
Bounded Model Cheking and Indution:From Refutation to Veri�ation ?(Extended Abstrat, Category A)Leonardo de Moura, Harald Rue�, and Maria Sorea??SRI InternationalComputer Siene Laboratory333 Ravenswood AvenueMenlo Park, CA 94025, USAfdemoura, ruess, soreag�sl.sri.omhttp://www.sl.sri.om/Abstrat. We explore the ombination of bounded model heking andindution for proving safety properties of in�nite-state systems. In par-tiular, we de�ne a general k-indution sheme and prove ompletenessthereof. A main harateristi of our methodology is that strengthenedinvariants are generated from failed k-indution proofs. This strengthen-ing step requires quanti�er-elimination, and we propose a lazy quanti�er-elimination proedure, whih delays expensive omputations of disjun-tive normal forms when possible. The e�etiveness of indution based onbounded model heking and invariant strengthening is demonstratedusing in�nite-state systems ranging from ommuniation protools totimed automata and (linear) hybrid automata.1 IntrodutionBounded model heking (BMC) [4, 3, 6℄ is often used for refutation, where onesystematially searhes for ounterexamples whose length is bounded by someinteger k. The bound k is inreased until a bug is found, or some pre-omputedompleteness threshold is reahed. Unfortunately, the omputation of omplete-ness thresholds is usually prohibitively expensive and these thresholds may betoo large to e�etively explore the assoiated bounded searh spae. In addition,suh ompleteness thresholds do not exist for many in�nite-state systems.In dedutive approahes to veri�ation, the invariane rule is used for es-tablishing invariane properties ' [10, 9, 12, 2℄. This rule requires a property whih is stronger than ' and indutive in the sense that all initial states satisfy and is preserved under eah transition. Theoretially, the invariane rule isadequate for verifying a valid property of a system, but its appliation usually? Funded by SRI International, by NSF Grant CCR-0082560, DARPA/AFRL-WPAFB Contrat F33615-01-C-1908, and NASA Contrat B09060051.?? Also aÆliated with University of Ulm, Germany.

2requires reativity in oming up with a suÆiently strong indutive invariant. Itis also nontrivial to detet bugs from failed indution proofs.In this paper, we explore the ombination of BMC and indution based onthe k-indution rule. This indution rule generalizes BMC in that it requiresdemonstrating the invariane of ' in the �rst k states of any exeution. Conse-quently, error traes of length k are deteted. This indution rule also generalizesthe usual invariane rule in that it requires showing that if ' holds in every stateof every exeution of length k, then every suessor state also satis�es '. In itspure form, however, k-indution does not require the invention of a strengthenedindutive invariant. As in BMC, the bound k is inreased until either a viola-tion is deteted in the �rst k states of an exeution or the property at hand isshown to be k-indutive. In the ideal ase of attempting to prove orretness ofan indutive property, 1-indution suÆes and iteration up to a, possibly large,omplete threshold, as in BMC, is avoided. The k-indution rule is sound, butfurther onditions, suh as the restrition to ayli exeution sequenes, mustbe added to make k-indution omplete even for �nite-state systems [15℄.One of our main ontributions is the de�nition of a general k-indution ruleand a orresponding ompleteness result. This indution rule is parameterizedwith respet to suitable notions of simulation. These simulation relations induedi�erent notions of path ompression in that an exeution path is ompressedif it does not ontain two similar states. Many ompleteness results, suh as k-indution for timed automata, follow by simply instantiating this general resultwith the simulation relation at hand. For general transition systems, we developan anytime algorithm for approximating adequate simulation relations for k-indution.Whenever k-indution fails to prove a property ', there