de Moura and Nikolaj Bjørner. Engineering DPLL(T) + saturation. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors,Proceedings of the Fourth International Joint Conference
on Automated Reasoning (IJCAR), volume 5195 ofLecture Notes in Artificial Intelligence, pages 475–
490. Springer, 2008.

29. Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination. In Sava Krstić and Albert
Oliveras, editors,Proceedings of the Fifth Workshop on Satisfiability Modulo Theories (SMT), Con-
ference on Automated Verification 2007, volume 198(2) ofElectronic Notes in Theoretical Computer
Science, pages 37–49. Elsevier, 2008.

30. Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and Jakob
Rehof, editors,Proceedings of the Fourteenth Conference on Tools and algorithms for the construction
and analysis of systems (TACAS), volume 4963 ofLecture Notes in Computer Science, pages 337–340.
Springer, 2008.

31. Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17(3):279–
301, 1982.

32. Nachum Dershowitz. A maximal-literal unit strategy forHorn clauses. In Stephan Kaplan and Mitsuhiro
Okada, editors,Proceedings of the Second Workshop on Conditional and TypedTerm Rewriting Systems
(CTRS 1990), volume 516 ofLecture Notes in Computer Science, pages 14–25. Springer, 1991.

33. Nachum Dershowitz and Zohar Manna. Proving terminationwith multiset orderings.Communications
of the ACM, 22(8):465476, 1979.

34. David L. Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365–473, 2005.

35. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In Tom Ball and
R. B. Jones, editors,Proceedings of the Eighteenth Conference on Automated Verification (CAV), volume
4144 ofLecture Notes in Computer Science, pages 81–94. Springer, 2006.

36. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In Laurie J. Hendren, editor,ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 234–245, 2002.

37. Pascal Fontaine. Combinations of theories for decidable fragments of first-order logic. In Silvio Ghi-
lardi and Roberto Sebastiani, editors,Proceedings of the Seventh Symposium on Frontiers of Combining
Systems (FroCoS), volume 5749 ofLecture Notes in Artificial Intelligence, pages 263–278. Springer,
2009.

38. Jean Gallier, Paliath Narendran, David A. Plaisted, Stan Raatz, and Wayne Snyder. Finding canonical
rewriting systems equivalent to a finite set of ground equations in polynomial time.Journal of the ACM,
40(1):1–16, 1993.

39. Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification conditions using satisfiability
modulo theories. In Frank Pfenning, editor,Proceedings of the Twenty-first Conference on Automated
Deduction (CADE), volume 4603 ofLecture Notes in Artificial Intelligence, pages 167–182. Springer,
2007.

40. Robert Givan and David A. McAllester. Polynomial-time computation via local inference relations.ACM
Transactions on Computational Logic, 3(4):521–541, 2002.

41. Joseph Y. Halpern. Presburger arithmetic with unary predicates isπ1
1 complete. Journal of Symbolic

Logic, 56:637–642, 1991.
42. Jieh Hsiang and Michaël Rusinowitch. Proving refutational completeness of theorem proving strategies:

the transfinite semantic tree method.Journal of the ACM, 38(3):559–587, 1991.
43. Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On local reasoning in verification.

In C. R. Ramakrishnan and Jakob Rehof, editors,Proceedings of the Fourteenth Conference on Tools
and algorithms for the construction and analysis of systems(TACAS), volume 4963 ofLecture Notes in
Computer Science, pages 265–281. Springer, 2008.

44. Swen Jacobs. Incremental instance generation in local reasoning. In Franz Baader, Silvio Ghilardi,
Miki Hermann, Ulrike Sattler, and Viorica Sofronie-Stokkermans, editors,Notes of the First Workshop
on Complexity, Expressibility and Decidability (CEDAR), International Joint Conference on Automated
Reasoning 2008, pages 47–62, 2008.

26

45. Donald E. Knuth and Peter B. Bendix. Simple word problemsin universal algebras. In J. Leech, ed-
itor, Proceedings of the Conference on Computational Problems inAbstract Algebras, pages 263–298.
Pergamon Press, 1970.

