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Abstract. Modern program analysis and model-based tools are increas-
ingly complex and multi-faceted software systems. However, at their core
is invariably a component using a logic for describing states and transfor-
mations between system states. Logic inferences engines are then critical
for the functionality of these systems. A commonly adapted approach
has been to use a custom solver, built and tailored for the specific ap-
plication. Custom solvers come with custom limitations: extending and
scaling these often require a high investment. Taking as a starting point
the solver Z3, developed at Microsoft Research; we describe how an ef-
ficient, scalable and expressive solver for Satisfiability Modulo Theories
(SMT) is part of changing this landscape. Tools can now use the SMT
solver with advantage to solve logic-related problems at a relatively high-
level of abstraction while attaining scalability and features that custom
solvers would have to duplicate.
We summarize 10 current applications of the Z3 solver and relate these to
10 main technological enabling factors. With every application there is a
new opportunity, and with every solution there is a new challenge prob-
lem. Thus, we also summarize 10 challenges and 10 aspiring directions
in the context of Z3 in particular, and for SMT solvers in general.

1 Introduction

This paper takes as starting point several of the applications that currently
use the SMT solver Z3 [15]. Figure 1 summarizes 10 current applications, 10
main technological enabling factors in Z3, 10 challenging problem areas, and 10
aspiring directions for future applications. The rest of the paper is devoted at
introducing the current applications and point out where the enabling factors
are used and where the challenging problem areas arise. Most of the 10 aspiring
directions are of course left for future work. We will on the other hand devote
most of our attention diving into a couple of the challenging problems for SMT
solvers.

The scope of the paper is narrowly centered around Z3 and we don’t attempt
a comprehensive survey of other tools, methods and applications here. Several of
the challenges and the aspiring directions are already being pursued in recent and
even classical literature. The challenges mainly reflect what we see as valuable
research directions for an SMT tool directed towards applications. We assume



basic knowledge of SMT terminology, but explain some of the applications in
more detail.

Applications Enablers Challenges Directions

1. Dynamic Symbolic
Execution

Finite model
generation

Infinite model
generation

Model-guided
Dynamic Symbolic
Execution

2. Static Program
Analysis

Succeed/fail fast Truth maintenance
Static Analysis
using Symbolic
Execution

3. Program Model
Checking

Cooperating
satisfiability and
simplification

Proofs and
interpolants

Game
Programming

4. Extended Static
Checking

Back-jumping,
learning strong
lemmas [5]

Optimal lemma
learning

Non-linear
constraints for
non-linear Systems

5. Program
Verification

Scaling quantifier
instantiation with
triggers [11]

Harnessing and
understanding
triggers

Real-time systems
verification

6. Model-based
Testing

Using relevancy,
avoiding
irrelevancy [13]

Predicting and
diagnosing search
behavior

Program synthesis

7.
Combinatorial
Test-input
generation

Model-based theory
combination [12]

Harnessing
parallelism

Non-convex
optimization

8. Model-program
analysis

A portfolio of
decidable, succinct
logics [16] [36]

a larger portfolio of
succinct logics

Models for security
and authentication

9. Model-based
Development

Free and absolutely
free functions

Free functions in
non-disjoint
combinations

Biological Systems

10. Quantitative
Termination

Quantifier
reasoning [17]
[34][51]

Quantifier
elimination

Qualitative
Termination

Fig. 1. Ten Applications, Enablers, Challenges and Directions

The organization of the paper follows Figure 1. Dynamic Symbolic execu-
tion applications are described in Section 2. An essential feature of the SMT
solver is the ability to generate finite models. Infinite models and models that
mix finite and infinite domains pose new challenges. Recent and ongoing work
in the context of Dynamic Symbolic Execution includes using models together
with programs to guide test-input generation. An experience with static analy-
sis is summarized in Section 3. In this context, the time to solve small queries
proved highly critical, and poses a challenge for SMT solvers that are generally
perceived efficient. The use of SMT solving in program model checking is sum-



marized in Section 4. Section 5 discusses extended static checking and verified
software. Two main challenge problems are described in more depth here: the
use and harnessing of triggers for quantifier instantiation, and the problem of
generating precise theory lemmas in the context of SMT solvers. Section 6 dis-
cusses a range of diverse applications under a common model-based umbrella.
We found a common trait in these applications that they use high-level theories
for describing software. So a set of rich theories, facilities for succinctly encoding
problems, and a good theory combination strategy was highly valuable. Section 7
points to uses of SMT solving for program termination and program complexity
analysis.