is a ounterexampleof length k + 1 suh that the �rst k states satisfy ' and the last state does notsatisfy '. If the �rst state of this trae is reahable, then ' is refuted. Otherwise,the ounterexample is labeled spurious. By assuming the �rst state of this traeis unreahable, a spurious ounterexample is used to automatially obtain astrengthened invariant. Many in�nite-state systems an only be proven withk-indution enrihed with invariant strengthening, whereas for �nite systemsthe use of strengthening dereases the minimal k for whih a k-indution proofsueeds.Sine our invariant strengthening proedure for k-indution heavily relieson eliminating existentially quanti�ed state variables, we develop an e�etivequanti�er elimination algorithm for this purpose. The main harateristi ofthis algorithm is that it avoids a potential exponential blowup in the initialomputation of a disjuntive normal form whenever possible, and a onstraintsolver is used to identify relevant onjuntions. In this way the paradigm of lazytheorem proving, as developed by the authors for the ground ase [6℄, is extendedto �rst-order formulas.The paper is organized as follows. Setion 2 ontains bakground materialon enodings of transition systems in terms of logi formulas. In Setion 3 wedevelop the notions of reverse and diret simulations together with an anytime

3algorithm for omputing these relations. Reverse and diret simulations are usedin Setion 4 to state a generi k-indution priniple and to provide suÆient on-ditions for the ompleteness of these indutions. Setions 5 and 6 disuss invari-ant strengthening and lazy quanti�er elimination. Experimental results with k-indution and invariant strengthening for various in�nite-state protools, timedautomata, and linear hybrid systems are summarized in Setion 7. Comparisonsto related work are in Setion 8.2 BakgroundLet V := fx1; : : : ; xng be a set of variables interpreted over nonempty domainsD1 through Dn, together with a type assignment � suh that �(xi) = Di. Fora set of typed variables V , a variable assignment is a funtion � from variablesx 2 V to an element of �(x). The variables in V := fx1; : : : ; xng are also alledstate variables, and a program state is a variable assignment over V .All the developments in this paper are parametri with respet to a givenonstraint theories C, suh as linear arithmeti or a theory of bitvetors. Weassume a omputable funtion for deiding satis�ability of a onjuntion of on-straints in C. A set of Boolean onstraints, Bool(C), inludes all onstraints inC and is losed under onjuntion ^ , disjuntion _ , and negation :: E�etivesolvers for deiding the satis�ability problem in Bool(C) have been previouslydesribed [6, 5℄.A tuple hV; I; T i is a C-program over V , where interpretations of the typedvariables V desribe the set of states, I 2 Bool(C(V)) is a prediate that de-sribes the initial states, and T 2 Bool(C(V [V 0)) spei�es the transition re-lation between urrent states and their suessor states (V denotes the urrentstate variables, while V 0 stands for the next state variables). The semantis of aprogram is given in terms of a transition system M in the usual way.For a program M = hV; I; T i, a sequene of states �(s0; s1; : : : ; sn) forms apath through M if V0�i<n T (si; si+1). A state s is reahable in M if there is apath �(s0; s1; : : : ; sn�1; s) throughM and I(s0), and a state property ' 2 C(V) isinvariant inM i� '(s) holds for every reahable state s inM . A ounterexamplefor a property ' is a path �(s0; : : : ; sn) suh that I(s0) and :'(sn), and thelength len(�) of suh a ounterexample is given by the number of states in thispath.Typial programming onstruts an be rewritten into the program syntaxpresented above. For example, Dijkstra's guarded ommands are enoded interms of a disjuntion of onjuntions of guards g(x1; : : : ; xn) and updates x0i =f1(x1; : : : ; xn) for all variables xi. Programs with external, non-deterministiinputs are de�ned by partitioning the set of variables X into the input variablesinput(X), whih are unonstrained, and the other state variables, whose next-state values are onstrained by the transition relation.Throughout this paper we use timed automata [1℄, whih are state-transitiongraphs augmented with a �nite set of real-valued loks, as a prototypial lassof in�nite-state systems. Deidability of the model-heking problem for timed

