Complete Instantiation for Quantified Formulas in SMT
CAV 2009

Yeting Ge
New York University

Leonardo de Moura
Microsoft Research
a > 3, (a = b ∨ a = b + 1), f(a) = 0, f(b) = 1
Many Applications

- Dynamic symbolic execution (DART)
- Extended static checking
- Test-case generation
- Bounded model checking (BMC)
- Equivalence checking
- ...

Complete Instantiation – CAV 2009
A theory T is a set of sentences.

F is satisfiable modulo T iff $T \cup F$ is satisfiable.
Array Theory:
\[\forall a, i, v: \text{read(write}(a, i, v), i) = v \]
\[\forall a, i, v: i = j \lor \text{read(write}(a, i, v), j) = \text{read}(a, j) \]

- Linear Arithmetic
- Bit-vectors
- Inductive datatypes
- ...

Complete Instantiation – CAV 2009
\(a > 3, (a = b \lor a = b + 1), f(a) = 0, f(b) = 1 \)

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>f, g, h</td>
<td>Uninterpreted functions</td>
</tr>
<tr>
<td>a, b, c</td>
<td>Uninterpreted constants</td>
</tr>
<tr>
<td>+, -, <, ≤, 0, 1, ...</td>
<td>Interpreted symbols</td>
</tr>
</tbody>
</table>
a > 3, (a = b ∨ a = b + 1), f(a) = 0, f(b) = 1

Model/Structure:

a → 4
b → 3
f → { 4 → 0, 3 → 1, ... }
$$a > 3, (a = b \lor a = b + 1), f(a) = 0, f(b) = 1$$

Model M:
- $M(a) = 4$
- $M(b) = 3$
- $M(f) = \{ 4 \rightarrow 0, 3 \rightarrow 1, \ldots \}$
Many SMT Solvers:
- Barcelogic, Beaver, Boolector,
- CVC3, MathSAT, OpenSMT,
- Sateen, Yices, Z3, ...

They are very efficient for quantifier-free formulas.
Many applications need quantifiers

Modeling the runtime

\(\forall h, o, f: \)
\[
\text{IsHeap}(h) \land o \neq \text{null} \land \text{read}(h, o, \text{alloc}) = t
\]
\[\Rightarrow\]
\[
\text{read}(h, o, f) = \text{null} \lor \text{read}(h, \text{read}(h, o, f), \text{alloc}) = t
\]
Many applications need quantifiers

- Modeling the runtime
- User provided assertions

\forall \ i, j: i \leq j \Rightarrow \text{read}(a, i) \leq \text{read}(b, j)
Many applications need **quantifiers**

- Modeling the runtime
- User provided assertions
- Unsupported theories

\[\forall x: p(x,x) \]
\[\forall x,y,z: p(x,y), p(y,z) \implies p(x,z) \]
\[\forall x,y: p(x,y), p(y,x) \implies x = y \]
Many applications need **quantifiers**

- Modeling the runtime
- User provided assertions
- Unsupported theories
- Solver must be fast in satisfiable instances.

We want to find bugs!
Many Approaches

- Superposition Calculus + SMT.
- Instantiation Based Methods
 - Implemented on top of “regular” SMT solvers.
 - Heuristic quantifier instantiation (E-Matching).
 - Complete quantifier instantiation.

Complete Instantiation – CAV 2009
Instantiation Based Methods: Related work

- Bernays-Schönfinkel class.
- Stratified Many-Sorted Logic.
- **Array Property Fragment**.
- Local theory extensions.
∀x₁, x₂: ¬p(x₁, x₂) ∨ f(x₁) = f(x₂) + 1,
p(a,b), a < b + 1
Simplifying Assumption: CNF

\[\neg p(x_1, x_2) \lor f(x_1) = f(x_2) + 1, \]
\[p(a,b), a < b + 1 \]
Variables appear only as arguments of uninterpreted symbols.

\[
f(g(x_1) + a) < g(x_1) \lor h(f(x_1), x_2) = 0
\]

\[
f(x_1 + x_2) \leq f(x_1) + f(x_2)
\]
Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F^*

“Domain” of f is the set of ground terms A_f

$t \in A_f$ if there is a ground term $f(t)$

Suppose
1. We have a clause $C[f(x)]$ containing $f(x)$.
2. We have $f(t)$.

