
Bounded Model Che
king and Indu
tion:From Refutation to Veri�
ation ?(Extended Abstra
t, Category A)Leonardo de Moura, Harald Rue�, and Maria Sorea??SRI InternationalComputer S
ien
e Laboratory333 Ravenswood AvenueMenlo Park, CA 94025, USAfdemoura, ruess, soreag�
sl.sri.
omhttp://www.
sl.sri.
om/Abstra
t. We explore the
ombination of bounded model
he
king andindu
tion for proving safety properties of in�nite-state systems. In par-ti
ular, we de�ne a general k-indu
tion s
heme and prove
ompletenessthereof. A main
hara
teristi
 of our methodology is that strengthenedinvariants are generated from failed k-indu
tion proofs. This strengthen-ing step requires quanti�er-elimination, and we propose a lazy quanti�er-elimination pro
edure, whi
h delays expensive
omputations of disjun
-tive normal forms when possible. The e�e
tiveness of indu
tion based onbounded model
he
king and invariant strengthening is demonstratedusing in�nite-state systems ranging from
ommuni
ation proto
ols totimed automata and (linear) hybrid automata.1 Introdu
tionBounded model
he
king (BMC) [4, 3, 6℄ is often used for refutation, where onesystemati
ally sear
hes for
ounterexamples whose length is bounded by someinteger k. The bound k is in
reased until a bug is found, or some pre-
omputed
ompleteness threshold is rea
hed. Unfortunately, the
omputation of
omplete-ness thresholds is usually prohibitively expensive and these thresholds may betoo large to e�e
tively explore the asso
iated bounded sear
h spa
e. In addition,su
h
ompleteness thresholds do not exist for many in�nite-state systems.In dedu
tive approa
hes to veri�
ation, the invarian
e rule is used for es-tablishing invarian
e properties ' [10, 9, 12, 2℄. This rule requires a property whi
h is stronger than ' and indu
tive in the sense that all initial states satisfy and is preserved under ea
h transition. Theoreti
ally, the invarian
e rule isadequate for verifying a valid property of a system, but its appli
ation usually? Funded by SRI International, by NSF Grant CCR-0082560, DARPA/AFRL-WPAFB Contra
t F33615-01-C-1908, and NASA Contra
t B09060051.?? Also aÆliated with University of Ulm, Germany.

2requires
reativity in
oming up with a suÆ
iently strong indu
tive invariant. Itis also nontrivial to dete
t bugs from failed indu
tion proofs.In this paper, we explore the
ombination of BMC and indu
tion based onthe k-indu
tion rule. This indu
tion rule generalizes BMC in that it requiresdemonstrating the invarian
e of ' in the �rst k states of any exe
ution. Conse-quently, error tra
es of length k are dete
ted. This indu
tion rule also generalizesthe usual invarian
e rule in that it requires showing that if ' holds in every stateof every exe
ution of length k, then every su

essor state also satis�es '. In itspure form, however, k-indu
tion does not require the invention of a strengthenedindu
tive invariant. As in BMC, the bound k is in
reased until either a viola-tion is dete
ted in the �rst k states of an exe
ution or the property at hand isshown to be k-indu
tive. In the ideal
ase of attempting to prove
orre
tness ofan indu
tive property, 1-indu
tion suÆ
es and iteration up to a, possibly large,
omplete threshold, as in BMC, is avoided. The k-indu
tion rule is sound, butfurther
onditions, su
h as the restri
tion to a
y
li
 exe
ution sequen
es, mustbe added to make k-indu
tion
omplete even for �nite-state systems [15℄.One of our main
ontributions is the de�nition of a general k-indu
tion ruleand a
orresponding
ompleteness result. This indu
tion rule is parameterizedwith respe
t to suitable notions of simulation. These simulation relations indu
edi�erent notions of path
ompression in that an exe
ution path is
ompressedif it does not
ontain two similar states. Many
ompleteness results, su
h as k-indu
tion for timed automata, follow by simply instantiating this general resultwith the simulation relation at hand. For general transition systems, we developan anytime algorithm for approximating adequate simulation relations for k-indu
tion.Whenever k-indu
tion fails to prove a property ', there is a
ounterexampleof length k + 1 su
h that the �rst k states satisfy ' and the last state does notsatisfy '. If the �rst state of this tra
e is rea
hable, then ' is refuted. Otherwise,the
ounterexample is labeled spurious. By assuming the �rst state of this tra
eis unrea
hable, a spurious
ounterexample is used to automati
ally obtain astrengthened invariant. Many in�nite-state systems
an only be proven withk-indu
tion enri
hed with invariant strengthening, whereas for �nite systemsthe use of strengthening de
reases the minimal k for whi
h a k-indu
tion proofsu