4automata rests on the fat that the spae of lok valuations is partitioned into�nitely many lok regions. Two lok valuations v1; v2 that belong to the sameregion are (region) equivalent, denoted as v1 �TA v2. This region equivalene isa stable quotient relation, that is, whenever q �TA u and T (q; q0), there existsa state u0 suh that T (u; u0) and q0 �TA u0 [1℄. Enoding of timed automatain terms of logial programs with linear arithmeti onstraints are desribedin [17℄. In partiular, program states onsist of a loation and nonnegative realinterpretations of loks. For timed automata we restrit ourselves to provingso-alled lok onstraints ', suh that q �TA u implies that '(q) i� '(u).3 Diret and Reverse SimulationThe notions of diret and reverse simulation as developed here lay out the foun-dation for the ompleteness results in Setion 4.De�nition 1 (Diret / Reverse Simulation). Let M = hV; I; T i be a pro-gram and ' a state formula over V . We de�ne the funtors Fd and Fr that mapbinary relations R over V in the following way.Fd(R)(s1; s2) := � if :'(s1) then :'(s2)else 8s01 : T (s1; s01)) 9s02 : R(s01; s02) ^ T (s2; s02)Fr(R)(s1; s2) := � if I(s1) then I(s2)else 8s01 : T (s01; s1)) 9s02 : R(s01; s02) ^ T (s02; s2)A diret (reverse) simulation over V with respet to ' is any binary relation �over V that satis�es �� Fd(�) (�� Fr(�)).In ontrast to reverse simulations, diret simulations depend on a state formula'. Also, the de�nition of diret simulation is inspired by the notion of stablerelations above. Diret (reverse) simulations are usually denoted by�d (�r). Thefollowing diret and reverse simulation are used as running examples throughoutthe paper.Example 1. The empty relation a�;b := false is a diret and a reverse simula-tion.Example 2. Equality (=) between states is both a diret and a reverse simula-tion.Example 3. The relation s1�Is2 := I(s1)^ I(s2) is a reverse simulation, whereI is the prediate for desribing the set of initial states of the given program.Example 4. Now, onsider programs hV; I; T i with inputs suh that input(x)holds i� x is an input variable. The relations1 =i s2 := for all variables x 2 V : input(x) or s1(x) = s2(x),

5with s(x) denoting the value of the variable x in the state s, is a reverse simula-tion, sine the values of the input variables are not onstrained by the prediateI and their next values are not onstrained by T . Obviously, for transition sys-tems with inputs, the relation s1 =i s2 is stronger than =, and therefore givesrise to shorter paths.Example 5. We now onsider timed automata programs and lok onstraints.The region equivalene �TA, whih give rise to �nitely many lok regions, isstable, and therefore a diret simulation.The notions of diret and reverse simulation are modular in the sense thatthe union of diret (reverse) simulations is also a diret (reverse) simulation.Proposition 1 (Modularity). If �1 and �2 are diret (reverse) simulations,then �1 [�2 is also a diret (reverse) simulation.This property follows diretly from the de�nitions of diret (reverse) simulationsin De�nition 1 and from the monotoniity of the funtors Fd and Fr. For example,the reverse simulations �I and =i in Examples 3 and 4 may be ombined toobtain a new reverse simulation.Given an arbitrary program M = hV; I; T i and a property ', the assoiatedlargest diret (reverse) simulation relation �D (�R) is obtained as the greatest�xpoint of the funtor Fd (Fr) in De�nition 1. These �xpoints exist, sine Fdand Fr are monotoni. However, the �xpoint iterations are often prohibitivelyexpensive, and a diret (reverse) simulation is only obtained on onvergeneof