46. Konstantin Korovin and Andrei Voronkov. Integrating linear arithmetic into superposition calculus. In
Jacques Duparc and Thomas A. Henzinger, editors,Proceedings of the Sixteenth EACSL Annual Con-
ference on Computer Science Logic (CSL), volume 4646 ofLecture Notes in Computer Science, pages
223–237. Springer, 2007.

47. Emmanuel Kounalis and Michaël Rusinowitch. On word problems in Horn theories.Journal of Symbolic
Computation, 11(1–2):113–128, 1991.

48. Vladimir Lifschitz, Leora Morgenstern, and David A. Plaisted. Knowledge representation and classical
logic. In Frank van Harmelen, Vladimir Lifschitz, and BrucePorter, editors,Handbook of Knowledge
Representation, volume 1, pages 3–88. Elsevier, 2008.

49. Christopher A. Lynch. Unsound theorem proving. In Jan Marcinkowski and Andrzej Tarlecki, editors,
Proceedings of the Thirteenth EACSL Annual Conference on Computer Science Logic (CSL), volume
3210 ofLecture Notes in Computer Science, pages 473–487. Springer, 2004.

50. Holbrook Mann MacNeille. Partially ordered sets. InTransactions of the American Mathematical Soci-
ety, volume 42, pages 416–460, 1937.

51. William W. McCune. Otter 3.3 reference manual. Technical Report ANL/MCS-TM-263, MCS Division,
Argonne National Laboratory, Argonne, IL, USA, 2003.

52. Scott McPeak and George C. Necula. Data structure specifications via local equality axioms. In Kousha
Etessami and Sriram. K. Rajamani, editors,Proceedings of the Seventeenth Conference on Automated
Verification (CAV), volume 3576 ofLecture Notes in Computer Science, pages 476–490. Springer, 2005.

53. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.ACM Transactions
on Programming Languages and Systems, 1(2):245–257, 1979.

54. Enrica Nicolini, Christoph Ringeissen, and Michaël Rusinowitch. Data structures with arithmetic con-
straints: a non-disjoint combination. In Silvio Ghilardi and Roberto Sebastiani, editors,Proceedings of
the Seventh Symposium on Frontiers of Combining Systems (FroCoS), volume 5749 ofLecture Notes in
Artificial Intelligence, pages 319–334. Springer, 2009.

55. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann-Loveland procedure toDPLL(T). Journal of the ACM, 53(6):937–
977, 2006.

56. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Alan Robinson and
Andrei Voronkov, editors,Handbook of Automated Reasoning, volume 1, pages 371–443. Elsevier, 2001.

57. G. Robinson and Larry Wos. Paramodulation and theorem-proving in first-order theories with equal-
ity. In D. Michie and R. Meltzer, editors,Machine Intelligence, volume IV, pages 135–150. Edinburgh
University Press, 1969.

58. J. Alan Robinson. Automatic deduction with hyper-resolution. International Journal of Computer Math-
ematics, 1:227–234, 1965.

59. J. Alan Robinson. A machine oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, 1965.

60. Michaël Rusinowitch. Theorem-proving with resolution and superposition.Journal of Symbolic Com-
putation, 11:21–50, 1991.

61. Roberto Sebastiani. Lazy satisfiability modulo theories. Journal of Satisfiability, Boolean Modeling and
Computation, 3:141–224, 2007.

62. Wayne Snyder. A fast algorithm for generating reduced ground rewriting systems from a set of ground
equations.Journal of Symbolic Computation, 15(4):415–450, 1993.

63. Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In Robert Nieuwenhuis,
editor, Proceedings of the Twentieth Conference on Automated Deduction (CADE), volume 3632 of
Lecture Notes in Artificial Intelligence, pages 219–234. Springer, 2005.

64. Viorica Sofronie-Stokkermans and Carsten Ihlemann. Automated reasoning in some local extensions of
ordered structures.Journal of Multiple-Valued Logics and Soft Computing, 13(4–6):397–414, 2007.

65. Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining theories with shared set operations. In
Silvio Ghilardi and Roberto Sebastiani, editors,Proceedings of the Seventh Symposium on Frontiers of
Combining Systems (FroCoS), volume 5749 ofLecture Notes in Artificial Intelligence, pages 366–382.
Springer, 2009.