\rightarrow

Instantiate x with t: $C[f(t)]$.
Example

\begin{align*}
F & \quad F^* \\
g(x_1, x_2) &= 0 \lor h(x_2) = 0, \\
g(f(x_1), b) + 1 &\leq f(x_1), \\
h(c) &= 1, \\
f(a) &= 0
\end{align*}
$g(x_1, x_2) = 0 \lor h(x_2) = 0,$
$g(f(x_1), b) + 1 \leq f(x_1),$
$h(c) = 1,$
$f(a) = 0$

Copy quantifier-free formulas

“Domains”:

$A_f: \{ a \}$
$A_g: \{ \}$
$A_h: \{ c \}$

Complete Instantiation – CAV 2009
Example

\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

<table>
<thead>
<tr>
<th>F</th>
<th>F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g(x_1, x_2) = 0 \lor h(x_2) = 0,]</td>
<td>[h(c) = 1,]</td>
</tr>
<tr>
<td>[g(f(x_1), b) + 1 \leq f(x_1),]</td>
<td>[f(a) = 0,]</td>
</tr>
<tr>
<td>[h(c) = 1,]</td>
<td>[]</td>
</tr>
<tr>
<td>[f(a) = 0]</td>
<td>[]</td>
</tr>
</tbody>
</table>

“Domains”:

\(A_f\)	\{a\}
\(A_g\)	\{\}
\(A_h\)	\{c\}
Example

\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

\[F^* \]
\[h(c) = 1, \]
\[f(a) = 0, \]
\[g(f(a), b) + 1 \leq f(a) \]

“Domains”:
\[A_f : \{ a \} \]
\[A_g : \{ [f(a), b] \} \]
\[A_h : \{ c \} \]
Example

\[
g(x_1, x_2) = 0 \lor h(x_2) = 0, \quad g(f(x_1), b) + 1 \leq f(x_1),
\]
\[
h(c) = 1, \quad f(a) = 0
\]

“Domains”:
\[
A_f : \{ a \}
\]
\[
A_g : \{ [f(a), b] \}
\]
\[
A_h : \{ c \}
\]
Example

F
\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

F*
\[h(c) = 1, \]
\[f(a) = 0, \]
\[g(f(a), b) + 1 \leq f(a), \]
\[g(f(a), b) = 0 \lor h(b) = 0 \]

“Domains”:
\[A_f : \{ a \} \]
\[A_g : \{ [f(a), b] \} \]
\[A_h : \{ c, b \} \]
Example

\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

\[F^* \]
\[h(c) = 1, \]
\[f(a) = 0, \]
\[g(f(a), b) + 1 \leq f(a), \]
\[g(f(a), b) = 0 \lor h(b) = 0 \]

“Domains”:
\[A_f : \{ a \} \]
\[A_g : \{ [f(a), b] \} \]
\[A_h : \{ c, b \} \]
Example

F

\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

F

\[h(c) = 1, \]
\[f(a) = 0, \]
\[g(f(a), b) + 1 \leq f(a), \]
\[g(f(a), b) = 0 \lor h(b) = 0, \]
\[g(f(a), c) = 0 \lor h(c) = 0 \]

“Domains”:

- \(A_f : \{ a \} \)
- \(A_g : \{ [f(a), b], [f(a), c] \} \)
- \(A_h : \{ c, b \} \)
Example

\[g(x_1, x_2) = 0 \lor h(x_2) = 0, \]
\[g(f(x_1), b) + 1 \leq f(x_1), \]
\[h(c) = 1, \]
\[f(a) = 0 \]

\[F \]

\[F^* \]
\[h(c) = 1, \]
\[f(a) = 0, \]
\[g(f(a), b) + 1 \leq f(a), \]
\[g(f(a), b) = 0 \lor h(b) = 0, \]
\[g(f(a), c) = 0 \lor h(c) = 0 \]

\[M \]
\[a \rightarrow 2, b \rightarrow 2, c \rightarrow 3 \]
\[f \rightarrow \{ 2 \rightarrow 0, \ldots \} \]
\[h \rightarrow \{ 2 \rightarrow 0, 3 \rightarrow 1, \ldots \} \]
\[g \rightarrow \{ [0,2] \rightarrow -1, [0,3] \rightarrow 0, \ldots \} \]
Given a model M for F^*,
Build a model M^π for F

Define a projection function π_f s.t.
range of π_f is $M(A_f)$, and
$\pi_f(v) = v$ if $v \in M(A_f)$

Then,
$M^\pi(f)(v) = M(f)(\pi_f(v))$
Basic Idea (cont.)

\[M(A_f) \xrightarrow{\pi_f} M(f) \]

\[M(f) \]

\[M(f(A_f)) \]

\[M(\pi(f)) \]

\[M(A_f) \xrightarrow{\pi_f} M(A_f) \xrightarrow{M(f)} M(f(A_f)) \]

Complete Instantiation – CAV 2009
Given a model M for F^*, build a model M^π for F