the iteration. The iteration in Proposition 2 provides a viable alternative inthat a reverse (diret) simulation is re�ned to obtain a stronger reverse (diret)simulation. The proof of the proposition below follows from the de�nitions ofreverse (diret) simulations, from the monotoniity of the funtors Fr (Fd), andfrom modularity (Proposition 1).Proposition 2 (Anytime Iteration). If �r (�d) is a reverse (diret) sim-ulation, then for all n � 0 the relation �r;n (�d;n) is also a reverse (diret)simulation:�r;0 := �r �d;0 := �d�r;n := �r;n�1 [Fr(�r;n�1) �d;n := �d;n�1 [Fd(�d;n�1)Consequently, this iteration gives rise to an anytime algorithm for omputingdiret (reverse) simulations, and equality =, for example, may be used as seed,sine it is both a diret and a reverse simulation (see Example 2).4 Completeness of k-IndutionGiven the notions of diret and reverse simulations, we develop suÆient on-ditions for proving ompleteness of k-indution. These results are based on re-striting paths to not ontain states equivalent with respet to a given diretor reverse simulation. For diret (reverse) simulations we de�ne a ompressed

6 q1 q2 q3 q4Fig. 1. Inompleteness of k-indution.path w.r.t. to the given diret (reverse) simulation as a path �(s0; s1; : : : ; sn)not ontaining any si, sj with j < i (i < j) suh that si diretly (reversely)simulates sj .De�nition 2 (Path Compression).{ A path ��d(s0; s1; : : : ; sn) is ompressed w.r.t. the diret simulation �d if:��d(s0; s1; : : : ; sn) := �(s0; s1; : : : ; sn) ^ ^0�j<i�n si 6�dsj :{ A path ��r (s0; s1; : : : ; sn) is ompressed w.r.t. the reverse simulation �r if:��r (s0; s1; : : : ; sn) := �(s0; s1; : : : ; sn) ^ ^0�i<j�n si 6�rsj :A path that is ompressed with respet to the reverse and the diret simulations�r and �d is denoted by ��r;d .For example, a path �(s0; : : : ; sn) is ompressed w.r.t. the reverse simulation(=) from Example 2 i� it is ayli. Moreover, given the reverse simulation �Ifrom Example 3, a path �(s0; : : : ; sn) is ompressed w.r.t. �I i� it ontains atmost one initial state. Obviously, for transition systems with inputs, the relation(=i) (see Example 4) is stronger than (=), and therefore give rise to shorterompressed paths. We have olleted all ingredients for de�ning k-indution forarbitrarily ompressed paths.De�nition 3 (k-Indution). Let M = hV; I; T i be a program, k an integer,�r a reverse simulation, and �d a diret simulation. The indution sheme ofdepth k, IND�r;d(k) allows one to dedue the invariane of ' inM if the followingholds.{ I(s0) ^ ��r;d(s0; : : : ; sk�1)! '(s0) ^ : : : ^ '(sk�1){ '(sn) ^ : : : ^ '(sn+k�1) ^ ��r;d(sn; : : : ; sn+k)! '(sn+k)For example, given the empty relationship �; from Example 1, IND�; re-dues to the naive, inomplete k-indution on arbitrary paths. Consider, forexample, the system in Figure 1 and a property ' whih is assumed to hold onlyin q4. Now, the exeution sequene q3 ; q3 ; : : :; q3| {z }k ; q4 is not k-indutive,but it is ruled out under the ayli path restrition. The omplete k-indution

7shemes in [15℄, whih onsider only ayli paths and paths that only visit ini-tial states one an be reovered by instantiating De�nition 3 with the relations(=) (Example 2) and (�I) (Example 3), respetively. Sine both (=) and (�I)are reverse simulations, an indution sheme restrited to ayli paths visitinginitial states at most one is obtained by modularity (Proposition 1).Completeness of k-indution relies heavily on the notion of path ompression.We now state the main lemma.Lemma 1 (Compressing non-��r;d paths). Let �(s0; : : : ; sn) be a givenpath; then:1. There exists a ��r - ompressed path ��r(q0; : : : ; qm) suh that qm = sn andm � n.2. There exists a ��d- ompressed path ��d(q0; : : : ; qm), suh that q0 = s0 andm � n.Proofsketh. Assume a path �(s0; : : : ; sn), whih is not ompressed w.r.t. �r.By De�nition 1 it follows that there are states si; sj 2 �(s0; : : : ; sn) suh thatsi�rsj , and i < j. We distinguish two ases. First, if si is an initial state, then