Regression Tests
and the
Inventor’s Dilemma

Leonardo de Moura
Microsoft Research

How do we make progress?

We are trying to solve HARD problems
Automated Reasoning Tools use heuristics

Progress is not monotonic

How do we release new versions?

How do we find bugs?

Regression tests

Input

v

-

Y

Produced Output

Expected Output

Regression tests: the 15 directive

Every bug report becomes a regression test

Fuzzer

“Random” input generator
Syntactically valid input
It is not trying to expose bugs in the parser

Runtime assertions

Input

- =

Inefficient Efficient
Version Version

- = 4

Outputl Output?2

External Oracle

Input

- =

Procedure

- =

Output, Certificate j> Oracle

Example: Oracles in nlsat

Lemmas

S|9POIA

Example: Oracles in nlsat

Cuprent Assignment Conflicting Core
-z <0,
x V2, y-1 272 —y2 = 0,

-xz —y=0

Example: Oracles in nlsat

Cuprent Assignment Conflicting Core
-z<0,
x V2, y-—1 272 —y2 = 0,
-xz —y=0
1 1
7Z— — — 7Z— —

V2 V2

Example: Oracles in nlsat

Cuprent Assignment Conflicting Core
-z <0,
x V2, y-1 272 —y2 = 0,
-xz —y=0
1 1
7Z— — — 7Z— —

V2 V2

Example: Oracles in nlsat

Cuprent Assignment Conflicting Core
-z<0,
x V2, y-1 272 —y2 = 0,
-xz —y=0
1 1
7Z— — — 7Z—> —

V2 V2

Example: Oracles in nlsat

Cuprent Assignment Conflicting Core
—1z<0,
x V2, y-1 272 —y2 = 0,
-xz —y=0

To Oracle:
Mathematica

Resolve[ForAll[{x, vy, z}, !/(x== Root[#1"2-2 &, 2] && y==1) ||

z<0 ||
1(2*z272 -y"2==0) ||
x*z -y ==0],

Reals]

“Telemetry”

“Call home” feature.
Collect stats from every run.
Store stats in a server.

Inventor’s Dilemma

“The new version is slower.”

“The new version fails on my problem.”

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook, .

SDV: STATIC DRIVER VERIFIER
SLAM

Overview

http://research.microsoft.com/slam/
SLAM/SDV is a software model checker.
Ships with DDK
Application domain: device drivers.
Architecture:
c2bp C program - boolean program (predicate abstraction).
bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)
SMT solvers are used to:
Perform predicate abstraction,
Check path feasibility.
c2bp makes several calls to the SMT solver.
The formulas are relatively small.

SLAM/SDV Summary

Regression tests are extensively used

Rigid process for incorporating new modules

Several months to move from Z3 1.x — Z3 3.x

Long process for integrating Yogi

CLOUSOT STATIC ANALYZER

public static string[] £935555$Ihgggg(thi5 string[] list, ref int count,
{

Contract.Requires(list != null);
Contract.Requires(® <= count);
Contract.Requires(count <= list.Length);

if (list.Length == count))

{
var tmp = new string[count * 2];
-,
Ar.*r* = (parameter) ref int count
} 11s Suggestion: Consider initializing the array with a value larger than count * 2. Fix: count* 2 + 1

VVVVVVVVVVVVVVVVVVVVVVVVVVVV

¥ (parameter) string(] list

warning: Array access might be above the upper bound

0 Clousot checks the code as you type

0 It reports warnings and verified code fixes

Architecture

Command Line VS 08,10,12 Roslyn

Warnings : Contracts
Code repairs :
report Propagation

Assertion checking

Abstract

Facts Discovery Interpretation

IL, Contract Reader

CCI1 CCI2 Roslyn

Clousot/CodeContracts impact

0 API .NET standard since v4 2

0 Externally available
0 > 60,000 downloads
0 Active forum (>1,500 threads)
0 Book chapters, blogs ...
0 Internal and External adoption
0 Mainly professional programmers