In our example, we have: $h(b)$ and $h(c)$

$\rightarrow A_h = \{ b, c \}$, and $M(A_h) = \{ 2, 3 \}$

$\pi_h = \{ 2 \rightarrow 2, 3 \rightarrow 3, \text{else} \rightarrow 3 \}$

$M(h)$

$\{ 2 \rightarrow 0, 3 \rightarrow 1, \ldots \}$

$M^\pi(h)$

$\{ 2 \rightarrow 0, 3 \rightarrow 1, \text{else} \rightarrow 1 \}$

$M^\pi(h) = \lambda x. \text{if}(x=2, 0, 1)$
Example

F
- $g(x_1, x_2) = 0 \lor h(x_2) = 0$
- $g(f(x_1), b) + 1 \leq f(x_1)$
- $h(c) = 1$
- $f(a) = 0$

F*
- $h(c) = 1$
- $f(a) = 0$
- $g(f(a), b) + 1 \leq f(a)$
- $g(f(a), b) = 0 \lor h(b) = 0$
- $g(f(a), c) = 0 \lor h(c) = 0$

M
- $a \rightarrow 2$, $b \rightarrow 2$, $c \rightarrow 3$
- $f \rightarrow \lambda x. 2$
- $h \rightarrow \lambda x. \text{if}(x=2, 0, 1)$
- $g \rightarrow \lambda x,y. \text{if}(x=0 \land y=2, -1, 0)$

M\(\pi\)
- $a \rightarrow 2$, $b \rightarrow 2$, $c \rightarrow 3$
- $f \rightarrow \{ 2 \rightarrow 0, \ldots \}$
- $h \rightarrow \{ 2 \rightarrow 0, 3 \rightarrow 1, \ldots \}$
- $g \rightarrow \{ [0,2] \rightarrow -1, [0,3] \rightarrow 0, \ldots \}$
Example: Model Checking

\(M^\pi \)

\(a \rightarrow 2, b \rightarrow 2, c \rightarrow 3 \)
\(f \rightarrow \lambda x. \ 2 \)
\(h \rightarrow \lambda x. \ \text{if}(x=2, \ 0, \ 1) \)
\(g \rightarrow \lambda x,y \. \ \text{if}(x=0 \land y=2, -1, 0) \)

Does \(M^\pi \) satisfies?

\(\forall x_1, x_2 : g(x_1, x_2) = 0 \lor h(x_2) = 0 \)

\(\forall x_1, x_2 : \text{if}(x_1=0 \land x_2=2, -1, 0) = 0 \lor \text{if}(x_2=2, 0, 1) = 0 \) is valid

\(\exists x_1, x_2 : \text{if}(x_1=0 \land x_2=2, -1, 0) \neq 0 \land \text{if}(x_2=2, 0, 1) \neq 0 \) is unsat

\(\text{if}(s_1=0 \land s_2=2, -1, 0) \neq 0 \land \text{if}(s_2=2, 0, 1) \neq 0 \) is unsat
Suppose M^π does not satisfy $C[f(x)]$.

Then for some value v, $M^\pi\{x \rightarrow v\}$ falsifies $C[f(x)]$.

$M^\pi\{x \rightarrow \pi_f(v)\}$ also falsifies $C[f(x)]$.

But, there is a term $t \in A_f$ s.t. $M(t) = \pi_f(v)$
Moreover, we instantiated $C[f(x)]$ with t.

So, M must not satisfy $C[f(t)]$.
Contradiction: M is a model for F^*.

Complete Instantiation – CAV 2009
Refinement 1: Lazy construction

- F^* may be very big (or infinite).
- Lazy-construction
 - Build F^* incrementally, F^* is the limit of the sequence $F^0 \subseteq F^1 \subseteq \ldots \subseteq F^k \subseteq \ldots$
 - If F^k is unsat then F is unsat.
 - If F^k is sat, then build (candidate) M^π
 - If M^π satisfies all quantifiers in F then return sat.
Refinement 2: Model-based instantiation

Suppose M^π does not satisfy a clause $C[f(x)]$ in F.

Add an instance $C[f(t)]$ which “blocks” this spurious model. Issue: how to find t?

Use model checking, and the “inverse” mapping π_f^{-1} from values to terms (in A_f).

$$\pi_f^{-1}(v) = t \quad \text{if} \quad M^\pi(t) = \pi_f(v)$$
Model-based instantiation: Example

\[\forall x_1: f(x_1) < 0, \]
\[f(a) = 1, \quad f(b) = -1 \]
\[f(a) < 0 \]

unsat

Model Checking \[\forall x_1: f(x_1) < 0 \]
not \[f(s_1 = 2, 1, -1) < 0 \]

\[s_1 \rightarrow 2 \]
\[\pi_f^{-1}(2) = a \]
Is our procedure refutationally complete?