sois sj , and therefore a shorter path �(sj ; : : : ; sn) is obtained as a ounterexample.Seond, if si is not an initial state, then si 6= s0, and there exists a si�1 suhthat T (si�1; si). Sine si�rsj it follows by De�nition 1 that there is a state s0i�1,suh that si�1�rs0i�1 and T (s0i�1; sj). If si�1 is initial state, then so is s0i�1, andsine i < j a shorter path ��r(s0i�1; sj ; : : : ; sn) is obtained. If si�1 is not initial,by repeating the above argument a shorter path is onstruted. In both ases ashorter path is obtained, if suh path is not a ompressed path, then it is furtherredued. The proof for ��d- ompressed paths works analogously.IND�r;d(k) is omplete if: ' is an invariant of M i� there is a k suh thatIND�r;d(k)('). Now, ompleteness of k-indution follows from the main lemma 1above.Theorem 1 (Completeness). IND�r;d(k) is a omplete proof method i�there is an upper bound on the length of the paths ��r;d(s0; : : : ; sn).Using the simulation from Example 2, Theorem 1 is instantiated to obtain thefollowing omplete k-indution for �nite-state systems.Corollary 1. Let M be a �nite-state program over V and ' a state propertyin V ; then IND=(k) indution is omplete.In general, k-indution for (=) is not omplete for in�nite-state systems. Con-sider, for example, the program M = hI; T i over the integer state variable xwith I = (x = 0) and T = (x0 = x + 2), and the formula x 6= 3. Obviously, itis the ase that x 6= 3 is invariant in M , but there exists no k 2 IN suh thatthe property is proven by IND=(k). However, k-indution is omplete for timedautomata, sine the equivalene relation �TA is a diret simulation (Example 5),and an upper bound on the length of the paths ��TA(s0; : : : ; sn) is given by thenumber of lok regions.

8Corollary 2. Let M be a timed automata program over the lok evaluationsC and ' a lok onstraint in C; then IND�TA(k) indution is omplete.Similar results are obtained for other diret and reverse simulations and ombi-nations thereof.5 Invariant StrengtheningWhenever k-indution fails to prove a property ', there is a ounterexample� = sn; sn+1; : : : ; sn+k suh that the �rst k states satisfy ' whereas the laststate sn+k does not satisfy this property. If sn is indeed reahable, then 'is not invariant. Otherwise, the ounterexample is labeled as spurious and itis inonlusive whether ' is invariant or not. However, by assuming sn to beunreahable, suh a spurious ounterexample is used to obtain a strengthenedinvariant '^:(sn).Consider, for example, the property :(q4) for the system in Figure 1. Indu-tion of depth k = 1 fails, and the ounterexample q3 ; q4 is obtained. Now,:(q4) is strengthened to obtain :(q4)^:(q3), whih is proven using 1-indution.More generally, whenever the indution step of IND�r;d(k) fails, the formulaQ(sn; : : : ; sn+k) := '(sn)^ : : : ^'(sn+k�1)^��r;d(sn; : : : ; sn+k)^:'(sn+k)is satis�able, and eah satisfying assignment desribes a ounterexample for theindution step. Thus, we de�ne the prediate U(s) for representing the set ofpossibly unreahable states, whih may reah the bad state in k steps by meansof a ��r;d path. U(s) = 9 sn+1; : : : ; sn+k:Q(s; : : : ; sn+k)Now, ' is strengthened as '^:U(s), and quanti�er elimination is used for trans-forming this strengthened formula into an equivalent Boolean onstraint formula.For the general ase, we use the quanti�er elimination proedure in Setion 6.Notie, however, that for speial ases suh as guarded ommand languages,the quanti�ers in U(s) are eliminated using purely syntati operations suhas substitution, sine all quanti�ations are over \next-state" variables x forwhih there are expliit solutions f(:). An example might help to illustrate theombination of k-indution, strengthening, and quanti�er elimination.Example 6. Consider the usual stripped-down version of Lamport's Bakery pro-tool in Figure 2 with the initial value 0 for both ounters y1 and y2 and themutual exlusion property MX de�ned by :(p1 = a3 ^ p2 = b3). We apply3-indution with the empty simulation relation �;. The base step holds and theindution step fails to obtainU(sn) := 9 sn+1; sn+2; sn+3:MX(sn)^MX(sn+1)^MX(sn+2)^��;(sn; sn+1; sn+2; sn+3)^:MX(sn+3)