eeds.Sin
e our invariant strengthening pro
edure for k-indu
tion heavily relieson eliminating existentially quanti�ed state variables, we develop an e�e
tivequanti�er elimination algorithm for this purpose. The main
hara
teristi
 ofthis algorithm is that it avoids a potential exponential blowup in the initial
omputation of a disjun
tive normal form whenever possible, and a
onstraintsolver is used to identify relevant
onjun
tions. In this way the paradigm of lazytheorem proving, as developed by the authors for the ground
ase [6℄, is extendedto �rst-order formulas.The paper is organized as follows. Se
tion 2
ontains ba
kground materialon en
odings of transition systems in terms of logi
 formulas. In Se
tion 3 wedevelop the notions of reverse and dire
t simulations together with an anytime

3algorithm for
omputing these relations. Reverse and dire
t simulations are usedin Se
tion 4 to state a generi
 k-indu
tion prin
iple and to provide suÆ
ient
on-ditions for the
ompleteness of these indu
tions. Se
tions 5 and 6 dis
uss invari-ant strengthening and lazy quanti�er elimination. Experimental results with k-indu
tion and invariant strengthening for various in�nite-state proto
ols, timedautomata, and linear hybrid systems are summarized in Se
tion 7. Comparisonsto related work are in Se
tion 8.2 Ba
kgroundLet V := fx1; : : : ; xng be a set of variables interpreted over nonempty domainsD1 through Dn, together with a type assignment � su
h that �(xi) = Di. Fora set of typed variables V , a variable assignment is a fun
tion � from variablesx 2 V to an element of �(x). The variables in V := fx1; : : : ; xng are also
alledstate variables, and a program state is a variable assignment over V .All the developments in this paper are parametri
 with respe
t to a given
onstraint theories C, su
h as linear arithmeti
 or a theory of bitve
tors. Weassume a
omputable fun
tion for de
iding satis�ability of a
onjun
tion of
on-straints in C. A set of Boolean
onstraints, Bool(C), in
ludes all
onstraints inC and is
losed under
onjun
tion ^ , disjun
tion _ , and negation :: E�e
tivesolvers for de
iding the satis�ability problem in Bool(C) have been previouslydes
ribed [6, 5℄.A tuple hV; I; T i is a C-program over V , where interpretations of the typedvariables V des
ribe the set of states, I 2 Bool(C(V)) is a predi
ate that de-s
ribes the initial states, and T 2 Bool(C(V [V 0)) spe
i�es the transition re-lation between
urrent states and their su

essor states (V denotes the
urrentstate variables, while V 0 stands for the next state variables). The semanti
s of aprogram is given in terms of a transition system M in the usual way.For a program M = hV; I; T i, a sequen
e of states �(s0; s1; : : : ; sn) forms apath through M if V0�i<n T (si; si+1). A state s is rea
hable in M if there is apath �(s0; s1; : : : ; sn�1; s) throughM and I(s0), and a state property ' 2 C(V) isinvariant inM i� '(s) holds for every rea
hable state s inM . A
ounterexamplefor a property ' is a path �(s0; : : : ; sn) su
h that I(s0) and :'(sn), and thelength len(�) of su
h a
ounterexample is given by the number of states in thispath.Typi
al programming
onstru
ts
an be rewritten into the program syntaxpresented above. For example, Dijkstra's guarded
ommands are en
oded interms of a disjun
tion of
onjun
tions of guards g(x1; : : : ; xn) and updates x0i =f1(x1; : : : ; xn) for all variables xi. Programs with external, non-deterministi
inputs are de�ned by partitioning the set of variables X into the input variablesinput(X), whi
h are un
onstrained, and the other state variables, whose next-state values are
onstrained by the transition relation.Throughout this paper we use timed automata [1℄, whi
h are state-transitiongraphs augmented with a �nite set of real-valued
lo
ks, as a prototypi
al
lassof in�nite-state systems. De
idability of the model-
he
king problem for timed

