
On Locally Minimal Nullstellensatz Proofs

Leonardo de Moura and Grant Olney Passmore

{leonardo@microsoft.com, g.passmore@ed.ac.uk}

Microsoft Research and LFCS, University of Edinburgh

Abstract

Hilbert’s weak Nullstellensatz guarantees the existence of algebraic proof ob-
jects certifying the unsatisfiability of systems of polynomial equations not satisfi-
able over any algebraically closed field. Such proof objects take the form of ideal
membership identities and can be found algorithmically using Gröbner bases
and cofactor-based linear algebra techniques. However, these proof objects may
contain redundant information: a proper subset of the equational assumptions
used in these proofs may be sufficient to derive the unsatisfiability of the original
polynomial system. For using Nullstellensatz techniques in SMT-based decision
methods, a minimal proof object is often desired. With this in mind, we intro-
duce a notion of locally minimal Nullstellensatz proofs and give ideal-theoretic
algorithms for their construction.

1 Introduction

Modern Satisfiability Modulo Theories (SMT) solvers have application in the verifi-
cation of software and hardware artifacts and are seeing increasing use in areas as
diverse as planning and formalised mathematics. At a high-level, an SMT solver con-
sists of an orchestrated combination of a DPLL based SAT solver and a number of
satellite “theory” solvers (T -solvers) which implement decision methods for decidable
elementary theories such as linear integer and real arithmetic, bit-vector arithmetic,
and the theory of uninterpreted functions with equality. The effectiveness of an SMT
decision loop depends crucially upon the ability of its T -solvers to identify “small”
inconsistent components of formulas [3, 4]. Thus when one develops a new T -solver,
the investigation of techniques for finding such “small” inconsistent subformulas is
an important concern.

Many verification problems, such as those arising from hybrid systems, embedded
and physical systems, and numerical algorithms, require deciding the satisfiability of
non-linear arithmetical formulas over the real numbers. By Tarski [9], it is well known
that the full elementary theory of polynomial real arithmetic is decidable, but classical
(quantifier elimination) approaches to this problem are prohibitively expensive for
formulas found in real applications. Recently, a number of new (semi-) decision

1

procedures for the quantifier-free fragment of this theory have been proposed [10, 7, 6].
All of them use a Gröbner bases procedure as a subroutine.

The work described in this paper can be seen as a contribution to the development
of effective T -solvers for non-linear polynomial arithmetic over both the real and
complex numbers. In particular, we consider the problem of finding “small” proof
objects certifying the unsatisfiability of systems of polynomial equations over any
algebraically closed field. We consider this problem within the context of Gröbner
basis calculations.

We start by defining algebraic notions of proof minimality and redundancy, and
two proof minimization transformations: cofactor-subsumption and basis-subsumption.
Then, we describe a simple algorithm for extracting proof objects from a Gröbner
bases procedure. Our algorithm is optimal for the linear case, that is, it produces
only non-redundant proof objects. Finally, we show that a restricted form of cofac-
tor subsumption can be efficiently implemented and used to reduce the amount of
redundancy in our proof objects.

2 Background

Given {p1, . . . , pk}, a finite subset of Q[~x], the polynomial ideal I({p1, . . . , pk}) is
the set of polynomials {

∑k
i=1 piqi | qi ∈ Q[~x]}. Hilbert’s Weak Nullstellensatz states

that any set of polynomial equations {p1 ≃ 0, . . . , pk ≃ 0} is unsatisfiable over Cn

iff I(p1, . . . , pk) = Q[~x]. Therefore, if ϕ =
∧k

i=1 pi ≃ 0, then 〈C,+,−, ∗, 0, 1〉 |=

¬∃~x(ϕ(~x)) iff ∃q1, . . . , qk ∈ Q[~x] s.t.
∑k

i=1 piqi = 1. An element xi1
1 . . . xin

n in
Q[x1, . . . , xn] is called a power-product (or term), and an element cxi1

1 . . . xin
n with

c ∈ Q and xi1
1 . . . xin

n a power-product is called a monomial. We say a monomial is
monic if c = 1. (This terminology is not universally agreed upon.) We use M to de-
note the set of all power-products in Q[x1, . . . , xn]. From hereafter, we use p, q and r
to denote polynomials, m to denote power-products and monic monomials, c to denote
coefficients, and cm to denote monomials. We say a power-product xi1