0 A few university courses C# 4.0

0 Publications, talks, tutorials
0 Academic (POPL, OOPSLA, ECOOP, VMCAI, SAS ...)
0 Programmers conferences

IN A NUISHELL

Clousot Summary

Regression tests
Inventor’s dilemma scenario

User X invests time in the following loop:
Inspect warnings
Add more contracts
Fix bugs
Finally the code is warning free
New version is released — New warnings
Some users use multiple versions

Clousot Summary

Inventor’s Dilemma Apocalypse
May ship as part of Visual Studio
Potential for millions of users

SAGE: TEST-CASE GENERATION

Test Generation is Big Business

#1 application for SMT solvers today (CPU usage)
SAGE @ Microsoft:

- 15t whitebox fuzzer for security festing
- 400+ machine years (since 2008) =

- 3.4+ Billion constfraints

- 100s of apps, 100s of security bugs

- Example: Win7 file fuzzing
~1/3 of all fuzzing bugs found by SAGE -
(missed by everything else..)

- Bug fixes shipped (quietly) to 1 Billion+ PCs

- Millions of dollars saved
+ for Microsoft + time/energy for the world

How fuzzing bugs were found
(Win7, 2006-2009)

All Others SAGE

Blackbox
Fuzzing
+ Regression

SAGAN: Fuzzing in the (Virtual) Cloud

+ Since June 2010, new centralized server collecting stats
from all SAGE runs |

- 200+ machine-years of SAGE data (since June 2010)

+ Track results (bugs, concrete & symbolic test coverage),
incompleteness (unhandled tainted x86 instructions,
Z3 timeouts, divergences, etc.)

+ Help troubleshooting (SAGE has 100+ options...)

+ Tell us what works and what does not

Picking and Choosing

Typical SAGE run can fill up 300 GB in 1 week
Problem: 100s of machines * 300+ GB = lots of data

Solution: pick and choose what to ship up
- Configuration files

- Counters from each SAGE execution

- Run "“heartbeats” at random intervals

- Crashing test information

Key principles
- Enough information to repro SAGE run results

- Support key analyses for improving SAGE

Sage Summary

Tool as a service
Extensive use of “telemetry”

Automatically find issues that are relevant for
their customers

zg Satisfiability

Solution/Model

\
(\

2 4 4,2 =, y=1
x“+y-<landxy > 0.1 ﬁ> sat, X = 2,V = 3

x*+y*<landxy>1 [unsat, Proof

|s execution path P feasible? |s assertion X violated?
L N L
|
Kl V.
N CC
E
3 | —
S

Is Formula F Satisfiable?

Theorem Prover
SMT Solver

Simplex Rewriting
DPLL Superposition

\ /3 is a collection of ((‘”
2 Symbolic Reasoning Engines ¢@

Congruence Euclidean
Closure Groebner v3 Solver

Basis elimination

& B Impact

Z3 is used by many research groups (> 700 citations)
More than 18k downloads
Z3 placed 15t in 17/21 divisions in the SMT-COMP 2011

""ERM | NATO R

ot Y \
Programmlng System iimn D5ii s S g, end()’ o

Spec Explorer

Vlgllante

s W

& = history

2007-2008 Competition-oriented years
Just check if it produces the right answer
2007 Z3 0.1 (SMT-COMP’07) Z3 1.0 released later

Tested using 1 machine with 8 cores
2008 73 2.0 (SMT-COMP’08)

Small cluster with 12 cheap machines
Painful transition from Z3 1.x = Z3 2.x

& = history

2009-2010 Decline
Machines in the small cluster started dying
No regressions or measurements
Randomly adding features and fixing/adding bugs
No idea whether making progress or not
Many users consider Z3 2.19 much worse than 2.16

& = history

2011-2012 Revival Z3 3.x and 4.x

Fuzzers running nonstop 24x7/

Rerun all SMT-LIB and key benchmarks every night

Huge shared cluster

Z3 3.0 won 17/21 divisions in SMT-COMP’11

Z3 3.0 best 9/10 divisions in SMT-COMP’12

Thousands of regression tests executed every night
Testing several internal modules
Testing exposed APIs

Next Steps...

