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Satisfiability 

𝑎 > 𝑏 + 2, 𝑎 = 2𝑐 + 10, 𝑐 + 𝑏 ≤ 1000 

𝑎 = 0, 𝑏 = −3, 𝑐 = −5 

0 > −𝟑 + 2, 0 = 2 −𝟓 + 10, −𝟓 + (−𝟑) ≤ 1000 

Model 

SAT 



Quantifiers 

∀𝑥  ∃𝑦  𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0 
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Universal 



Quantifiers 

∀𝑥  ∃𝑦  𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0 

Existential 



Quantifiers 

∀𝑥  ∃𝑦  𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0 

A Model 
𝑓 is the constant function 0 



Quantifiers 

∀𝑥  ∃𝑦  𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0 

Another Model 
𝑓 is the polynomial 

𝑦2 − 𝑥 



Verification Tools need Quantifiers 

 

Modeling the Runtime 

 

 h,o,f: 
 IsHeap(h)  o ≠ null  read(h, o, alloc) = t 
  
 read(h,o, f) = null  read(h, read(h,o,f),alloc) = 



Verification Tools need Quantifiers 

 

Frame Axioms 

 

 o, f: 
 o ≠ null  read(h0, o, alloc) = t  
    read(h1,o,f) = read(h0,o,f)  (o,f)  M  



Verification Tools need Quantifiers 

 

User provided assertions 

 

 i,j: i  j  read(a,i)  read(b,j) 



Verification Tools need Quantifiers 

 

Extra Theories 

 

 x: p(x,x) 

 x,y,z: p(x,y), p(y,z)  p(x,z) 

 x,y: p(x,y), p(y,x)  x = y 



Verification Tools need Quantifiers 

 

Main Challenge 

Solver must be fast is satisfiable instances 



Verifying Compilers 

Annotated 
Program 

Verification 
Condition F 

pre/post conditions 
invariants 
and other annotations 



Verification Condition: Structure 

BIG 
and-or 

tree 
(ground) 

 
 

 Axioms 
(non-ground) 

Control & Data 
Flow 



VCC: Verifying C Compiler 



BAD NEWS 

 

First-order logic (FOL) is semi-decidable 

Quantifiers + EUF 

 

 



BAD NEWS 

 

FOL + Linear Integer Arithmetic is undecidable 

Quantifiers + EUF + LIA 

 

 



Hypervisor 

Hardware 

Hypervisor 

Challenges: 
VCs have several Megabytes 
Thousands universal quantifiers 
Developers are willing at most 5 min per VC 



Verification Attempt Time vs. 
Satisfaction and Productivity 



NNF: Negation Normal Form 



NNF: Negation Normal Form 



Skolemization 



Skolemization 



 - Many Approaches 

Heuristic quantifier instantiation 

SMT + Saturation provers 

Complete quantifier instantiation 

Decidable fragments 

Model based quantifier instantiation 

Quantifier Elimination 



Heuristic Quantifier Instantiation 

E-matching (matching modulo equalities). 

Example: 

 x: f(g(x)) = x { f(g(x)) } 

a = g(b),  

b = c, 

f(a)  c  
 

Pattern/Trigger 



Heuristic Quantifier Instantiation 

E-matching (matching modulo equalities). 

Example: 

 x: f(g(x)) = x { f(g(x)) } 

a = g(b),  

b = c, 

f(a)  c  
 

x=b f(g(b)) = b 



E-matching problem 



E-matching Challenge 

Number of matches can be exponential 

It is not refutationally complete 

The real challenge is finding new matches: 

 Incrementally during backtracking search 

 Large database of patterns 



EUF Solver: Review 
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EUF Solver: Review 



E-matching 



E-matching: Example 
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E-matching: Example 



E-matching: Example 



E-matching: Example 



E-matching: Example 



Efficient E-matching 

Problem Indexing Technique 

Fast retrieval 
 

E-matching code trees 

Incremental E-Matching Inverted path index 



E-matching: code trees 

Trigger:   
 
f(x1, g(x1, a), h(x2), b) 

Instructions: 
 
1. init(f, 2) 
2. check(r4, b, 3) 
3. bind(r2, g, r5, 4) 
4. compare(r1, r5, 5) 
5. check(r6, a, 6) 
6. bind(r3, h, r7, 7) 
7. yield(r1, r7) 

Compiler 

Similar triggers share several 
instructions. 