1 . . . xin
n contains

xk if ik > 0. Given two power-products m1 = xi1
1 . . . xin

n and m2 = xj1
1 . . . xjn

n , m1m2

denotes the power-product xi1+j1
1 . . . xin+jn

n , if ik ≥ jk for k ∈ {1, . . . , n}, then m1

m2
de-

notes the power-product xi1−j1
1 . . . xin−jn

n , and the least common multiple lcm(m1,m2)

of m1 and m2 is the power product x
max(i1,j1)
1 . . . x

max(in,jn)
n . We say a polynomial

p contains the power-product m if p contains the monomial cm for some coefficient
c 6= 0. Given a polynomial p = c1m1 + . . . + cnmn and a monomial cm, we use cmp
to denote the polynomial (c1c)m1m + . . . + (cnc)mnm. Similarly, given a polyno-
mal p = c1m1 + . . . + cnmn and a polynomal q, we use pq to denote the polynomal
c1m1q + . . . + cnmnq. In the work that follows, all polynomials are assumed to be in
a sum-of-monomials normal form (e.g., a polynomial will never contain two distinct
monomials formed from the same power-product).

Given two monic monomials p1 and p2 of the form m1 + q1 and m2 + q2, let
τ1,2 be the lcm(m1,m2), then we use spol(p1, p2) to denote the polynomial (

τ1,2

m1
)q1 −

2

(
τ1,2

m2
)q2. Given a set of polynomials S, it is easy to see that if {p1, p2} ⊆ I(S), then

spol(p1, p2) ∈ I(S).
An order relation ≺ on the set M is admissible if m1 ≺ m2 implies that m1m ≺

m2m, for all m1, m2 and m in M. A monomial order is a total order on M which is
admissible and a well ordering. Given two polynomials p1 and p2, we say p1 ≺ p2 if
there is a monomial cm in p2 such that for all monomials cimi in p1, mi ≺ m.

2.1 Abstract Gröbner Basis

Given a monomial order ≺, the key idea in Buchberger’s algorithm is to use a poly-
nomial cm + q, where q ≺ m, as a rewrite rule cm → −q. For clarity, we will write
polynomials used as rewrite rules in a form in which the head monomial has been
underlined. For instance, when using cm+q as a rewrite rule we will mean cm → −q.
We say a polynomial used as a rewrite rule cm + q is monic if c = 1. To simplify
the presentation that follows, we will assume all polynomials used as rewrite rules
are monic. The monic polynomial p = m + q induces a reduction relation 7→p on
polynomials. It is defined as q1 + c1m1m 7→p q1 − c1m1q for arbitrary polynomials
q1 and monomials c1m1. Given a set of monic polynomials G = {p1, . . . , pk}, the
reduction relation induced by G is defined as: 7→G=

⋃k
i=1 7→pi

.

Definition 1 (Gröbner bases). A finite set of monic polynomials G is a Gröbner
basis of the ideal I(F) iff I(G) = I(F) and 7→G is confluent.

The inference rules in Figure 1 work on pairs of sets of polynomials (S,G). In
all rules, the coefficients c and c1 are assumed to be non-zero. We use (S1, G1) ⊢
(S2, G2) to indicate that (S1, G1) can be transformed to (S2, G2) by applying one of
the inference rules in Figure 1. The proofs of all theorems in this section are included
in [5].

Theorem 1. (S1, G1) ⊢ (S2, G2) implies I(S1 ∪ G1)) = I(S2 ∪ G2)).

Definition 2 (Procedure). A Gröbner basis procedure G is a program that accepts a
set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses the rules in Figure 1
to generate a (finite or infinite) sequence (S1 = {p1, . . . , pk}, G1 = ∅) ⊢ (S2, G2) ⊢
(S3, G3) ⊢ This sequence is called a run of G.

