
Quantifiers

Leonardo de Moura

Microsoft Research

Satisfiability

𝑎 > 𝑏 + 2, 𝑎 = 2𝑐 + 10, 𝑐 + 𝑏 ≤ 1000

𝑎 = 0, 𝑏 = −3, 𝑐 = −5

0 > −𝟑 + 2, 0 = 2 −𝟓 + 10, −𝟓 + (−𝟑) ≤ 1000

Model

SAT

Quantifiers

∀𝑥 ∃𝑦 𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0

Quantifiers

∀𝑥 ∃𝑦 𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0

Universal

Quantifiers

∀𝑥 ∃𝑦 𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0

Existential

Quantifiers

∀𝑥 ∃𝑦 𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0

A Model
𝑓 is the constant function 0

Quantifiers

∀𝑥 ∃𝑦 𝑥 > 0 ⟹ 𝑓 𝑥, 𝑦 = 0

Another Model
𝑓 is the polynomial

𝑦2 − 𝑥

Verification Tools need Quantifiers

Modeling the Runtime

 h,o,f:
 IsHeap(h)  o ≠ null  read(h, o, alloc) = t
 
 read(h,o, f) = null  read(h, read(h,o,f),alloc) =

Verification Tools need Quantifiers

Frame Axioms

 o, f:
 o ≠ null  read(h0, o, alloc) = t 
 read(h1,o,f) = read(h0,o,f)  (o,f)  M

Verification Tools need Quantifiers

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Verification Tools need Quantifiers

Extra Theories

 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Verification Tools need Quantifiers

Main Challenge

Solver must be fast is satisfiable instances

Verifying Compilers

Annotated
Program

Verification
Condition F

pre/post conditions
invariants
and other annotations

Verification Condition: Structure

BIG
and-or

tree
(ground)

 Axioms
(non-ground)

Control & Data
Flow

VCC: Verifying C Compiler

BAD NEWS

First-order logic (FOL) is semi-decidable

Quantifiers + EUF

BAD NEWS

FOL + Linear Integer Arithmetic is undecidable

Quantifiers + EUF + LIA

Hypervisor

Hardware

Hypervisor

Challenges:
VCs have several Megabytes
Thousands universal quantifiers
Developers are willing at most 5 min per VC

Verification Attempt Time vs.
Satisfaction and Productivity

NNF: Negation Normal Form

NNF: Negation Normal Form

Skolemization

Skolemization

 - Many Approaches

Heuristic quantifier instantiation

SMT + Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifier Elimination

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

Pattern/Trigger

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

x=b f(g(b)) = b

E-matching problem

E-matching Challenge

Number of matches can be exponential

It is not refutationally complete

The real challenge is finding new matches:

 Incrementally during backtracking search

 Large database of patterns

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

EUF Solver: Review

E-matching

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

E-matching: Example

Efficient E-matching

Problem Indexing Technique

Fast retrieval

E-matching code trees

Incremental E-Matching Inverted path index

E-matching: code trees

Trigger:

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several
instructions.

Combine code sequences
in a code tree

E-matching limitations

E-matching needs ground seeds.

x: p(x),

x: not p(x)

E-matching limitations

Bad user provided triggers:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b

Trigger is too
restrictive

E-matching limitations

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b

More “liberal”
trigger

E-matching limitations

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b

a=b

E-matching limitations

It is not refutationally complete

False positives

E-matching: why do we use it?

Integrates smoothly with current SMT Solvers design.

Proof finding.

Software verification problems are big & shallow.

Decidable Fragments
&

Complete Quantifier Instatiation

 + theories

There is no sound and refutationally complete

procedure for

linear arithmetic + unintepreted function symbols

Model Generation

How to represent the model of satisfiable formulas?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

 Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Model Generation

How to represent the model of satisfiable formulas?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

 Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Interpretation is given
using T-symbols

Model Generation

How to represent the model of satisfiable formulas?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

 Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Non ground term
(lambda expression)

Models as Functional Programs

Model Checking

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) ≥ 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) ≥ 0) is unsatisfiable

Model Checking

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) ≥ 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) ≥ 0) is unsatisfiable

Negated quantifier
Replaced f by its interpretation
Replaced x by fresh constant k

Essentially uninterpreted fragment

Variables appear only as arguments of
uninterpreted symbols.

f(g(x1) + a) < g(x1)  h(f(x1), x2) = 0

f(x1+x2)  f(x1) + f(x2)

Basic Idea

Given a set of formulas F,
build an equisatisfiable set of quantifier-free formulas F*

Suppose
1. We have a clause C[f(x)] containing f(x).
2. We have f(t).