Combine code sequences 
in a code tree 



E-matching limitations 

E-matching needs ground seeds. 

x: p(x), 

x: not p(x) 
 



E-matching limitations 

Bad user provided triggers: 

x: f(g(x))=x { f(g(x)) } 

g(a) = c, 

g(b) = c, 

a  b 

 
 

Trigger is too 
restrictive 



E-matching limitations 

Bad user provided triggers: 

x: f(g(x))=x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b 

 
 

More “liberal” 
trigger 



E-matching limitations 

Bad user provided triggers: 

x: f(g(x))=x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b, 

f(g(a)) = a, 

f(g(b)) = b 

 
 

a=b 



E-matching limitations 

It is not refutationally complete 

 
 

False positives 



E-matching: why do we use it? 

Integrates smoothly with current SMT Solvers design. 

Proof finding. 

Software verification problems are big & shallow. 

 



Decidable Fragments 
& 

Complete Quantifier Instatiation 



 + theories 

There is no sound and refutationally complete 

procedure for  

linear arithmetic + unintepreted function symbols 



Model Generation 

How to represent the model of satisfiable formulas? 

Functor:  

Given a model M for T 

Generate a model M’ for F (modulo T) 

Example: 
F:    f(a) = 0 and a > b and f(b) > f(a) + 1 

 Symbol Interpretation 

a 1 

b 0 

f ite(x=1, 0, 2) 

M’: 



Model Generation 

How to represent the model of satisfiable formulas? 

Functor:  

Given a model M for T 

Generate a model M’ for F (modulo T) 

Example: 
F:    f(a) = 0 and a > b and f(b) > f(a) + 1 

 Symbol Interpretation 

a 1 

b 0 

f ite(x=1, 0, 2) 

M’: 

Interpretation is given 
using T-symbols 



Model Generation 

How to represent the model of satisfiable formulas? 

Functor:  

Given a model M for T 

Generate a model M’ for F (modulo T) 

Example: 
F:    f(a) = 0 and a > b and f(b) > f(a) + 1 

 Symbol Interpretation 

a 1 

b 0 

f ite(x=1, 0, 2) 

M’: 

Non ground term 
(lambda expression) 



Models as Functional Programs 



Model Checking 

 

 

Symbol Interpretation 

a 1 

b 0 

f ite(x=1, 0, 2) 

M’: 

Is x: f(x) ≥ 0 satisfied by M’?  

Yes, 
not (ite(k=1,0,2) ≥ 0) is unsatisfiable 



Model Checking 

 

 

Symbol Interpretation 

a 1 

b 0 

f ite(x=1, 0, 2) 

M’: 

Is x: f(x) ≥ 0 satisfied by M’?  

Yes, 
not (ite(k=1,0,2) ≥ 0) is unsatisfiable 

Negated quantifier  
Replaced f by its interpretation 
Replaced x by fresh constant k 



Essentially uninterpreted fragment 

Variables appear only as arguments of 
uninterpreted symbols.  

f(g(x1) + a) < g(x1)  h(f(x1), x2) = 0 

f(x1+x2)  f(x1) + f(x2) 



Basic Idea 

Given a set of formulas F,  
build an equisatisfiable set of quantifier-free formulas F* 
   

 

Suppose 
1. We have a clause C[f(x)] containing f(x). 
2. We have f(t). 
 
Instantiate x with t:  C[f(t)].  

“Domain” of f is the set of ground terms Af 

t  Af    if   there is a ground term f(t) 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0 

Copy quantifier-free formulas 

“Domains”: 
   Af: { a } 
   Ag: { } 
   Ah: { c } 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 

“Domains”: 
 Af : { a } 
 Ag : { } 
 Ah : { c } 
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g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a) 

“Domains”: 
 Af : { a } 
 Ag : { [f(a), b] } 
 Ah : { c } 
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g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
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Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
g(f(a), b) = 0  h(b) = 0 

“Domains”: 
 Af : { a } 
 Ag : { [f(a), b] } 
 Ah : { c, b } 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
g(f(a), b) = 0  h(b) = 0 

“Domains”: 
 Af : { a } 
 Ag : { [f(a), b]} 
 Ah : { c, b } 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
g(f(a), b) = 0  h(b) = 0, 
g(f(a), c) = 0  h(c) = 0 

“Domains”: 
 Af : { a } 
 Ag : { [f(a), b], [f(a), c] } 
 Ah : { c, b } 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
g(f(a), b) = 0  h(b) = 0, 
g(f(a), c) = 0  h(c) = 0 

a  2, b  2, c  3 
f  { 2  0, …} 
h  { 2  0, 3  1, …} 
g  { [0,2] -1, [0,3] 0, …} 

M  



Basic Idea 

Given a model M for F*, 
Build a model M for F 
 

 Define a projection function f s.t. 
range of f is M(Af), and 
f (v) = v   if    v  M(Af) 
 