4automata rests on the fa
t that the spa
e of
lo
k valuations is partitioned into�nitely many
lo
k regions. Two
lo
k valuations v1; v2 that belong to the sameregion are (region) equivalent, denoted as v1 �TA v2. This region equivalen
e isa stable quotient relation, that is, whenever q �TA u and T (q; q0), there existsa state u0 su
h that T (u; u0) and q0 �TA u0 [1℄. En
oding of timed automatain terms of logi
al programs with linear arithmeti

onstraints are des
ribedin [17℄. In parti
ular, program states
onsist of a lo
ation and nonnegative realinterpretations of
lo
ks. For timed automata we restri
t ourselves to provingso-
alled
lo
k
onstraints ', su
h that q �TA u implies that '(q) i� '(u).3 Dire
t and Reverse SimulationThe notions of dire
t and reverse simulation as developed here lay out the foun-dation for the
ompleteness results in Se
tion 4.De�nition 1 (Dire
t / Reverse Simulation). Let M = hV; I; T i be a pro-gram and ' a state formula over V . We de�ne the fun
tors Fd and Fr that mapbinary relations R over V in the following way.Fd(R)(s1; s2) := � if :'(s1) then :'(s2)else 8s01 : T (s1; s01)) 9s02 : R(s01; s02) ^ T (s2; s02)Fr(R)(s1; s2) := � if I(s1) then I(s2)else 8s01 : T (s01; s1)) 9s02 : R(s01; s02) ^ T (s02; s2)A dire
t (reverse) simulation over V with respe
t to ' is any binary relation �over V that satis�es �� Fd(�) (�� Fr(�)).In
ontrast to reverse simulations, dire
t simulations depend on a state formula'. Also, the de�nition of dire
t simulation is inspired by the notion of stablerelations above. Dire
t (reverse) simulations are usually denoted by�d (�r). Thefollowing dire
t and reverse simulation are used as running examples throughoutthe paper.Example 1. The empty relation a�;b := false is a dire
t and a reverse simula-tion.Example 2. Equality (=) between states is both a dire
t and a reverse simula-tion.Example 3. The relation s1�Is2 := I(s1)^ I(s2) is a reverse simulation, whereI is the predi
ate for des
ribing the set of initial states of the given program.Example 4. Now,
onsider programs hV; I; T i with inputs su
h that input(x)holds i� x is an input variable. The relations1 =i s2 := for all variables x 2 V : input(x) or s1(x) = s2(x),

5with s(x) denoting the value of the variable x in the state s, is a reverse simula-tion, sin
e the values of the input variables are not
onstrained by the predi
ateI and their next values are not
onstrained by T . Obviously, for transition sys-tems with inputs, the relation s1 =i s2 is stronger than =, and therefore givesrise to shorter paths.Example 5. We now
onsider timed automata programs and
lo
k
onstraints.The region equivalen
e �TA, whi
h give rise to �nitely many
lo
k regions, isstable, and therefore a dire
t simulation.The notions of dire
t and reverse simulation are modular in the sense thatthe union of dire
t (reverse) simulations is also a dire
t (reverse) simulation.Proposition 1 (Modularity). If �1 and �2 are dire
t (reverse) simulations,then �1 [�2 is also a dire
t (reverse) simulation.This property follows dire
tly from the de�nitions of dire
t (reverse) simulationsin De�nition 1 and from the monotoni
ity of the fun
tors Fd and Fr. For example,the reverse simulations �I and =i in Examples 3 and 4 may be
ombined toobtain a new reverse simulation.Given an arbitrary program M = hV; I; T i and a property ', the asso
iatedlargest dire
t (reverse) simulation relation �D (�R) is obtained as the greatest�xpoint of the fun
tor Fd (Fr) in De�nition 1. These �xpoints exist, sin
e Fdand Fr are monotoni
. However, the �xpoint iterations are often prohibitivelyexpensive, and a dire
t (reverse) simulation is only obtained on
onvergen
eof the iteration. The iteration in Proposition 2 provides a viable alternative inthat a reverse (dire
t) simulation is re�ned to obtain a stronger reverse (dire
t)simulation. The proof of the proposition below follows from the de�nitions ofreverse (dire
t) simulations, from the monotoni
ity of the fun
tors Fr (Fd), andfrom modularity (Proposition 1).Proposition 2 (Anytime Iteration). If �r (�d) is a reverse (dire
t) sim-ulation, then for all n � 0 the relation �r;n (�d;n) is also a reverse (dire
t)simulation:�r;0 := �r �d;0 := �d�r;n := �r;n�1 [Fr(�r;n�1) �d;n := �d;n�1 [Fd(�d;n�1)Consequently, this iteration gives rise to an anytime algorithm for
omputingdire
t (reverse) simulations, and equality =, for example, may be used as seed,sin
e it is both a dire
t and a reverse simulation (see Example 2).4 Completeness of k-Indu
tionGiven the notions of dire
t and reverse simulations, we develop suÆ
ient
on-ditions for proving
ompleteness of k-indu
tion. These results are based on re-stri
ting paths to not
ontain states equivalent with respe
t to a given dire
tor reverse simulation. For dire
t (reverse) simulations we de�ne a
ompressed