Given a set of monic polynomials G, the set of S-polynomials SP(G) is defined as
the set {spol(p1, p2) | p1, p2 ∈ G}.

Definition 3 (Correct Procedure). A Gröbner basis procedure G is said to be correct
iff it produces only finite runs (S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn), and SP(Gn) ⊆
(S1 ∪ S2 ∪ . . . ∪ Sn−1).

Theorem 2. Let G be a correct Gröbner basis procedure, then for any run (S1, G1 =
∅) ⊢ . . . ⊢ (Sn = ∅, Gn), Gn is a Gröbner basis for I(S1).

3

Orient
S ∪ {cm + q}, G

S,G ∪ {m + (1
c
)q}

Superpose
S,G ∪ {p1, p2}

S ∪ {spol(p1, p2)}, G ∪ {p1, p2}

Delete
S ∪ {0}, G

S,G

Simplify-S
S ∪ {c1m1m2 + q1}, G ∪ {m2 + q2}

S ∪ {q1 − c1m1q2}, G ∪ {m2 + q2}

Simplify-H
S,G ∪ {m1m2 + q1, m2 + q2}

S ∪ {q1 − m1q2}, G ∪ {m2 + q2}
if m1 6= 1

Simplify-T
S,G ∪ {m + c1m1m2 + q1, m2 + q2}

S,G ∪ {m − c1m1q2 + q1, m2 + q2}

Figure 1: Inference rules.

Definition 4 (Eager Simplification). Given a Gröbner basis procedure G, we say G

implements eager simplification iff G only applies Orient to p ∈ Si when Simplify-S

cannot be applied to p.

Proposition 3. Given a Gröbner basis procedure G using eager simplification, then
for any run (S1, G1) ⊢ (S2, G2) ⊢ . . ., for all j ≥ 1, there is no m1 + q1 and m2 + q2

in Gj such that m1 = m2 and q1 6= q2. Moreover, in this case, the condition m1 6= 1
in the rule Simplify-H is only restricting self simplifications.

Definition 5 (Fairness). A Gröbner basis procedure G is said to be fair iff for any
run (S1, G1) ⊢ (S2, G2) ⊢ . . .

SP(
⋃

i≥1

⋂

j≥i

Gj) ⊆
⋃

i≥1

Si.

Theorem 4. If a Gröbner basis procedure G implements eager simplification, is fair,
and Superpose is applied at most once for any pair of polynomials in

⋃

i≥1 Gi, then
G is correct.

4

3 Algebraic Notions of Proof Minimality

Let B = {p1, . . . , pk} be a finite subset of Q[~x]. As the considered Nullstellensatz
proofs take the form of ideal membership certificates, we first build much of the
algebraic machinery that follows in terms of general ideal membership certificates
(e.g., those of the form p ∈ I(B) for arbitrary p ∈ Q[~x]) and then later specialise the
results to the case of Nullstellensatz proofs (e.g., those of the form 1 ∈ I(B)). We
use the word “proof” to mean exclusively “Nullstellensatz proof” and “certificate” to
mean “arbitrary ideal membership certificate,” the latter of which could be a proof.

3.1 Algebraic Notions of Redundancy

Definition 6 (Basis redundancy). We say B is p-non-redundant iff p ∈ I(B) and
∀B ⊂ B (p /∈ I(B)). Similarly, we say B is p-redundant iff p ∈ I(B) and ∃B ⊂
B (p ∈ I(B)).

Definition 7 (Membership set). We define Mem(p, p1, . . . pk) ⊆ Q[~x]k to be the
collection of (flat) ideal membership certificates showing p ∈ I(p1, . . . , pk) as follows:

Mem(p, p1, . . . , pk) =

{

〈q1, . . . , qk〉 |
k

∑

i=1

piqi = p

}

·

When no confusion can arise, we will write Mem(p, B) in place of Mem(p, p1, . . . pk).
Given α ∈ Mem(p, B), coordinate α(i) is known as the ith cofactor (of p w.r.t. B) in
α.