Then, 
M(f)(v)  = M(f)(f(v))  



Basic Idea 

M(Af) M(f(Af)) 

M(Af) 

M(f(Af)) 

M(f) 
M(Af) 

f 

M(f) 

M(f) 



Basic Idea 

Given a model M for F*, 
Build a model M for F 
 

 
In our example, we have: h(b) and h(c) 
 Ah = { b, c },   and   M(Ah) = { 2, 3 } 
  

h = { 2  2, 3  3, else  3 } 

M(h)  
{ 2  0, 3  1, …} 

M(h) 
{ 2  0, 3  1, else  1} 

M(h) = x. if(x=2, 0, 1) 



Example 

g(x1, x2) = 0  h(x2) = 0, 
g(f(x1),b) + 1  f(x1), 
h(c) = 1, 
f(a) = 0 

F F* 
h(c) = 1, 
f(a) = 0, 
g(f(a),b) + 1  f(a), 
g(f(a), b) = 0  h(b) = 0, 
g(f(a), c) = 0  h(c) = 0 

M 

a  2, b  2, c  3 
f  x. 2 
h  x. if(x=2, 0, 1) 
g  x,y. if(x=0y=2,-1, 0) 

M  
a  2, b  2, c  3 
f  { 2  0, …} 
h  { 2  0, 3  1, …} 
g  { [0,2] -1, [0,3] 0, …} 



Example : Model Checking 
M 

a  2, b  2, c  3 
f  x. 2 
h  x. if(x=2, 0, 1) 
g  x,y. if(x=0y=2,-1, 0) 

x1, x2: if(x1=0x2=2,-1,0) = 0  if(x2=2,0,1) = 0   is valid 

Does M satisfies? 
x1, x2 : g(x1, x2) = 0  h(x2) = 0 

x1, x2: if(x1=0x2=2,-1,0)  0  if(x2=2,0,1)  0    is unsat 

if(s1=0s2=2,-1,0)  0  if(s2=2,0,1)  0    is unsat 



Why does it work? 

Suppose M does not satisfy C[f(x)]. 
 

 Then for some value v, 
M{x v}   falsifies   C[f(x)]. 

M{x f(v)}   also falsifies   C[f(x)]. 

But, there is a term t  Af  s.t. M(t) = f(v) 
Moreover, we instantiated C[f(x)] with t. 

So, M must not satisfy C[f(t)]. 
Contradiction: M is a model for F*. 



Refinement: Lazy construction 

F* may be very big (or infinite). 

Lazy-construction 
Build F* incrementally, F* is the limit of the sequence 

    F0  F1  …  Fk  … 

If Fk is unsat then F is unsat. 

If Fk is sat, then build (candidate) M 

If M satisfies all quantifiers in F then return sat. 

 



Refinement: Model-based instantiation 

Suppose M does not satisfy a clause C[f(x)] in F. 

Add an instance C[f(t)] which “blocks” this spurious model. 
Issue: how to find t? 

Use model checking, 
and the “inverse” mapping f

-1 from values to terms (in Af). 
f

-1(v) = t       if      M(t) = f(v) 



Example: Model-based instantiation 

F 
x1: f(x1) < 0, 
f(a) = 1,  
f(b) = -1 

F0 

f(a) = 1,  

f(b) = -1 

M 

a2, b3  

f x. if(x = 2, 1, -1) 

Model Checking  x1: f(x1) < 0 

not if(s1= 2, 1, -1) < 0 

s1 2   

f
-1(2) = a 

F1 

f(a) = 1,  

f(b) = -1 

f(a) < 0 

unsat 



Infinite F* 

Is refutationally complete? 

 

FOL Compactness 
A set of sentences is unsatisfiable 

iff  

it contains an unsatisfiable finite subset. 

 

A theory T is a set of sentences, then    

apply compactness to F*T 



Infinite F* 

𝑇𝑍 𝐹∗ ∪ 

Infinite set of 
first-order 
sentences 

Applying 
COMPACTNESS 

Finite 
𝑆 



Infinite F* : Example 

F 
x1: f(x1) < f(f(x1)), 
x1: f(x1) < a, 
1 < f(0). 

F* 

f(0) < f(f(0)),  f(f(0)) < f(f(f(0))), … 

f(0) < a, f(f(0)) < a, … 

1 < f(0) 
Every finite subset 
of F* is satisfiable. 

Unsatisfiable 



Infinite F* : What is wrong? 

Theory of linear arithmetic TZ  is the set of all first-order 
sentences that are true in the standard structure Z. 
Tz has non-standard models. 
F and F* are satisfiable in a non-standard model.  