6 q1 q2 q3 q4Fig. 1. In
ompleteness of k-indu
tion.path w.r.t. to the given dire
t (reverse) simulation as a path �(s0; s1; : : : ; sn)not
ontaining any si, sj with j < i (i < j) su
h that si dire
tly (reversely)simulates sj .De�nition 2 (Path Compression).{ A path ��d(s0; s1; : : : ; sn) is
ompressed w.r.t. the dire
t simulation �d if:��d(s0; s1; : : : ; sn) := �(s0; s1; : : : ; sn) ^ ^0�j<i�n si 6�dsj :{ A path ��r (s0; s1; : : : ; sn) is
ompressed w.r.t. the reverse simulation �r if:��r (s0; s1; : : : ; sn) := �(s0; s1; : : : ; sn) ^ ^0�i<j�n si 6�rsj :A path that is
ompressed with respe
t to the reverse and the dire
t simulations�r and �d is denoted by ��r;d .For example, a path �(s0; : : : ; sn) is
ompressed w.r.t. the reverse simulation(=) from Example 2 i� it is a
y
li
. Moreover, given the reverse simulation �Ifrom Example 3, a path �(s0; : : : ; sn) is
ompressed w.r.t. �I i� it
ontains atmost one initial state. Obviously, for transition systems with inputs, the relation(=i) (see Example 4) is stronger than (=), and therefore give rise to shorter
ompressed paths. We have
olle
ted all ingredients for de�ning k-indu
tion forarbitrarily
ompressed paths.De�nition 3 (k-Indu
tion). Let M = hV; I; T i be a program, k an integer,�r a reverse simulation, and �d a dire
t simulation. The indu
tion s
heme ofdepth k, IND�r;d(k) allows one to dedu
e the invarian
e of ' inM if the followingholds.{ I(s0) ^ ��r;d(s0; : : : ; sk�1)! '(s0) ^ : : : ^ '(sk�1){ '(sn) ^ : : : ^ '(sn+k�1) ^ ��r;d(sn; : : : ; sn+k)! '(sn+k)For example, given the empty relationship �; from Example 1, IND�; re-du
es to the naive, in
omplete k-indu
tion on arbitrary paths. Consider, forexample, the system in Figure 1 and a property ' whi
h is assumed to hold onlyin q4. Now, the exe
ution sequen
e q3 ; q3 ; : : :; q3| {z }k ; q4 is not k-indu
tive,but it is ruled out under the a
y
li
 path restri
tion. The
omplete k-indu
tion

7s
hemes in [15℄, whi
h
onsider only a
y
li
 paths and paths that only visit ini-tial states on
e
an be re
overed by instantiating De�nition 3 with the relations(=) (Example 2) and (�I) (Example 3), respe
tively. Sin
e both (=) and (�I)are reverse simulations, an indu
tion s
heme restri
ted to a
y
li
 paths visitinginitial states at most on
e is obtained by modularity (Proposition 1).Completeness of k-indu
tion relies heavily on the notion of path
ompression.We now state the main lemma.Lemma 1 (Compressing non-��r;d paths). Let �(s0; : : : ; sn) be a givenpath; then:1. There exists a ��r -
ompressed path ��r(q0; : : : ; qm) su
h that qm = sn andm � n.2. There exists a ��d-
ompressed path ��d(q0; : : : ; qm), su
h that q0 = s0 andm � n.Proofsket
h. Assume a path �(s0; : : : ; sn), whi
h is not
ompressed w.r.t. �r.By De�nition 1 it follows that there are states si; sj 2 �(s0; : : : ; sn) su
h thatsi�rsj , and i < j. We distinguish two
ases. First, if si is an initial state, then sois sj , and therefore a shorter path �(sj ; : : : ; sn) is obtained as a
ounterexample.Se
ond, if si is not an initial state, then si 6= s0, and there exists a si�1 su
hthat T (si�1; si). Sin
e si�rsj it follows by De�nition 1 that there is a state s0i�1,su
h that si�1�rs0i�1 and T (s0i�1; sj). If si�1 is initial state, then so is s0i�1, andsin
e i < j a shorter path ��r(s0i�1; sj ; : : : ; sn) is obtained. If si�1 is not initial,by repeating the above argument a shorter path is
onstru
ted. In both
ases ashorter path is obtained, if su
h path is not a
ompressed path, then it is furtherredu
ed. The proof for ��d-
ompressed paths works analogously.IND�r;d(k) is
omplete if: ' is an invariant of M i� there is a k su
h thatIND�r;d(k)('). Now,
ompleteness of k-indu
tion follows from the main lemma 1above.Theorem 1 (Completeness). IND�r;d(k) is a
omplete proof method i�there is an upper bound on the length of the paths ��r;d(s0; : : : ; sn).Using the simulation from Example 2, Theorem 1 is instantiated to obtain thefollowing
omplete k-indu
tion for �nite-state systems.Corollary 1. Let M be a �nite-state program over V and ' a state propertyin V ; then IND=(k) indu
tion is
omplete.In general, k-indu
tion for (=) is not
omplete for in�nite-state systems. Con-sider, for example, the program M = hI; T i over the integer state variable xwith I = (x = 0) and T = (x0 = x + 2), and the formula x 6= 3. Obviously, itis the
ase that x 6= 3 is invariant in M , but there exists no k 2 IN su
h thatthe property is proven by IND=(k). However, k-indu
tion is
omplete for timedautomata, sin
e the equivalen
e relation �TA is a dire
t simulation (Example 5),and an upper bound on the length of the paths ��TA(s0; : : : ; sn) is given by thenumber of
lo
k regions.