Adding telemetry

More model/proof validation regression tests
More unit tests

Multiplatform testing: Linux and OSX versions
Monitoring system a-la Sagan

SMT-Lib benchmarks

Not good for testing corner cases
Fuzzer is great for that
Manually written tests

Most benchmarks use only the basic SMT 2.0 features
New Fuzzer?

/3 & Inventor’s Dilemma

“The new Z3 is 20% slower on my problem”
Come on, move on

“The new Z3 is 3x slower on my problem”
Does he work for Microsoft?

“The new Z3 is 10x slower on my problem”
Let me check what is going on

/3 & Inventor’s Dilemma

Incorporate problems from key customers in the
regression tests.

It is very hard to make progress.
/3 2.x search engine is still there.

Be careful when adding obscure features.
Users will find and use them.

Inventor’s Dilemma: a Solution

Orchestrating Decision Engines
(more about it tomorrow at IWS)

Leonardo de Moura (Microsoft Research)
Grant Passmore (University of Cambridge)

What is a Strategy?

Theorem proving as an exercise of
combinatorial search

Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of

formulas.

Different Strategies for Different Domains.

The "Message”

SMT solvers are collections of little engines.

They should provide access to these engines.
Users should be able to define their own strategies.

IMain inspiration: LCF-approach

o

goal

Tactic

builder

IMain inspiration: LCF-approach

subgoals
@ Tactic i> O
goal Proof
builder

@ Proof
O i> buricl)cfl)er i> O
O

Proof for goal
Proofs for subgoals

IMain inspiration: LCF-approach

Tactic

i>© i> Tactic

O i> Tactic

builder

Proof
builder

e
r

Proof
builder

IMain inspiration: LCF-approach

Proof O
o Proof <:]Q <:] Builder <:]O

Builder

proof
O Proof O
Builder O

IMain inspiration: LCF-approach

<:] Proof <:]O
Builder
O <:] PI’OOf <:]

oo Builder
Proof Q
k Builder
thm.in LCF proof in LCF
terminology terminology

Tacticals aka Combinators

then(| Tactic , | Tactic)

Tactic

Tactic

orelse(| Tactic | , | Tactic)

Tactic

S
I

repeat(| Tactic

SMT Tactic

goal

Tactic

o
<::> subgoals

)
Proof

builder

Model
builder

SMT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt

SMT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt

T

end-game tactics:
never return unknown(sb, mc, pc)

SMT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt
\ o
non-branching tactics:
sb is a sigleton in

unknown(sb, mc, pc)

Trivial goals

Empty goal [] is trivially satisfiable
False goal [..., false, ...] is trivially unsatisfiable

basic : tactic

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
elim-vars
Proof Model
builder | (b+1<0Vb+1>0), b>3]

builder

SMT Tactic example

la=b+1, (a<0Va>0),b>3]

@

Tactic:
elim-vars

Proof

-~

builder | (b+1<0Vb+1>0), b>3]

M, M(a) = M(b) +1

m Ny

Model
builder

-2 ~
M

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
split-or

-_=

Proof la=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder

SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,%2) applies ¢; to the given goal and 5 to every subgoal produced by t;.
thenx : (tactic X tactic Sequence) — tactic
thenx(t1, [t2,, ..., t2,,]) applies ¢1 to the given goal, producing subgoals g1, ..., gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,t2) first applies #1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic
par(t1,t2) excutes t1 and t2 in parallel.

/3 QF LIA Strategy

then(preamble, orelse(mf, pb, bounded, smt)

AT

Simplification

Constant propagation
Interval propagation
Contextual simplification
If-then-else elimination
Gaussian elimination
Unconstrained terms

Conclusion

Regression tests are extensively used at MS
“Telemetry”
Analyze your data

Inventor’s Dilemma is a major issue for any tool
based on heuristics.

Gets worse as complexity increases
NP, PSPACE, NEXPTIME, Undecidable
Our partial solution:

Orchestrating Decision Engines