Definition 8 (Proof set). We define Pr(p1, . . . pk) to be the collection of (flat) Null-
stellensatz proofs of the complex unsatisfiability of {p1 ≃ 0, . . . , pk ≃ 0} 1 over Cn.
That is, Pr(p1, . . . pk) = Mem(1, p1, . . . pk). When no confusion can arise, we will
write Pr(B) in place of Pr(p1, . . . pk).

It is natural to identify the collection of hypotheses used in a certificate α ∈
Mem(p, B) with those members of B whose corresponding cofactors in α are non-
zero.

Definition 9 (Basis of hypotheses). Given α ∈ Mem(p, B), we define Hyp(B, α) to
be the collection of B-hypotheses used in α as follows:

Hyp(B, α) = {pi ∈ B | α(i) 6= 0 | 1 ≤ i ≤ k} .

Definition 10 (Non-redundant certificate). We say a membership certificate α ∈
Mem(p, B) is non-redundant iff the collection of B-hypotheses used in α,Hyp(B, α),
is p-non-redundant.

1The interested reader may note the connection between Pr(p1, . . . , pk) and the first syzygy
module of 〈p1, . . . , pk〉. In particular, Syz(p1, . . . , pk) = Mem(0, p1, . . . , pk) while Pr(p1, . . . , pk) =
Mem(1, p1, . . . , pk).

5

Observe that α ∈ Mem(p, B) (resp. α ∈ Pr(B)) is non-redundant iff ¬∃α′ ∈
Mem(p, B) (resp. α′ ∈ Pr(B)) s.t. Hyp(B, α′) ⊂ Hyp(B, α). Thus if α ∈ Pr(B) is
a non-redundant proof, then no strict subset of the hypotheses used in the proof is
sufficient to show the unsatisfiability of the system B over Cn. However, this is an
essentially local notion, dependent on the context of the current proof. In particular,
the non-redundancy of a proof α does not in general mean that there is no smaller
subset B ⊂ B s.t. |B| < |Hyp(B, α)| that is itself unsatisfiable over Cn. This can be
seen with the following simple example.

Example 1. Let the system Γ of polynomial equations be defined as follows:

Γ = {x2y2 − 1 ≃ 0, x2y ≃ 0, xy ≃ 0, x + 1 ≃ 0, y + 1 ≃ 0}.

Let B = {x2y2 − 1, x2y, xy, x + 1, y + 1} be the basis of polynomials corresponding to
Γ. Observe that Pr(B) 6= ∅. Among others, it contains the following two proofs:

α = 〈−1, y, 0, 0, 0〉 corresponding to 1 = (−1)(x2y2 − 1) + y(x2y), and

β = 〈0, 0, 1,−y, 1〉 corresponding to 1 = xy + −y(x + 1) + y + 1.

Then, we have, Hyp(B,α) = {x2y2 − 1, x2y}, Hyp(B,β) = {xy, x + 1, y + 1}.
Observe that both Hyp(B,α) and Hyp(B,β) are non-redundant and |Hyp(B,α)| <
|Hyp(B,β)| .

Thus, non-redundancy of a proof does not mean it is a proof that uses the globally
least number of hypotheses, but rather that it is in some sense locally minimal: If
one begins with a non-redundant proof and drops any used hypothesis, then no proof
of unsatisfiability for the resulting system will exist. This is made precise with the
following lemma.

Lemma 1. Let α ∈ Pr(B) be a non-redundant proof. Then, every B ⊂ Hyp(B, α) is
satisfiable over Cn.

We now wish to address the following fundamental problem: Given a certificate
α ∈ Mem(p, B), can α be feasibly transformed into a non-redundant certificate? With
feasibility in mind, we look only for transformations which arise by a combination of
(i) dropping used hypotheses and (ii) modifying non-zero cofactors. In particular, all
transformations α 7→ α′ are s.t. Hyp(B, α′) ⊂ Hyp(B, α). In devising such techniques,
one needs to refer to individual hypotheses contributing to the redundancy.