8Corollary 2. Let M be a timed automata program over the
lo
k evaluationsC and ' a
lo
k
onstraint in C; then IND�TA(k) indu
tion is
omplete.Similar results are obtained for other dire
t and reverse simulations and
ombi-nations thereof.5 Invariant StrengtheningWhenever k-indu
tion fails to prove a property ', there is a
ounterexample� = sn; sn+1; : : : ; sn+k su
h that the �rst k states satisfy ' whereas the laststate sn+k does not satisfy this property. If sn is indeed rea
hable, then 'is not invariant. Otherwise, the
ounterexample is labeled as spurious and itis in
on
lusive whether ' is invariant or not. However, by assuming sn to beunrea
hable, su
h a spurious
ounterexample is used to obtain a strengthenedinvariant '^:(sn).Consider, for example, the property :(q4) for the system in Figure 1. Indu
-tion of depth k = 1 fails, and the
ounterexample q3 ; q4 is obtained. Now,:(q4) is strengthened to obtain :(q4)^:(q3), whi
h is proven using 1-indu
tion.More generally, whenever the indu
tion step of IND�r;d(k) fails, the formulaQ(sn; : : : ; sn+k) := '(sn)^ : : : ^'(sn+k�1)^��r;d(sn; : : : ; sn+k)^:'(sn+k)is satis�able, and ea
h satisfying assignment des
ribes a
ounterexample for theindu
tion step. Thus, we de�ne the predi
ate U(s) for representing the set ofpossibly unrea
hable states, whi
h may rea
h the bad state in k steps by meansof a ��r;d path. U(s) = 9 sn+1; : : : ; sn+k:Q(s; : : : ; sn+k)Now, ' is strengthened as '^:U(s), and quanti�er elimination is used for trans-forming this strengthened formula into an equivalent Boolean
onstraint formula.For the general
ase, we use the quanti�er elimination pro
edure in Se
tion 6.Noti
e, however, that for spe
ial
ases su
h as guarded
ommand languages,the quanti�ers in U(s) are eliminated using purely synta
ti
 operations su
has substitution, sin
e all quanti�
ations are over \next-state" variables x forwhi
h there are expli
it solutions f(:). An example might help to illustrate the
ombination of k-indu
tion, strengthening, and quanti�er elimination.Example 6. Consider the usual stripped-down version of Lamport's Bakery pro-to
ol in Figure 2 with the initial value 0 for both
ounters y1 and y2 and themutual ex
lusion property MX de�ned by :(p
1 = a3 ^ p
2 = b3). We apply3-indu
tion with the empty simulation relation �;. The base step holds and theindu
tion step fails to obtainU(sn) := 9 sn+1; sn+2; sn+3:MX(sn)^MX(sn+1)^MX(sn+2)^��;(sn; sn+1; sn+2; sn+3)^:MX(sn+3)