2 Dynamic Symbolic Execution

Dynamic symbolic execution [20] has recently gained attention in the context of
test-case generation and smart white-box file fuzzing. It extends static symbolic
execution [27] by using concrete execution traces to obtain symbolic constraints.
In order to explore a different execution path it suffices to modify one of the
extracted symbolic traces by selecting and negating a branch condition. The
modified path condition is checked for satisfiability. It is a logical constraint
that uses theories typically supported in SMT solvers. A satisfying assignment
to the modified path condition is a new input that can be used for steering
execution into new paths.

int GCD( int x , int y ) {
while ( true ) {

int m = x % y ;
i f (m == 0) return y ;
x = y ;
y = m;

}
}

Program 2.1: GCD Program

To illustrate the basic idea
of dynamic symbolic execution
consider the greatest common
divisor program 2.1. It takes the
inputs x and y and produces
the greatest common divisor of
x and y.

Program 2.2 represents the
static single assignment unfold-
ing corresponding to the case
where the loop is exited in the
second iteration. The sequence

of instructions is equivalently represented as a formula where the assignment
statements have been turned into equations. The resulting path formula is sat-
isfiable. One satisfying assignment is of the form:

x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0

Thus, the call GCD(2,4) causes the loop to be entered twice. Dynamic symbolic
test-case generation is of course not limited to branch conditions that occur
explicitly in the program. It can also be used for creating inputs that cause the
program to enter an error state. For instance, it can be used to create inputs
that cause remainder to be called with 0. Also, if we add a post-condition to



int GCD( int x0 , int y0 ) {
int m0 = x0 % y0 ;
i f (m0 == 0) return y0 ;
x1 = y0 ;
y1 = m0 ;
int m1 = x1 % y1 ;
i f (m1 == 0) return y1 ;

}

(m0 = x0 % y0) ∧
¬(m0 = 0) ∧
(x1 = y0) ∧
(y1 = m0) ∧
(m1 = x1 % y1) ∧
(m1 = 0)

Program 2.2: GCD Path Formula

say that the result be non-negative we would discover that this implementation
does not satisfy this property.

There are today several tools based on dynamic symbolic execution. Some
of the earliest such tools include CUTE [37], DART, and Exe [8]. Microsoft has
developed several related tools including SAGE, Pex, and Yogi [20], and Vigi-
lante [9]. SAGE, for instance, is used with significant scale and success as part
of the security testing efforts for Microsoft parsers for media formats. Pex inte-
grates directly into Microsoft’s Visual Studio development environment. It allows
programmers to use parametrized unit testing directly during development.

Common to the tools is a reliance on a solver that can represent each pro-
gram instruction as a, preferably equivalent, logical formula. Thus, the main
requirements these tools impose are for a solver to provide (1) a way to en-
code machine arithmetic, (2) arrays and heaps and (3) generate finite models
for driving execution.

The frontiers for dynamic symbolic execution include using information from
static analysis for pruning the search space of the dynamic execution traces. The
purpose it to prune exploration of redundant traces. Another frontier is combin-
ing dynamic symbolic execution with model-based techniques: library routines
can be replaced by higher-level models, such that the solver can work on highly
succinct representations of the actual execution traces that are encountered. For
example, string library routines [6], can be modeled at the level of the theory of
strings.

3 Static analysis

We recently [50] integrated the static program analysis tool PREfix [7] with Z3.
The bit-vector theory in Z3 helped turning PREfix into a bit-precise static anal-
ysis tool. Since 1999, PREfix has been used at Microsoft to analyze C/C++ pro-
duction code. It relies on an efficient custom constraint solver, but addresses bit-
level semantics only partially. On the other hand, Z3 supports precise machine-
level semantics for integer arithmetic operations.

The integration of PREfix with Z3 allows uncovering software bugs that
could not previously be identified using PREfix, in particular integer overflows.



These typically arise when the programmer wrongly assumes mathematical in-
teger semantics, and they are notorious causes of buffer overflow vulnerabilities
in C/C++ programs. As anticipated, when running the integration on a large
legacy code base for the next version of a Microsoft product we uncovered a
number of bugs related to integer overflows.