Instantiate x with t: C[f(t)].

“Domain” of f is the set of ground terms Af

t  Af if there is a ground term f(t)

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0

Copy quantifier-free formulas

“Domains”:
 Af: { a }
 Ag: { }
 Ah: { c }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,

“Domains”:
 Af : { a }
 Ag : { }
 Ah : { c }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a)

“Domains”:
 Af : { a }
 Ag : { [f(a), b] }
 Ah : { c }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),

“Domains”:
 Af : { a }
 Ag : { [f(a), b] }
 Ah : { c }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0

“Domains”:
 Af : { a }
 Ag : { [f(a), b] }
 Ah : { c, b }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0

“Domains”:
 Af : { a }
 Ag : { [f(a), b]}
 Ah : { c, b }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

“Domains”:
 Af : { a }
 Ag : { [f(a), b], [f(a), c] }
 Ah : { c, b }

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

a  2, b  2, c  3
f  { 2  0, …}
h  { 2  0, 3  1, …}
g  { [0,2] -1, [0,3] 0, …}

M

Basic Idea

Given a model M for F*,
Build a model M for F

 Define a projection function f s.t.
range of f is M(Af), and
f (v) = v if v  M(Af)

Then,
M(f)(v) = M(f)(f(v))

Basic Idea

M(Af) M(f(Af))

M(Af)

M(f(Af))

M(f)
M(Af)

f

M(f)

M(f)

Basic Idea

Given a model M for F*,
Build a model M for F

In our example, we have: h(b) and h(c)
 Ah = { b, c }, and M(Ah) = { 2, 3 }

h = { 2  2, 3  3, else  3 }

M(h)
{ 2  0, 3  1, …}

M(h)
{ 2  0, 3  1, else  1}

M(h) = x. if(x=2, 0, 1)

Example

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

M

a  2, b  2, c  3
f  x. 2
h  x. if(x=2, 0, 1)
g  x,y. if(x=0y=2,-1, 0)

M
a  2, b  2, c  3
f  { 2  0, …}
h  { 2  0, 3  1, …}
g  { [0,2] -1, [0,3] 0, …}

Example : Model Checking
M

a  2, b  2, c  3
f  x. 2
h  x. if(x=2, 0, 1)
g  x,y. if(x=0y=2,-1, 0)

x1, x2: if(x1=0x2=2,-1,0) = 0  if(x2=2,0,1) = 0 is valid

Does M satisfies?
x1, x2 : g(x1, x2) = 0  h(x2) = 0

x1, x2: if(x1=0x2=2,-1,0)  0  if(x2=2,0,1)  0 is unsat

if(s1=0s2=2,-1,0)  0  if(s2=2,0,1)  0 is unsat

Why does it work?

Suppose M does not satisfy C[f(x)].

 Then for some value v,
M{x v} falsifies C[f(x)].

M{x f(v)} also falsifies C[f(x)].

But, there is a term t  Af s.t. M(t) = f(v)
Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)].
Contradiction: M is a model for F*.

Refinement: Lazy construction

F* may be very big (or infinite).

Lazy-construction
Build F* incrementally, F* is the limit of the sequence

 F0  F1  …  Fk  …

If Fk is unsat then F is unsat.

If Fk is sat, then build (candidate) M

If M satisfies all quantifiers in F then return sat.

Refinement: Model-based instantiation

Suppose M does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which “blocks” this spurious model.
Issue: how to find t?

Use model checking,
and the “inverse” mapping f

-1 from values to terms (in Af).
f

-1(v) = t if M(t) = f(v)

Example: Model-based instantiation

F
x1: f(x1) < 0,
f(a) = 1,
f(b) = -1

F0

f(a) = 1,

f(b) = -1

M

a2, b3

f x. if(x = 2, 1, -1)

Model Checking x1: f(x1) < 0

not if(s1= 2, 1, -1) < 0

s1 2

f
-1(2) = a

F1

f(a) = 1,

f(b) = -1

f(a) < 0

unsat

Infinite F*

Is refutationally complete?