9a1 a2 a3y10 := y2 + 1 y2 = 0_y1 � y2y10 := 0 b1 b2 b3y20 := y1 + 1 y1 = 0_:(y1 � y2)y20 := 0Fig. 2. Bakery Mutual Ex
lusion Proto
ol.with states si of the form (p
1i; y1i; p
2i; y2i). Sin
e the transitions of the Bakeryproto
ol are in terms of guarded
ommands, simple substitution is used to obtaina quanti�er-eliminated form.R(s) := (p
1 = a1^ p
2 = b2^ y2 = 0)_ (p
1 = a2^ p
2 = b1^ y1 = 0)Now, the strengthened property MX(s)^:R(s) is proven using 3-indu
tion.6 Quanti�er eliminationGiven a quanti�ed formula 9vars : ' with ' 2 Bool(C), quanti�er-eliminationpro
edures usually work by transforming ' into disjun
tive normal form (DNF)and distributing the existential quanti�ers over disjun
tions. Thus, one is leftwith eliminating quanti�ers from a set of existentially quanti�ed
onjun
tionsof literals. We assume as given su
h a pro
edure C-qe. The main drawba
k ofthese pro
edures is that there is a potential exponential blowup in the initialtransformation to DNF and C-qe might even return further disjun
tions (as isthe
ase for Presburger arithmeti
).The quanti�er elimination problem for invariant strengthening, as dis
ussedin Se
tion 5, however, allows for a purely synta
ti
 quanti�er elimination as longas we are restri
ting ourselves to guarded
ommand programs. In these
ases,C-qe just applies the substitution rule (x =2 vars())(9x:(x =) ^ '(x)) i� '();possibly followed by simpli�
ation. Another C-qe fun
tion is used in M
Mil-lan's [13℄ quanti�er elimination algorithm based on propositional SAT solving,in that his C-qe(vars;
) simply deletes the literals in
, whi
h
ontain a variablein vars .1However, the initial DNF
omputation should usually be avoided when pos-sible. Given a set of existentially quanti�ed variables vars and a quanti�er-freeformula ' in Bool(C), the algorithm qe(vars ; ') in Figure 3 returns a formula inBool(C) whi
h is equivalent to 9vars : '. The pro
edure qe relies on a satis�abilitysolver for formulas ' 2 Bool(C), whi
h is assumed to enumerate representationsof sets of satis�able models in terms of
onjun
tions of literals in '. Su
h a solver1 A
tually, M
Millan
onsiders the dual problem of eliminating universal quanti�
a-tions from a
onjun
tive normal form.

10 pro
edure qe(vars, ') := falseloop
 := next-solution(')if
 := false then return
0 := C-qe(vars;
) := _
0' := ' ^ :
0Fig. 3. Lazy Quanti�er Elimination.is des
ribed, for example, in [6, 5℄. These solutions are supposed to be enumer-ated by su

essive
alls to next-solution in Figure 3. Sin
e there are only a �nitenumber of solutions in terms of subsets of literals, the fun
tion qe is terminating.Moreover, minimal solutions or good over-approximations thereof, as produ
edby the lazy theorem proving algorithm [6, 5℄, a

elerate
onvergen
e.The variable
 in Figure 3 stores the
urrent solution obtained by next-solution,and the pro
edure C-qe applies quanti�er elimination for
onjun
tion. In many
ases, C-qe just applies the substitution rule to remove quanti�ed variables. Inorder to obtain the next set of solutions, we rule out the
urrent solutions byupdating ' with the value :
0 instead of :
, sin
e :
0 is more restri
tive.Thus, the quanti�er elimination pro
edure in Figure 3 avoids eager
omputa-tion of a disjun
tive normal form. Moreover, a solver for Bool(C) is used to guidethe sear
h for relevant \
onjun
tions" in '. In this way, the qe algorithm extendsthe lazy theorem proving paradigm des
ribed in [6, 5℄ to the
ase of �rst-orderreasoning.Example 7. Consider9x1; y1: ((x0 = 1_x0 = 3_ y0 > 1)^x1 = x0 � 1^ y1 = y0 + 1)_ ((x0 = �1_x0 = �3)^x1 = x0 + 2^ y1 = y0 � 1))^x1 < 0A �rst satis�able
onjun
tion of literals is obtained by, say
 := y0 > 1^x1 = x0 � 1^ y1 = y0 + 1^x1 < 0.Now, appli
ation of the substitution rule yields
0 := y0 > 1^x0 � 1 < 0and, after updating ' with :
0 a se
ond solution is obtained as
 := x0 = �3^x1 = x0 + 2^ y1 = y0 � 1^x1 < 0.Again, applying the substitution rule, one gets
0 := x0 = �3^x0 + 2 < 0, and,sin
e there are no further solutions, the quanti�er-eliminated formula is(y0 > 1^x0 � 1 < 0)_ (x0 = �3^x0 + 2 < 0)