9a1 a2 a3y10 := y2 + 1 y2 = 0_y1 � y2y10 := 0 b1 b2 b3y20 := y1 + 1 y1 = 0_:(y1 � y2)y20 := 0Fig. 2. Bakery Mutual Exlusion Protool.with states si of the form (p1i; y1i; p2i; y2i). Sine the transitions of the Bakeryprotool are in terms of guarded ommands, simple substitution is used to obtaina quanti�er-eliminated form.R(s) := (p1 = a1^ p2 = b2^ y2 = 0)_ (p1 = a2^ p2 = b1^ y1 = 0)Now, the strengthened property MX(s)^:R(s) is proven using 3-indution.6 Quanti�er eliminationGiven a quanti�ed formula 9vars : ' with ' 2 Bool(C), quanti�er-eliminationproedures usually work by transforming ' into disjuntive normal form (DNF)and distributing the existential quanti�ers over disjuntions. Thus, one is leftwith eliminating quanti�ers from a set of existentially quanti�ed onjuntionsof literals. We assume as given suh a proedure C-qe. The main drawbak ofthese proedures is that there is a potential exponential blowup in the initialtransformation to DNF and C-qe might even return further disjuntions (as isthe ase for Presburger arithmeti).The quanti�er elimination problem for invariant strengthening, as disussedin Setion 5, however, allows for a purely syntati quanti�er elimination as longas we are restriting ourselves to guarded ommand programs. In these ases,C-qe just applies the substitution rule (x =2 vars())(9x:(x =) ^ '(x)) i� '();possibly followed by simpli�ation. Another C-qe funtion is used in MMil-lan's [13℄ quanti�er elimination algorithm based on propositional SAT solving,in that his C-qe(vars;) simply deletes the literals in , whih ontain a variablein vars .1However, the initial DNF omputation should usually be avoided when pos-sible. Given a set of existentially quanti�ed variables vars and a quanti�er-freeformula ' in Bool(C), the algorithm qe(vars ; ') in Figure 3 returns a formula inBool(C) whih is equivalent to 9vars : '. The proedure qe relies on a satis�abilitysolver for formulas ' 2 Bool(C), whih is assumed to enumerate representationsof sets of satis�able models in terms of onjuntions of literals in '. Suh a solver1 Atually, MMillan onsiders the dual problem of eliminating universal quanti�a-tions from a onjuntive normal form.

10 proedure qe(vars, ') := falseloop := next-solution(')if := false then return 0 := C-qe(vars;) := _ 0' := ' ^ :0Fig. 3. Lazy Quanti�er Elimination.is desribed, for example, in [6, 5℄. These solutions are supposed to be enumer-ated by suessive alls to next-solution in Figure 3. Sine there are only a �nitenumber of solutions in terms of subsets of literals, the funtion qe is terminating.Moreover, minimal solutions or good over-approximations thereof, as produedby the lazy theorem proving algorithm [6, 5℄, aelerate onvergene.The variable in Figure 3 stores the urrent solution obtained by next-solution,and the proedure C-qe applies quanti�er elimination for onjuntion. In manyases, C-qe just applies the substitution rule to remove quanti�ed variables. Inorder to obtain the next set of solutions, we rule out the urrent solutions byupdating ' with the value :0 instead of :, sine :0 is more restritive.Thus, the quanti�er elimination proedure in Figure 3 avoids eager omputa-tion of a disjuntive normal form. Moreover, a solver for Bool(C) is used to guidethe searh for relevant \onjuntions" in '. In this way, the qe algorithm extendsthe lazy theorem proving paradigm desribed in [6, 5℄ to the ase of �rst-orderreasoning.Example 7. Consider9x1; y1: ((x0 = 1_x0 = 3_ y0 > 1)^x1 = x0 � 1^ y1 = y0 + 1)_ ((x0 = �1_x0 = �3)^x1 = x0 + 2^ y1 = y0 � 1))^x1 < 0A �rst satis�able onjuntion of literals is obtained by, say := y0 > 1^x1 = x0 � 1^ y1 = y0 + 1^x1 < 0.Now, appliation of the substitution rule yields0 := y0 > 1^x0 � 1 < 0and, after updating ' with :0 a seond solution is obtained as := x0 = �3^x1 = x0 + 2^ y1 = y0 � 1^x1 < 0.Again, applying the substitution rule, one gets 0 := x0 = �3^x0 + 2 < 0, and,sine there are no further solutions, the quanti�er-eliminated formula is(y0 > 1^x0 � 1 < 0)_ (x0 = �3^x0 + 2 < 0)