FOL Compactness

A set of sentences is unsatisfiable iff it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then apply compactness to $F^* \cup T$
Infinite F^*: Example

F

$\forall x_1: f(x_1) < f(f(x_1)),$
$\forall x_1: f(x_1) < a,$
$1 < f(0).$

F^*

$f(0) < f(f(0)),$ $f(f(0)) < f(f(f(0))),$...
$f(0) < a,$ $f(f(0)) < a,$...
$1 < f(0)$

Unsatisfiable

Every finite subset of F^* is satisfiable.
Infinite F^*: What is wrong?

- Theory of linear arithmetic T_Z is the set of all first-order sentences that are true in the standard structure Z.
- T_Z has non-standard models.
- F and F^* are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.
- Compactness does not hold.
- F and F^* are still equisatisfiable.
Given a clause $C_k[x_1, \ldots, x_n]$

Let

$S_{k,i}$ be the set of ground terms used to instantiate x_i in clause $C_k[x_1, \ldots, x_n]$

How to characterize $S_{k,i}$?

<table>
<thead>
<tr>
<th>F</th>
<th>(\Delta_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>j-th argument of f in C_k</td>
<td>system of set constraints</td>
</tr>
<tr>
<td>a ground term t</td>
<td>$t \in A_{f,j}$</td>
</tr>
<tr>
<td>$t[x_1, \ldots, x_n]$</td>
<td>$t[S_{k,1}, \ldots, S_{k,n}] \subseteq A_{f,j}$</td>
</tr>
<tr>
<td>x_i</td>
<td>$S_{k,i} = A_{f,j}$</td>
</tr>
</tbody>
</table>
\[\Delta_F: \text{Example} \]

F

- \(g(x_1, x_2) = 0 \lor h(x_2) = 0 \),
- \(g(f(x_1), b) + 1 \leq f(x_1) \),
- \(h(c) = 1 \),
- \(f(a) = 0 \)

\(\Delta_F \)

- \(S_{1,1} = A_{g,1} \), \(S_{1,2} = A_{g,2} \), \(S_{1,2} = A_{h,1} \)
- \(S_{2,1} = A_{f,1} \), \(f(S_{2,1}) \subseteq A_{g,1} \), \(b \in A_{g,2} \)
- \(c \in A_{h,1} \)
- \(a \in A_{f,1} \)

\(\Delta_F \): least solution

- \(S_{1,1} = \{ f(a) \} \), \(S_{1,2} = \{ b, c \} \)
- \(S_{2,1} = \{ a \} \)

Use \(\Delta_F \) to generate \(F^* \)
Δ_F is **stratified** then the least solution (and F*) is finite.

<table>
<thead>
<tr>
<th>t[S_{k,1}, ..., S_{k,n}] \subseteq A_{f,j}</th>
<th>level(S_{k,i}) < level(A_{f,j})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{k,i} = A_{f,j}$</td>
<td>level(S_{k,i}) = level(A_{f,j})</td>
</tr>
</tbody>
</table>

New decidable fragment: NEXPTIME-Hard.

The least solution of Δ_F is exponential in the worst case.

$a \in S_1$, $b \in S_1$, $f_1(S_1, S_1) \subseteq S_2$, ..., $f_n(S_n, S_n) \subseteq S_{n+1}$

F* can be doubly exponential in the size of F.
Arithmetical literals: π_f must be monotonic.

<table>
<thead>
<tr>
<th>Literal of C_k</th>
<th>Δ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg(x_i \leq x_j)$</td>
<td>$S_{k,i} = S_{k,j}$</td>
</tr>
<tr>
<td>$\neg(x_i \leq t), \neg(t \leq x_i)$</td>
<td>$t \in S_{k,i}$</td>
</tr>
<tr>
<td>$x_i = t$</td>
<td>${t+1, t-1} \subseteq S_{k,i}$</td>
</tr>
</tbody>
</table>

Offsets:

<table>
<thead>
<tr>
<th>j-th argument of f in C_k</th>
<th>Δ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i + r$</td>
<td>$S_{k,i}+r \subseteq A_{f,j}$</td>
</tr>
<tr>
<td></td>
<td>$A_{f,j}+(-r) \subseteq S_{k,i}$</td>
</tr>
</tbody>
</table>
Extensions: Example

Shifting

\neg (0 \leq x_1) \lor \neg (x_1 \leq n) \lor f(x_1) = g(x_1 + 2)
More Extensions

- Many-sorted logic
- Pseudo-Macros

\[0 \leq g(x_1) \lor f(g(x_1)) = x_1, \]
\[0 \leq g(x_1) \lor h(g(x_1)) = 2x_1, \]
\[g(a) < 0 \]
SMT solvers usually return *unsat* or *unknown* for quantified SMT formulas.

Z3 was the only SMT-solver in SMT-COMP’08 to correctly answer satisfiable quantified formulas.

New decidable fragments.

Model-based instantiation and Model checking.

Conditions for refutationally complete procedures.

Future work: more efficient model checking techniques.

Thank you!