117 ExperimentsWe des
ribe some of our experiments with k-indu
tion and invariant strength-ening. Our ben
hmark examples in
lude in�nite-state systems su
h as
ommu-ni
ation proto
ols, timed automata and linear hybrid systems.2. In parti
ular,Table 1
ontains experimental results for the Bakery proto
ol as des
ribed ear-lier, Simpson's proto
ol [16℄ to avoid interferen
e between
on
urrent reads andwrites in a fully asyn
hronous system, well-known timed automata ben
hmarkssu
h as the train gate
ontroller and Fis
her's mutual ex
lusion proto
ol, andthree linear hybrid automata ben
hmarks for water level monitoring, the leak-ing gas burner, and the multi-rate Fis
her proto
ol. Timed automata and linearhybrid systems are en
oded as in [17℄. Starting with k = 1 we in
rease k untilk-indu
tion su

eeds. We are using invariant strengthening only in
ases wheresynta
ti
 quanti�er elimination based on substitution suÆ
es. In parti
ular, wedo not use strengthening for the timed and hybrid automata examples, that is,C-qe tries to apply the substitution rule, if the resulting satis�ability problemsfor Boolean
ombinations of linear arithmeti

onstraints are solved using thelazy theorem proving algorithm des
ribed in [6℄ and implemented in the ICSde
ision pro
edures [8℄.System Name Proved with k Time Re�nementsBakery Proto
ol 3 0.21 1Simpson Proto
ol 2 0.16 2Train Gate Controller 5 0.52 0Fis
her Proto
ol 4 0.71 0Water Level Monitor 1 0.08 0Leaking Gas Burner 6 1.13 0Multi Rate Fis
her 4 0.84 0Table 1. Results for k-indu
tion. Timings are in se
onds.The experimental results in Table 1 are obtained on a 2GHz Pentium-IVwith 1Gb of memory. The se
ond row in Table 1 lists the minimal k for whi
hk-indu
tion su

eeds, the third row in
ludes the total time (in se
onds) neededfor all indu
tions from 0 to k, and the fourth row the number of strengthenings.Timings do not in
lude the one for quanti�er elimination, sin
e we restri
ted our-selves to synta
ti
 quanti�er elimination only3. Noti
e that invariant strength-ening is essential for the proofs of the Bakery proto
ol and Simpson's proto
ol,sin
e k-indu
tion alone does not su

eed.2 These ben
hmarks are available at http://www.
sl.sri.
om/�demoura/
av03examples3 Note to the reviewer: we plan to in
lude further experiments by using strengtheningon all ben
hmarks.

12 Simpson's proto
ol for avoiding interferen
e between
on
urrent reads andwrites in a fully asyn
hronous system has also been studied using traditionalmodel
he
king te
hniques. Using an expli
it-state model
he
ker, Rushby [14℄demonstrates
orre
tness of a �nitary version of this potentially in�nite-stateproblem. Whereas it took around 100 se
onds for the model
he
ker to verifythis stripped-down problem, k-indu
tion together with invariant strengtheningproves the general problem in a fra
tion of a se
ond. Moreover, other nontrivialproblems su
h as
orre
tness of Illinois and Futurebus
a
he
oheren
e proto
ols,as given by [7℄, are easily established using 1-indu
tion with only one round ofstrengthening.8 Related WorkWe restri
t this
omparison to work we think is most
losely related to ours.Sheeran, Singh, and St�almar
k's [15℄ also use k-indu
tion, but their approa
h isrestri
ted to �nite-state systems only. They
onsider k-indu
tion restri
ted toa
y
li
 paths and ea
h path is
onstrained to
ontain at most one initial state.These indu
tions are simple instan
es of our general indu
tion s
heme based onreverse and dire
t simulations. Moreover, invariant strengthening is used here tode
rease the minimal k for whi
h k-indu
tion su