117 ExperimentsWe desribe some of our experiments with k-indution and invariant strength-ening. Our benhmark examples inlude in�nite-state systems suh as ommu-niation protools, timed automata and linear hybrid systems.2. In partiular,Table 1 ontains experimental results for the Bakery protool as desribed ear-lier, Simpson's protool [16℄ to avoid interferene between onurrent reads andwrites in a fully asynhronous system, well-known timed automata benhmarkssuh as the train gate ontroller and Fisher's mutual exlusion protool, andthree linear hybrid automata benhmarks for water level monitoring, the leak-ing gas burner, and the multi-rate Fisher protool. Timed automata and linearhybrid systems are enoded as in [17℄. Starting with k = 1 we inrease k untilk-indution sueeds. We are using invariant strengthening only in ases wheresyntati quanti�er elimination based on substitution suÆes. In partiular, wedo not use strengthening for the timed and hybrid automata examples, that is,C-qe tries to apply the substitution rule, if the resulting satis�ability problemsfor Boolean ombinations of linear arithmeti onstraints are solved using thelazy theorem proving algorithm desribed in [6℄ and implemented in the ICSdeision proedures [8℄.System Name Proved with k Time Re�nementsBakery Protool 3 0.21 1Simpson Protool 2 0.16 2Train Gate Controller 5 0.52 0Fisher Protool 4 0.71 0Water Level Monitor 1 0.08 0Leaking Gas Burner 6 1.13 0Multi Rate Fisher 4 0.84 0Table 1. Results for k-indution. Timings are in seonds.The experimental results in Table 1 are obtained on a 2GHz Pentium-IVwith 1Gb of memory. The seond row in Table 1 lists the minimal k for whihk-indution sueeds, the third row inludes the total time (in seonds) neededfor all indutions from 0 to k, and the fourth row the number of strengthenings.Timings do not inlude the one for quanti�er elimination, sine we restrited our-selves to syntati quanti�er elimination only3. Notie that invariant strength-ening is essential for the proofs of the Bakery protool and Simpson's protool,sine k-indution alone does not sueed.2 These benhmarks are available at http://www.sl.sri.om/�demoura/av03examples3 Note to the reviewer: we plan to inlude further experiments by using strengtheningon all benhmarks.

12 Simpson's protool for avoiding interferene between onurrent reads andwrites in a fully asynhronous system has also been studied using traditionalmodel heking tehniques. Using an expliit-state model heker, Rushby [14℄demonstrates orretness of a �nitary version of this potentially in�nite-stateproblem. Whereas it took around 100 seonds for the model heker to verifythis stripped-down problem, k-indution together with invariant strengtheningproves the general problem in a fration of a seond. Moreover, other nontrivialproblems suh as orretness of Illinois and Futurebus ahe oherene protools,as given by [7℄, are easily established using 1-indution with only one round ofstrengthening.8 Related WorkWe restrit this omparison to work we think is most losely related to ours.Sheeran, Singh, and St�almark's [15℄ also use k-indution, but their approah isrestrited to �nite-state systems only. They onsider k-indution restrited toayli paths and eah path is onstrained to ontain at most one initial state.These indutions are simple instanes of our general indution sheme based onreverse and diret simulations. Moreover, invariant strengthening is used here toderease the minimal k for whih k-indution sueeds.Our path ompression tehniques an also be used to ompute tight om-pleteness thresholds for BMC. For example, a ompressed reurrene diameteris de�ned as the smallest n suh that I(s0) ^ ��r;d(s0; : : : ; sn) is unsatis�able.Using equality (=) for the simulation relation, this formula is equivalent to thereurrene diameter in [3℄. A