Alternative: a theory is a class of structures. 

Compactness does not hold. 

F and F* are still equisatisfiable.  



Extensions 

Shifting 
 

(0  x1)  (x1  n)  f(x1) = g(x1+2) 



Extensions 

Many-sorted logic 
Pseudo-Macros   

0  g(x1)  f(g(x1)) = x1, 
0  g(x1)  h(g(x1)) = 2x1, 
g(a) < 0 



Extensions 

Online tutorial at: 
http://rise4fun.com/z3/tutorial 
  
 

http://rise4fun.com/z3/tutorial


Extensions 

Online tutorial at: 
http://rise4fun.com/z3/tutorial 
  
 

http://rise4fun.com/z3/tutorial


Related work 

Bernays-Schönfinkel class. 

Stratified Many-Sorted Logic. 

Array Property Fragment. 

Local theory extensions. 



SMT + Saturation 



CDCL/DPLL : Review 

M | F 
 

Partial model 
Set of clauses 



CDCL/DPLL : Review 

Guessing 

 p, q | p  q, q  r 

 p  |  p  q, q  r 
 



CDCL/DPLL : Review 

Deducing 

 p, s| p  q, p  s 

 p  |  p  q, p  s 
 



CDCL/DPLL : Review 

Backtracking 

 p, s| p  q, s  q, p q 

 p, s,  q  |  p  q, s  q, p q 
 



DPLL() 

Tight integration: DPLL + Saturation solver. 

 

BIG 
and-or 

tree 
(ground) 

 
 

Axioms 
(non-ground) 



DPLL() 

Inference rule: 

 

DPLL() is parametric. 

Examples: 

Resolution 

Superposition calculus 

… 



DPLL() 

M | F 
 

Partial model 
Set of clauses 



DPLL() : Deduce I 

p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x) 
 



DPLL() : Deduce I 

p(a) | p(a)q(a), p(x)r(x), p(x)s(x) 
 



DPLL() : Deduce I 

p(a) | p(a)q(a), p(x)r(x), p(x)s(x) 
 

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x)  
 

Resolution 



DPLL() : Deduce II 

Using ground atoms from M: 
M | F 

Main issue: backtracking. 

Hypothetical clauses: 

        H  C 

 (regular) Clause (hypothesis)  
Ground literals 

Track literals 
from M used to 
derive C 



DPLL() : Deduce II 

p(a) | p(a)q(a), p(x)r(x) 
 

p(a) | p(a)q(a), p(x)r(x), p(a)r(a) 
 

p(a),   p(x)r(x) 
 r(a) 

 



DPLL() : Backtracking 

p(a), r(a) | p(a)q(a), p(a)r(a),  p(a)r(a), … 
 



DPLL() : Backtracking 

p(a), r(a) | p(a)q(a), p(a)r(a),  p(a)r(a), … 
 

p(a) is removed from M 

p(a) | p(a)q(a), p(a)r(a), … 
 



DPLL() : Improvement 

Saturation solver ignores non-unit ground clauses. 

 

 p(a) | p(a)q(a), p(x)r(x) 



DPLL() : Improvement 

Saturation solver ignores non-unit ground clauses. 

It is still refutanionally complete if: 
 has the reduction property. 

 

BIG 
and-or tree 

(ground) 

 
 

Axioms 
(non-ground) 



DPLL() : Improvement 

DPLL  
+ 

Theories 

Saturation 
Solver 

Saturation solver ignores non-unit ground clauses. 

It is still refutanionally complete if: 
 has the reduction property. 

 

Ground literals 

Ground clauses 



DPLL() : Problem 

Interpreted symtbols 

 (f(a) > 2),     f(x) > 5 

It is refutationally complete if 

Interpreted symbols only occur in ground clauses 

Non ground clauses are variable inactive 

“Good” ordering is used 



Summary 

E-matching 

 proof finding 

 fast 

 shallow proofs in big formulas 

 not refutationally complete  

 regularly solves VCs with more than 5 Mb 



Summary 

Complete instantiation + MBQI 

 decides several useful fragments 

 model & proof finding 

 slow 

 complements E-matching 



Summary 

SMT + Saturation 

 refutationally complete for pure first-order 

 proof finding 

 slow 

  



Not covered 

Quantifier elimination 

 Fourier-Motzkin (Linear Real Arithmetic) 

 Cooper (Linear Integer Arithmetic) 

 CAD (Nonlinear Real Arithmetic) 

 Algebraic Datatypes (Hodges) 

Finite model finding 

Many Decidable Fragments  



Challenge 

New and efficient procedures capable of 
producing models for satisfiable instances. 