eeds.Our path
ompression te
hniques
an also be used to
ompute tight
om-pleteness thresholds for BMC. For example, a
ompressed re
urren
e diameteris de�ned as the smallest n su
h that I(s0) ^ ��r;d(s0; : : : ; sn) is unsatis�able.Using equality (=) for the simulation relation, this formula is equivalent to there
urren
e diameter in [3℄. A tighter bound of the re
urren
e diameter, wherevalues of input variables are ignored, is obtained by using the reverse simulation=i. In this way, the results in [11℄ are obtained as spe
i�
 instan
es in our generalframework based on reverse and dire
t simulations. In addition, the
ompresseddiameter is de�ned as the smallest n su
h thatI(s0) ^ ��r;d(s0; : : : ; sn) ^ n�1̂i=0 :��r;di (s0; si)is unsatis�able, where ��r;di (s0; si) := 9s1; : : : ; si�1:��r;d(s0; s1; : : : ; si�1; si) holdsif there is a relevant path from s0 to si with i steps. Depending on the simulationrelation, this
ompressed diameter yields tighter bounds for the
ompletenessthresholds than the ones usually used in BMC [3℄.9 Con
lusionWe developed a general k-indu
tion s
heme based on the notion of reverse anddire
t simulation, and we studied
ompleteness of these indu
tions. Although anyk-indu
tion proof
an be redu
ed to a 1-indu
tion proof with invariant strength-ening, there are
ertain advantages of using k-indu
tion. In parti
ular, bugs of

13length k are dete
ted in the initial step, and the number of strengthenings re-quired to
omplete a proof is redu
ed signi�
antly. For example, a 1-indu
tionproof of the Bakery proto
ol requires three su

essive strengthenings ea
h ofwhi
h produ
es 4 new
lauses. There is, however, a
lear trade-o� between theadditional
ost of using k-indu
tion and the number of strengthenings requiredin 1-indu
tion, whi
h needs to be studied further.Referen
es1. R. Alur. Timed automata. In Computer-Aided Veri�
ation, CAV 1999, volume1633 of Le
ture Notes in Computer S
ien
e, pages 8{22, 1999.2. S. Bensalem and Y. Lakhne
h. Automati
 generation of invariants. Formal Methodsin System Design, 15:75{92, 1999.3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zh. Symboli
 model
he
king withoutBDDs. Le
ture Notes in Computer S
ien
e, 1579, 1999.4. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
he
king usingsatis�ability solving. Formal Methods in System Design, 19(1):7{34, 2001.5. L. de Moura and H. Rue�. Lemmas on demand for satis�ability solvers. Annals ofMathemati
s and Arti�
ial Intelligen
e, 2002. A

epted for publi
ation.6. L. de Moura, H. Rue�, and M. Sorea. Lazy theorem proving for bounded model
he
king over in�nite domains. In Conferen
e on Automated Dedu
tion (CADE),volume 2392 of LNCS, pages 438{455. Springer-Verlag, July 27-30 2002.7. G. Delzanno. Automati
 veri�
ation of parameterized
a
he
oheren
e proto
ols.In Computer Aided Veri�
ation (CAV'00), pages 53{68, 2000.8. J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canoniza-tion and Solving. In Pro
eedings of CAV'2001, volume 2102 of Le
ture Notes inComputer S
ien
e, pages 246{249. Springer-Verlag, 2001.9. S. M. German and B. Wegbreit. A synthesizer of indu
tive assertions. IEEETransa
tions on Software Engineering, 1(1):68{75, Mar. 1975.10. S. M. Katz and Z. Manna. A heuristi
 approa
h to program veri�
ation. In N. J.Nilsson, editor, Pro
eedings of the 3rd IJCAI, pages 500{512, Stanford, CA, Aug.1973. William Kaufmann.11. D. Kroening and O. Stri
hman. EÆ
ient
omputation of re
urren
e diameters. InPro
eedings of VMCAI'03, Jan. 2003.12. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preservingabstra
tions for the veri�
ation of
on
urrent systems. Formal Methods in SystemDesign, 6(1):11{44, Jan. 1995.13. K. M
Millan. Applying SAT methods in unbounded symboli
 model
he
king. InComputer-Aided Veri�
ation, CAV 2002, volume 2404 of LNCS. Springer-Verlag,2002.14. J. Rushby. Model
he
king Simpson's four-slot fully asyn
hronous
ommuni
ationme
hanism. Te
hni
al report, CSL, SRI International, Menlo Park, Menlo Park,CA, July 2002.15. M. Sheeran, S. Singh, and G. St�almar
k. Che
king safety properties using indu
tionand a SAT-solver. LNCS, 1954:108, 2000.16. H. R. Simpson. Four-slot fully asyn
hronous
ommuni
ation me
hanism. IEEPro
eedings, Part E: Computers and Digital Te
hniques, 137(1):17{30, Jan. 1990.17. M. Sorea. Bounded model
he
king for timed automata. In Pro
eedings of MTCS2002, volume 68 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 2002.