An interesting lesson with the integration was that a bit-precise analysis tool
could very easily wrongly flag false positive integer overflow bugs. The most
common form of false positives were when overflows are parts of the program
intent. Another form of false positives occurred in situations where pointer arith-
metic on string pointers could potentially overflow in the presence of very large
strings. Such situations are however often ruled out by simple limits of the vir-
tual address space. So we developed useful filters for avoiding false positives and
instead narrow the analysis on safety critical situations where bugs occur in spite
of programmer intent.

Another valuable lesson was that a tool like PREfix relies on a massive set of
relatively small queries. Straight-forward bit-blasting is prohibitively expensive
in this context.

4 Program Model Checking

The tools SLAM/SDV [1] and Yogi [22] both use Z3 to extract and check a
finite state abstraction of programs. They are currently mainly applied to driver
verification. Yogi maintains symbolic states using formulas. It uses Z3’s simplifier
to prune redundancies from the states and uses satisfiability checking for testing
subsumption between states. In contrast to BLAST [24], these tools do not
use interpolation as part of the abstraction. There are several ways to extract
interpolants from an SMT solver. One uses proof objects. Proof objects are now
available in Z3 [14] and are currently being integrated with the Isabelle theorem
prover to reconstruct LCF style proofs 1.

5 Extended Static Checking and The Ideal of Verified

Software

The grand challenge of verified software [25] strives towards scientific ideals of
verified software. The main idea of assigning meanings to programs using log-
ical assertions was conceived by Floyd and Hoare in the 1960’s. Such logical
assertions, also known as code contracts 2, can be a pre-condition assumption

that specifies how a procedure may be called, a post-condition assertion that
specifies what the resulting state of a procedure call should satisfy, and loop and

object invariants that capture properties of intermediary states. Core to assign-
ing meanings is a verification condition generator that converts code annotated
with contracts into logical formulas.

1 http://www4.in.tum.de/˜boehmes/
2 http://research.microsoft.com/contracts/



The programming system Spec# [2] integrates contracts for extended type
safety. To generate verification conditions, Spec# programs embed into a low-
level procedural language Boogie. Boogie can also be used in stand-alone mode.
Boogie and Spec# were developed based on experiences with the extended static

checker ESC/Modula 3 and ESC/Java [19]. The system HAVOC [10][40] uses the
same Boogie verification condition generator, but targets extended type safety
and heap properties of low level code. Heap properties are also the subject of [41].
The system [3] checks refinement types of F7 programs. It produces verification
conditions directly into the Simplify format, which can be processed by Z3.

The VCC system [18] uses Boogie just like Spec# and HAVOC, but targets
more ambitious functional correctness properties of the Viridian Hyper-V written
in C. The Hyper-V is a relatively small (100K lines) operating system layer. The
VCC system is used in a project involving around 20 researchers over 3 years
for specifying and verifying aspects of the Hyper-V. It is thus used in one of
the largest formal verification efforts to date. Serveral other operating system
verification projects are surveyed in [28]. Finally, it is entirely possible to use
Boogie directly as a target of assembly programming for operating systems [23].

5.1 Verification Condition Generation

A verification condition generator for an imperative language can be specified
using Dijkstra’s weakest liberal precondition predicate transformer wp with a few
basic rules. Figure 2 contains the definition of wp for basic program statements.

wp(x := E, ϕ) = ϕ[E/x]

wp(havoc(x), ϕ) = ∀x.ϕ

wp(assert(P ), ϕ) = P ∧ ϕ

wp(assume(P ), ϕ) = P → ϕ

wp(S; T, ϕ) = wp(S,wp(T, ϕ))

wp(S2T, ϕ) = wp(S, ϕ) ∧ wp(T, ϕ)

wp(if P then S else T, ϕ) =
wp(assume(P ); S, ϕ)

∧ wp(assume(¬P ); T, ϕ)

wp

(

while P do

assert(R); S
, ϕ

)

=

wp















assert(R);
havoc(x);
assume(R);
if P then

S; assert(R);
assume(false)

, ϕ















Fig. 2. Weakest pre-conditions for program statements

The transformer wp(S, ϕ) takes a program statement S and a predicate ϕ
and produces the most permissive (weakest) predicate R, such that if R holds
before executing S, then S does not enter an error state, and if S terminates, it



terminates in a state satisfying ϕ. Our imperative language contains a few non-
standard constructs, such as assertions, assumptions and havoc. An assertion
is a statement that causes the program to enter an error state if the execution
that leads to the assertion statement does not satisfy the assertion formula. An
assumption is a statement that can be used to filter out execution traces that vio-
late the formula in the assumption. Havoc statements take one or more program
variables as argument. It non-deterministically assigns a random value to the
program variables. Furthermore, it may assign different values to the variables
in different executions. Even though a program does not contain a havoc state-
ment, this construct is useful for modeling while loops. While loops annotated
with loop invariants reduce to the existing constructs. When producing the weak-
est liberal precondition for a while loop of the form while P do assert(R); S
where R is the loop invariant, it suffices to summarize the effect of each loop
iteration by a single pass through the loop. The havoc construct is used to “fast
forward” to an arbitrary iteration of the loop.