FOL Compactness
A set of sentences is unsatisfiable

iff

it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then

apply compactness to F*T

Infinite F*

𝑇𝑍 𝐹∗ ∪

Infinite set of
first-order
sentences

Applying
COMPACTNESS

Finite
𝑆

Infinite F* : Example

F
x1: f(x1) < f(f(x1)),
x1: f(x1) < a,
1 < f(0).

F*

f(0) < f(f(0)), f(f(0)) < f(f(f(0))), …

f(0) < a, f(f(0)) < a, …

1 < f(0)
Every finite subset
of F* is satisfiable.

Unsatisfiable

Infinite F* : What is wrong?

Theory of linear arithmetic TZ is the set of all first-order
sentences that are true in the standard structure Z.
Tz has non-standard models.
F and F* are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.

Compactness does not hold.

F and F* are still equisatisfiable.

Extensions

Shifting

(0  x1)  (x1  n)  f(x1) = g(x1+2)

Extensions

Many-sorted logic
Pseudo-Macros

0  g(x1)  f(g(x1)) = x1,
0  g(x1)  h(g(x1)) = 2x1,
g(a) < 0

Extensions

Online tutorial at:
http://rise4fun.com/z3/tutorial

http://rise4fun.com/z3/tutorial

Extensions

Online tutorial at:
http://rise4fun.com/z3/tutorial

http://rise4fun.com/z3/tutorial

Related work

Bernays-Schönfinkel class.

Stratified Many-Sorted Logic.

Array Property Fragment.

Local theory extensions.

SMT + Saturation

CDCL/DPLL : Review

M | F

Partial model
Set of clauses

CDCL/DPLL : Review

Guessing

 p, q | p  q, q  r

 p | p  q, q  r

CDCL/DPLL : Review

Deducing

 p, s| p  q, p  s

 p | p  q, p  s

CDCL/DPLL : Review

Backtracking

 p, s| p  q, s  q, p q

 p, s, q | p  q, s  q, p q

DPLL()

Tight integration: DPLL + Saturation solver.

BIG
and-or

tree
(ground)

Axioms
(non-ground)

DPLL()

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…

DPLL()

M | F

Partial model
Set of clauses

DPLL() : Deduce I

p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x)

DPLL() : Deduce I

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

DPLL() : Deduce I

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x)

Resolution

DPLL() : Deduce II

Using ground atoms from M:
M | F

Main issue: backtracking.

Hypothetical clauses:

 H  C

 (regular) Clause (hypothesis)
Ground literals

Track literals
from M used to
derive C

DPLL() : Deduce II

p(a) | p(a)q(a), p(x)r(x)

p(a) | p(a)q(a), p(x)r(x), p(a)r(a)

p(a), p(x)r(x)
 r(a)

DPLL() : Backtracking

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

DPLL() : Backtracking

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a) is removed from M

p(a) | p(a)q(a), p(a)r(a), …

DPLL() : Improvement

Saturation solver ignores non-unit ground clauses.

 p(a) | p(a)q(a), p(x)r(x)

DPLL() : Improvement

Saturation solver ignores non-unit ground clauses.

It is still refutanionally complete if:
 has the reduction property.

BIG
and-or tree

(ground)

Axioms
(non-ground)

DPLL() : Improvement

DPLL
+

Theories

Saturation
Solver

Saturation solver ignores non-unit ground clauses.

It is still refutanionally complete if:
 has the reduction property.

Ground literals

Ground clauses

DPLL() : Problem

Interpreted symtbols

 (f(a) > 2), f(x) > 5

It is refutationally complete if

Interpreted symbols only occur in ground clauses

Non ground clauses are variable inactive

“Good” ordering is used

Summary

E-matching

 proof finding

 fast

 shallow proofs in big formulas

 not refutationally complete

 regularly solves VCs with more than 5 Mb

Summary

Complete instantiation + MBQI

 decides several useful fragments

 model & proof finding

 slow

 complements E-matching

Summary

SMT + Saturation

 refutationally complete for pure first-order

 proof finding

 slow

Not covered

Quantifier elimination

 Fourier-Motzkin (Linear Real Arithmetic)

 Cooper (Linear Integer Arithmetic)

 CAD (Nonlinear Real Arithmetic)

 Algebraic Datatypes (Hodges)

Finite model finding

Many Decidable Fragments

Challenge

New and efficient procedures capable of
producing models for satisfiable instances.