Definition 11. Given a certificate α ∈ Mem(p, B) and a j s.t. 1 ≤ j ≤ k, we say α
is j-redundant iff α(j) 6= 0 and Mem(p,Hyp(B, α) \ {pj}) 6= ∅.

3.2 Redundancy in the Linear Case

Before discussing the elimination of redundancy in the general non-linear setting, it
is instructive to examine the linear case. If B is a system of linear polynomials, then

6

the calculation of a Gröbner basis for B degenerates into Gaussian elimination. By
adopting the strategy of eager simplification, one can guarantee that for every proof
α ∈ Mem(p, B), α is not j-redundant.

Theorem 5. If G is a fair Gröbner basis procedure implementing eager simplification,
p ∈ I(B), p and B are linear, then forall α ∈ Mem(p, B), α is non-redundant.2

Thus the simple process of excluding all pi s.t. α(i) = 0 from contributing to
a certificate, as is done by the use of Hyp(B, α) in our definition of redundancy, is
sufficient to eliminate all redundant linear certificates when an eagerly simplifying
Gröbner basis procedure is used. If eager simplification is not used, however, this
property may fail to hold. In [2], we describe an example where a redundant certificate
is produced by a non eagerly simplifying Gröbner basis procedure.

3.3 Redundancy in the General Case

We now return to proof redundancy in the context of the general non-linear case.
The following concepts form the basis for our proof minimization transformations.

Definition 12. Given a certificate α ∈ Mem(p, B) and a j s.t. 1 ≤ j ≤ k, we say α
is

• j-cofactor-subsumed ⇐⇒ α(j) ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}),

• j-basis-subsumed ⇐⇒ pj ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}),

• j-⋆-subsumed ⇐⇒ α(j)pj ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}).

We use 1j to denote 〈q1, . . . , qk〉 ∈ Q[~x]k, where qj = 1, and qi = 0 for all j 6= i.
Let α and β be in Q[~x]k, and p in Q[~x]. Then α + β denotes 〈α(1) + β(1), . . . , α(k) +
β(k)〉, and pα denotes 〈pα(1), . . . , pα(k)〉. First, we focus on cofactor-subsumption.
Note that j-cofactor-subsumption is an algebraic generalisation – using the intuition
that ideals are an algebraic generalisation of zeroness – of the fact that if a cofactor
coordinate α(j) of a certificate is explicitly 0, then its corresponding hypothesis pj

does not contribute to the certificate in an essential way. Let α ∈ Mem(p, B) and
β ∈ Mem(α(j), B) with Hyp(B, β) ⊆ Hyp(B, α)\{pj}. Then, we define the certificate
transformer

∏

j,β(α) for j-cofactor-subsumption (w.r.t. B = {p1, . . . , pk}) as α +
(−α(j))1j + pjβ.

Theorem 6. Let α ∈ Mem(p, B) be a j-cofactor-subsumed certificate with Hyp(B, α) =
B, and β ∈ Mem(α(j), B) with Hyp(B, β) ⊆ B \ {pj}. Then,

∏

j,β(α) ∈ Mem(p, B),
and Hyp(B,

∏

j,β(α)) ⊆ B \ {pj}.

The proof of Theorem 6 consists of straightforward algebraic manipulation. Sim-
ilarly, we define the certificate transformer

∐

j,β(α) for j-basis-subsumption (w.r.t.

2The proof of this theorem is included in [2].

7

B = {p1, . . . , pk}) as α+(−α(j))1j +α(j)β. Note that, in this case, β ∈ Mem(pj, B).
Finally, we reveal that j-⋆-subsumption is actually not needed. This is because Q[~x]
is an integral domain, and thus a given certificate α ∈ Mem(p, B) is j-⋆-subsumed iff
it is either j-cofactor-subsumed or j-basis-subsumed.