The program in Figure 3 shows a simple Spec# program that uses contracts.
The object invariant for C states that the value of the attribute z remains non-
negative. There is a pre-condition to the method M , which requires that the
parameter a be positive. The object invariant corresponds to implicit pre- and

class C {
private int z ;
i n v a r i an t z >= 0 ;

public C( ) { z = 1 ; }

public void M( int a ) {
assume(a > 0) ;
z = 100/ a ;

}
} ;

wp





















assume(z ≥ 0);
assume(a > 0);
assert(a 6= 0);
z := 100/a;
assert(z ≥ 0)











, true











= (z ≥ 0 ∧ a > 0) → (a 6= 0 ∧ 100/a ≥ 0)

Fig. 3. A program with contracts and a weakest pre-condition

post-conditions. To simultaneously check the object invariant and that division
does not enter an error-state (by being invoked by a = 0), we compute the
formula in the right column of Figure 3.

5.2 From Control Flow to Verification Conditions

The program 3 illustrated using a simple example how checking for the absence
of errors and object invariants can be provided for during verification condition
generation. For larger programs, the verification conditions may become much
larger or more intricate. Boogie and ESC/Java use techniques [30] for control-
ling the number and size of verification conditions that are generated from a



single method body. These systems create one formula corresponding to multi-
ple paths. A contrived method example is provided in Program 4 of a method
body, that produces a simple but tricky verification condition. It is not unrea-

public void Diamond( int a ) {
i f ( p1 ( a ) )

a++;
else

a−−;
}
. . .
i f ( p100 ( a ) )

a++;
else

a−−;
}

assert(old(a) − 100 ≤ a ≤ old(a) + 100) ;
}

} ;



















(

(p1(a0) ∧ a1 ' a0 + 1)
∨ (¬p1(a0) ∧ a1 ' a0 − 1)

)

∧

(

(p2(a1) ∧ a2 ' a1 + 1)
∨ (¬p2(a1) ∧ a2 ' a1 − 1)

)

∧ . . .

∧

(

(p100(a99) ∧ a100 ' a99 + 1)
∨ (¬p101(a99) ∧ a100 ' a99 − 1)

)



















→
a0 − 10 ≤ a100 ≤ a0 + 10

Fig. 4. A Diamond Program and corresponding verification condition

sonable to expect a verification condition generator to extract from the program
a formula that is of the same size and equivalent to the the formula listed next
to the program. While this particular example is contrived, verification condi-
tions of these forms pose hard challenges for most of the main DPLL(T) based
solvers. In a nutshell, DPLL(T) based solvers typically are only able to produce
intermediary lemmas that use literals already present in the input. They tend to
avoid producing lemmas using literals that don’t come from the input. However,
the only short (resolution) proofs of theorems like these require intermediary
lemmas of the form a0 − 1 ≤ a1 ≤ a0 + 1, a0 − 2 ≤ a2 ≤ a0 + 2, etc. in or-
der to converge to short proofs. The literals used in these lemmas don’t occur
in the original formula. Consequently, an interesting direction of research is to
develop efficient techniques for improving lemma learning for DPLL(T)-based
SMT solvers [49][5], and of course investigating alternatives to DPLL(T).

5.3 Programming Triggers

It is not uncommon that the assertions, assumptions and loop invariants use
quantified formulas for expressing program properties. For example, the invari-
ant for a loop that initializes an arrayA using the loop index i can be summarized
as ∀j : 0 ≤ j < i→ is initialized (A[j]). It is therefore a natural minimal require-
ment that theorem provers that support program verification be able to support
formulas using quantifiers. A more distinguished source of quantified formulas in



program verification is from axiomatization of theories that arise from modeling
how procedures affect the program heap and from modeling language properties,
such as object-oriented type systems.