tighter bound of the reurrene diameter, wherevalues of input variables are ignored, is obtained by using the reverse simulation=i. In this way, the results in [11℄ are obtained as spei� instanes in our generalframework based on reverse and diret simulations. In addition, the ompresseddiameter is de�ned as the smallest n suh thatI(s0) ^ ��r;d(s0; : : : ; sn) ^ n�1̂i=0 :��r;di (s0; si)is unsatis�able, where ��r;di (s0; si) := 9s1; : : : ; si�1:��r;d(s0; s1; : : : ; si�1; si) holdsif there is a relevant path from s0 to si with i steps. Depending on the simulationrelation, this ompressed diameter yields tighter bounds for the ompletenessthresholds than the ones usually used in BMC [3℄.9 ConlusionWe developed a general k-indution sheme based on the notion of reverse anddiret simulation, and we studied ompleteness of these indutions. Although anyk-indution proof an be redued to a 1-indution proof with invariant strength-ening, there are ertain advantages of using k-indution. In partiular, bugs of

13length k are deteted in the initial step, and the number of strengthenings re-quired to omplete a proof is redued signi�antly. For example, a 1-indutionproof of the Bakery protool requires three suessive strengthenings eah ofwhih produes 4 new lauses. There is, however, a lear trade-o� between theadditional ost of using k-indution and the number of strengthenings requiredin 1-indution, whih needs to be studied further.Referenes1. R. Alur. Timed automata. In Computer-Aided Veri�ation, CAV 1999, volume1633 of Leture Notes in Computer Siene, pages 8{22, 1999.2. S. Bensalem and Y. Lakhneh. Automati generation of invariants. Formal Methodsin System Design, 15:75{92, 1999.3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zh. Symboli model heking withoutBDDs. Leture Notes in Computer Siene, 1579, 1999.4. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model heking usingsatis�ability solving. Formal Methods in System Design, 19(1):7{34, 2001.5. L. de Moura and H. Rue�. Lemmas on demand for satis�ability solvers. Annals ofMathematis and Arti�ial Intelligene, 2002. Aepted for publiation.6. L. de Moura, H. Rue�, and M. Sorea. Lazy theorem proving for bounded modelheking over in�nite domains. In Conferene on Automated Dedution (CADE),volume 2392 of LNCS, pages 438{455. Springer-Verlag, July 27-30 2002.7. G. Delzanno. Automati veri�ation of parameterized ahe oherene protools.In Computer Aided Veri�ation (CAV'00), pages 53{68, 2000.8. J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canoniza-tion and Solving. In Proeedings of CAV'2001, volume 2102 of Leture Notes inComputer Siene, pages 246{249. Springer-Verlag, 2001.9. S. M. German and B. Wegbreit. A synthesizer of indutive assertions. IEEETransations on Software Engineering, 1(1):68{75, Mar. 1975.10. S. M. Katz and Z. Manna. A heuristi approah to program veri�ation. In N. J.Nilsson, editor, Proeedings of the 3rd IJCAI, pages 500{512, Stanford, CA, Aug.1973. William Kaufmann.11. D. Kroening and O. Strihman. EÆient omputation of reurrene diameters. InProeedings of VMCAI'03, Jan. 2003.12. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preservingabstrations for the veri�ation of onurrent systems. Formal Methods in SystemDesign, 6(1):11{44, Jan. 1995.13. K. MMillan. Applying SAT methods in unbounded symboli model heking. InComputer-Aided Veri�ation, CAV 2002, volume 2404 of LNCS. Springer-Verlag,2002.14. J. Rushby. Model heking Simpson's four-slot fully asynhronous ommuniationmehanism. Tehnial report, CSL, SRI International, Menlo Park, Menlo Park,CA, July 2002.15. M. Sheeran, S. Singh, and G. St�almark. Cheking safety properties using indutionand a SAT-solver. LNCS, 1954:108, 2000.16. H. R. Simpson. Four-slot fully asynhronous ommuniation mehanism. IEEProeedings, Part E: Computers and Digital Tehniques, 137(1):17{30, Jan. 1990.17. M. Sorea. Bounded model heking for timed automata. In Proeedings of MTCS2002, volume 68 of Eletroni Notes in Theoretial Computer Siene, 2002.