4 Algorithmics and SMT

We now address the problem of how to build certificates in Gröbner basis procedures
based on the inference rules in Figure 1. A certified polynomial (w.r.t. B) is a pair
(p, α) s.t. α ∈ Mem(p, B). The basic idea is lift the rules in Figure 1 to certified
polynomials. For example, the lifted Simplify-S rule is:

Simplify-S
S ∪ {(c1m1m2 + q1, α1)}, G ∪ {(m2 + q2, α2)}

S ∪ {(q1 − c1m1q2, α1 − c1m1α2)}, G ∪ {(m2 + q2, α2)}

The remaining rules are described in [2].

Definition 13 (Certified Procedure). A certified Gröbner basis procedure G is a
program that accepts a set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses
the lifted versions of the rules in Figure 1 to generate a (finite or infinite) sequence
(S1 = {(p1,11), . . . , (pk,1k)}, G1 = ∅) ⊢ (S2, G2) ⊢ (S3, G3) ⊢ . . .

Note that if (1, α) ∈ Si for some i, then α is a proof for the unsatisfiability of
{p1 ≃ 0, . . . , pk ≃ 0} over Cn.

In the linear case, zero variables are used to represent certified polynomials using
a single polynomial [1, 8]. The idea is to represent the certified polynomial (p, α) as
p − α(1)z1 − . . . − α(k)zk, where zi’s are new fresh variables. The new polynomial is
still linear because α(i) is always a constant for the linear case. An approach based on
zero variables is attractive because a regular procedure can be easily used to obtain
certificates. The main idea is to make the zero variables zi smaller than the variables
{x1, . . . , xn}. This approach cannot be directly applied to the non linear case, because
it would require us to make any monomial containing a zero variable zi smaller than
a monomial not containing any zero variable. There is no monomial order with such
property, because it violates admissibility. For example, it would require z2x1 ≺ x1.

4.1 Structured Certificates

The overhead in a certified Gröbner basis procedure is substantial, since the certifi-
cates α can grow in size very quickly. Moreover, it wasteful to compute a certificate
for a polynomial that is deleted using the Delete rule. We address this issue using
structured certificates. Structured certificates are represented using the constructors
A (assumption), S (superpose), R (simplify), D (divide).

Definition 14 (Set of Polynomial Structured Certificates). The set of polynomial
structured certificates, C, is defined as the least set s.t.

8

Assert: p ∈ Q[~x] =⇒ A(p) ∈ C,

Superpose: ϕ1, ϕ2 ∈ C =⇒ S(ϕ1, ϕ2) ∈ C,

Simplify: ϕ1, ϕ2 ∈ C ∧ m ∈ M =⇒ R(ϕ1, ϕ2,m) ∈ C,

Divide: ϕ ∈ C =⇒ D(ϕ) ∈ C.

Using structured certificates, the lifted Simplify-S rule is:

Simplify-S
S ∪ {(c1m1m2 + q1, ϕ1)}, G ∪ {(m2 + q2, ϕ2)}

S ∪ {(q1 − c1m1q2, R(ϕ1, ϕ2,m1m2))}, G ∪ {(m2 + q2, ϕ2)}

The remaining rules are described in [2]. The set of hypothesis hyp(ϕ) of a struc-
tured certificate ϕ is defined as: hyp(A(p)) = p, hyp(S(ϕ1, ϕ2)) = hyp(R(ϕ1, ϕ2,m)) =
hyp(ϕ1)∪ hyp(ϕ2), and hyp(D(ϕ)) = hyp(ϕ). Given a structured certificate ϕ (w.r.t.
B), it is straightforward to define a function flat that maps ϕ into a (flat) certificate
flat(ϕ) 3.

4.2 Restricted cofactor-subsumption and basis-subsumption

We use j-subsumption to denote j-cofactor-subsumption and j-basis-subsumption.
We now address the following issue: How to apply j-subsumption effectively in prac-
tice? In general, it is too expensive to check whether a certificate α can be j-subsumed
or not, because it requires us to answer ideal membership subqueries. That is, given
a certificate α, to check whether α can be j-subsumed, we need to compute a Gröbner
basis for Hyp(B, α) \ {pj}. We overcome this difficulty by approximating the ideal
membership subqueries. The idea is to answer these queries using a set of rewrite
rules that is not necessarily confluent.