There are therefore several sources for integrating strong quantifier support in
the context of SMT solvers. A current main approach to integrating quantifiers
with SMT solving is by producing quantifier instantiations. The instantiated
quantifiers are then quantifier free formulas that are handled by the main ground
SMT solving engine. It is an art and craft to control quantifier instantiations to
produce just the useful instantiations [35]. We will here touch on selected topics
of quantifier instantiation for SMT solving in the context of program verification.

A :

∀t . t <: t

∀t, u, v . t<: u ∧ u<: v → t<: v

∀t, u . t<: u ∧ u<: t → t ' u

∀t, u, v . t<: u ∧ t<: v → u<: v ∨ v<: u

∀t, u . t<: u → Array〈t〉<: Array〈u〉

In object-oriented type sys-
tems used for Java and C# it
is the case that objects are re-
lated using a single inheritance
scheme. In other words, every
object inherits from at most one
unique immediate parent. It is
also a commonly adapted fea-
ture that arrays behave in a
monotone way with respect to
inheritance. We can specify, us-

ing first-order axioms, that the inheritance relation is a partial order satisfying
the single inheritance property, and that the array type constructor is monotone
with respect to inheritance.

Let us call the axioms A. Suppose we are provided a quantifier-free formula ϕ
that uses only uninterpreted functions, the predicate <: as well as the function
Array. We wish to check when ϕ is consistent with respect to the background
theory for single-inheritance provided above. A question is which instantiations
Ainst of the quantified axioms are necessary and sufficient for reducing satisfia-
bility checking to ground satisfiability. For controlling which instantiations of the
axioms are produced let us consider an annotation of the axioms using triggers.
A trigger annotated universal formula is a formula of the form

ψannot : ∀x . {p1(x), . . . , pk(x)} . ψ(x)

where k ≥ 1, p1, . . . , pk, are terms that contain all variables from x. Given a
model M of a quantifier free formula ϕ we say that ϕ is saturated with respect

to ψannot if whenever there are sub-terms t1, . . . , tk in ϕ and a substitution θ,
such that p1θ

M = tM1 , . . . , pkθ
M = tM

k
, then ϕ implies the conjunction ψθ.

Returning to the axioms for the single inheritance object system. The first
question is what are the useful triggers? If we use the following trigger annota-
tion:

∀t, u . {t<: u} . t<: u → Array〈t〉<: Array〈u〉



then given the formula ϕ := t0<: u0 we end up generating an infinite number of
instantiations:

t0<: u0 → Array〈t0〉<: Array〈u0〉

Array〈t0〉<: Array〈u0〉 →
Array〈Array〈t0〉〉<: Array〈Array〈u0〉〉

Array〈Array〈t0〉〉<: Array〈Array〈u0〉〉 →
Array〈Array〈Array〈t0〉〉〉<: Array〈Array〈Array〈u0〉〉〉

. . .

We say that the triggers cause a matching loop.

Aannot :

∀t . {t<: t} . t<: t

∀t, u, v . {t<: u, u<: v} .
t<: u ∧ u<: v → t<: v

∀t, u . {t<: u, t<: u} .
t<: u ∧ u<: t → t ' u

∀t, u, v . {t<: u, t<: v} .
t<: u ∧ t<: v → u<: v ∨ v<: u

∀t, u . {Array〈t〉<: Array〈u〉} .
t<: u → Array〈t〉<: Array〈u〉

Let us instead consider the
pattern annotations listed in
Aannot. We first observe that if
M is a model of ϕ, then there
is only a finite set Ainst of in-
stantiations of Aannot such that
the formula ϕ ∧ Ainst is satu-
rated with respect to M. This
follows because the first four
axioms only introduce at most
all combinations t<: u, where
t and u are existing terms. In-
stantiating the last axiom only
introduces occurrences of <:
for smaller terms than these al-
ready present. We can also es-

tablish, using an ad hoc model construction, that consistency with respect to
the saturation of Aannot implies ground consistency. It is of course a valuable
research direction to automatically infer pattern annotations that are complete
by construction, and infer also the corresponding models [51].

The choice of triggers is not always unique. We could have considered the
following trigger for the monotonicity axiom:

∀t, u . {t<: u,Array〈t〉,Array〈u〉} . t<: u → Array〈t〉<: Array〈u〉

The resulting annotation still leads to a terminating and complete saturation,
but the number of instances that it produces can vary significantly.

The example of the single-inheritance type system with monotonicity illus-
trated matching loops, performance trade-offs with different triggers, and com-
pleteness of trigger-based saturation. It shows that programming triggers can
be tricky. Nevertheless, it appears to be quite useful. A decision procedure for
the non-extensional theory of arrays can be encoded using axioms with triggers.
A theory of reachability and linked lists has also been encoded using triggers
in [29]. In the general case there are simple but useful ways to control quantifier
instantiation using triggers. One approach is used in the verification of garbage



collectors [23]. It introduces an auxiliary predicate T(x), and the axiom ∀x.T(x).
The quantifier triggers can then use the term T(p) to select patterns p for in-
stantiation. The approach works as long as the encoding ensures that T is only
used in positive contexts.

5.4 Annotation inference and strengthening

One of the most challenging problems in deductive program verification is to
find inductive program invariants [4], [31]. The task is even more challenging
when the inductive invariants require quantifiers. While the previous section
illustrated how the SMT solver can handle quantified invariants it does not find
these. The inference of auxiliary invariants is therefore an important challenge.

One technique tested in HAVOC [39] is the inference of auxiliary assertions
by pruning a candidate conjunction of invariants until a fixed-point is reached.
It is a cheaper and often as effective method as predicate abstraction used in
software model-checking.

Another technique that was studied in [45] is to use test-case generation
techniques to debug annotations with non-inductive quantified invariants. The
idea is to extract path conditions from programs with (quantified) contracts
and loop invariants, and use the dynamic symbolic execution techniques to find
path conditions that violate the invariants. It allows one potentially to analyze
test cases with a traditional debugger to determine the cause of the error; the
developer may then correct the program or the contracts and repeat the process.

The VS3 project [43][42] uses Z3 to derive program invariants that involve
quite complex formulas.

Nevertheless, the experience with scaling deductive program verification for
invariants of large programs remains highly challenging. A particularly frustrat-
ing experience in the context of VCC has been when verifying a procedure body
using pre-conditions imposed by calling contexts. When the pre-conditions are
changed, also the entire procedure body needs to be re-established. In the scale
of verification condition formulas taking several MB, the time to re-establish and
fix annotations can be quite demanding.

6 Model-based techniques

Model-based techniques tend to use high-level description formalisms and ab-
stract domains for describing systems. There are several systems in the space
of model-based techniques at Microsoft using Z3 in crucial ways. We summarize
some of these here.

Model Programs Model programs are behavioral specifications that can be
described succinctly and at a high-level of abstraction as Abstract State Ma-
chines or ASMs. ASMs can be represented as guarded commands encoded as
logical formulas (even though not all syntactically well-formed guarded com-
mand formulas are legal ASMs). Furthermore, the abstract data-types typically



used in abstract state machine descriptions can often be directly encoded using
theories for arrays, sets and bags.

The use of bounded model checking techniques and SMT solvers is investi-
gated in a sequence of recent papers. Bounded model program checking (BMPC)
problems are investigated in [48], [46], [47]. The case of basic model programs
maps in general into Presburger arithmetic, but often directly into Z3’s ground
decidable fragment. Bounded Conformance Checking [33] is a variant of BMPC
where it is checked if two model programs are related using a refinement rela-
tion. The Bounded Input Output Conformance Problem [32] checks if programs
are input-output conformant (ioco). It can be checked directly for input-output
model programs or reduced to BMPC.

SpecExplorer Model-based testing is used at a large scale at Microsoft in the
context of the disclosure and documentation of Microsoft network protocols [21].
Z3 is currently being integrated as part of this effort for combinatorial test-input
generation as well as generating model-based tests.

Model-based development The FORMULA [26] system uses a specification
style inspired by Prolog for model-based design and development. Z3 is used as
part of a symbolic execution engine. The execution engine relies on a custom
quantifier elimination procedure for the theory of term algebras.

7 Qualitative and Quantitative Termination

The vast majority of analysis applications are devoted to safety properties of
programs. They are concerned about whether a program can enter an error
state or whether a program or a module satisfies a prescribed contract. Of equal
importance are liveness properties: does a program terminate 3? An even more
timely quest is obtaining more qualitative information from programs, that is
more precise information about the running time of programs.

8 Conclusion

We have summarized an array of applications currently being integrated with
the SMT solver Z3. We also touched on two selected areas that pose significant
challenges and opportunities for research on SMT solvers. There are several other
challenges and future applications that we hope to describe and tackle in future
work.

3 http://www.foment.net/byron/fsharp.shtml
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