Definition 15 (j-ϕ-Independent Polynomial). Given a certificate ϕ, a certified poly-
nomial (r, ϕ′) is j-ϕ-independent iff hyp(ϕ′) ⊆ hyp(ϕ) \ {pj}.

Let (S1, G1) ⊢ . . . ⊢ (Sm, Gm) be a run produced by a certified Gröbner basis
procedure G, (p, ϕ) be some certified polynomial in ∪m

i=0(Si∪Gi), and ∆j,ϕ be the set
of j-ϕ-independent polynomials in ∪m

i=0Gi. Now, suppose we want to check whether
α = flat(ϕ) is j-cofactor-subsumed or not. Then, we can simply check whether α(j)
rewrites to 0 using an arbitrary subset of ∆j,ϕ. For example, in our prototype, we do
not track all polynomials produced in a run. Thus, whenever a certified polynomial
(c, ϕ) (with c 6= 0) is included in Sm, we use just the j-ϕ-independent polynomials in
Gm (instead of ∪m

i=0Gi) to check whether flat(ϕ) can be j-cofactor-subsumed or not.

Example 2. Let S be a set of polynomials {p1, p2, p3, p4}, where:

p1 = x1 − x2, p2 = x1x
2
3 − x1x

2
4 + 1, p3 = x5x4 − x3, p4 = x5x3 − x4

3The function flat is defined in [2].

9

The set {p1 ≃ 0, p2 ≃ 0, p3 ≃ 0, p4 ≃ 0} is unsatisfiable over C5. Let G be a correct
Gröbner basis procedure that produces the run (S1 = S,G1 = ∅) ⊢ . . . ⊢ (Sm, Gm),
where Sm contains the certified polynomial (1, ϕ), where:

ϕ = R(S(p3, p4),R(A(p1),R(A(p1),A(p2), x
2
3), x

2
4), x2)

The flat certificate flat(ϕ) associated with ϕ is:

flat(ϕ) = 〈(−x2
3 + x2

4), 1, x2x3, − x2x4〉.

Assume also that some Gi in the run contains the certified polynomial (r, ϕ′) = (x3 −
x4, S(A(p3),A(p4))). Note that (r, ϕ′) is 1-ϕ-independent, and −x2

3 +x2
4 7→r 0. Thus,

flat(ϕ) can be 1-cofactor-subsumed.

5 Conclusion

The effectiveness of an SMT solver depends crucially upon the ability of its T -solvers
to identify “small” inconsistent set of formulas. Hence, we defined algebraic notions of
proof minimality and redundancy for Hilbert’s Weak Nullstellensatz, and two useful
certificate transformations: cofactor-subsumption and basis-subsumption. We also
described how certificates can be extracted in the framework of abstract Gröbner
Basis.

References

[1] G. B. Alan and A. Borning. The cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer Human Interaction, 1998.

[2] L. de Moura and G. O. Passmore. On locally minimal nullstellensatz proofs.
Technical report, Microsoft Research, 2009.

[3] L. de Moura, H. Rueß, and N. Shankar. Justifying equality. In PDPAR’04, 2004.

[4] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Inf.
Comput., 2005(4), 2007.

[5] G. O. Passmore and L. de Moura. Superfluous s-polynomials in strategy-
independent gröbner bases. to appear.

[6] G. O. Passmore and P. B. Jackson. Combined decision techniques for the exis-
tential theory of the reals. In Calculemus’09, 2009.

[7] A. Platzer, J. Quesel, and P. Rümmer. Real world verification. In CADE-22,
2009.

10

[8] H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report
SRI-CSL-04-01, SRI International, 2004.

[9] A. Tarski. A decision method for elementary algebra and geometry. Technical
report, 2nd edn. University of California Press, Berkeley, 1951.

[10] A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints.
In CSL’05, volume 3634 of LNCS, 2005.

11

