
Leonardo de Moura (Microsoft Research) and
Grant Passmore (University of Cambridge)

A Satisfiability Checker

 with built-in support for useful theories

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic Array Theory

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Arithmetic Array Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Solvers:
AProve, Barcelogic, Boolector, CVC3, CVC4, MathSAT5, OpenSMT,
SMTInterpol, SOLONAR, STP2, veriT, Yices, Z3

SMT-LIB: library of benchmarks (> 100k problems)
http://www.smtlib.org

SMT-COMP: annual competition
http://www.smtcomp.org

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Scheduling & Planning

…

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer

“Big” and hard formulas

Thousands of “small” and easy formulas

Short timeout (< 5secs)

“Big” and hard formulas

Thousands of “small” and easy formulas

Short timeout (< 5secs)

VCC HAVOC

SAGE

Z3 is a solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for non-commercial use.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml

rise4fun.com/z3

Verification/Analysis tools
need some form of

Symbolic Reasoning

Logic is “The Calculus of Computer
Science” (Z. Manna).

High computational complexity

We can try to solve the
problems we find in

 real applications

Scalability (huge formulas)

Complexity

Undecidability

Quantified formulas

A Sample

Execution
Path

Run Test and Monitor Path Condition

Solve

seed

New input

Test
Inputs

Constraint
System

Known
Paths

unsigned GCD(x, y) {
 requires(y > 0);
 while (true) {
 unsigned m = x % y;
 if (m == 0) return y;
 x = y;
 y = m;
 }
} We want a trace where the loop is

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

model

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA

Assignment

Apply DART to large applications (not units).

Start with well-formed input (not random).

Combine with generational search (not DFS).
Negate 1-by-1 each constraint in a path constraint.

Generate many children for each parent run.

parent

generation 1

Starting with 100 zero bytes …

SAGE generates a crashing test for Media1 parser

SMT@Microsoft

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 0 – seed file

Starting with 100 zero bytes …

SAGE generates a crashing test for Media1 parser

SMT@Microsoft

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 1

Starting with 100 zero bytes …

SAGE generates a crashing test for Media1 parser

SMT@Microsoft

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids

00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ;strf²uv:(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 10 – CRASH

Formulas are usually big conjunctions.

SAGE uses only the bitvector and array theories.

Pre-processing step has a huge performance impact.
Eliminate variables.

Simplify formulas.

Early unsat detection.

S
ta

ti
c
 p

ro
g
ra

m
 v

e
ri
fi
e
r

(B
o
o
g
ie

)

MSIL

Z3

V.C. generator

Verification condition

“correct” or list of errors

Spec# compiler

Spec# C

Bytecode

translator

C

Boogie

VCC HAVOC

V C C

VCC translates an annotated C program into a Boogie
PL program.

A C-ish memory model
Abstract heaps

Bit-level precision

Microsoft Hypervisor: verification grand challenge.

Meta OS: small layer of software
between hardware and OS

Mini: 60K lines of non-trivial
concurrent systems C code

Critical: must provide functional resource abstraction

Trusted: a verification grand challenge

Hardware

Hypervisor

VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Model programs (M. Veanes – MSRR)

Termination (B. Cook – MSRC)

Security protocols (A. Gordon and C. Fournet - MSRC)

Business Application Modeling (E. Jackson - MSRR)

Cryptography (R. Venki – MSRR)

Verifying Garbage Collectors (C. Hawblitzel – MSRR)

Model Based Testing (L. Bruck – SQL)

Semantic type checking for D models (G. Bierman –
MSRC)

More coming soon…

Pex, Spec#, VCC and many other
tools are available online.

Current SMT solvers provide

a combination

of different engines

DPLL

Simplex

Grobner
Basis

-
elimination

Superposition

Simplification

Congruence
Closure

KB
Completion

SMT

…

Theorem Prover/
Satisfiability Checker

F Satisfiable

(model)

Unsatisfiable

(proof)
Config

Z3 has approx. 300
options

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”

“I want to include these rewriting rules in Z3.”

“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

 To build theoretical and practical tools
allowing users to exert strategic control

over core heuristic aspects of high
performance SMT solvers.

 Theorem proving as an exercise of
combinatorial search

 Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

Different Strategies for Different Domains.

Different Strategies for Different Domains.

From timeout to 0.05 secs…

Hardware Fixpoint Checks.

Given: and

Ranking function synthesis.

Join work with C. Wintersteiger and Y. Hamadi

FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Z3 is using different engines:

rewriting, simplification, model checking, SAT, …

Z3 is using a customized strategy.

We could do it because

we have access to the source code.

SMT solvers are collections of little engines.

They should provide access to these engines.

Users should be able to define their own strategies.

Tactic

goal

subgoals

Proof

builder

Proofs for subgoals

Proof

builder

Proof for goal

Tactic
goal

subgoals

Proof

builder

Tactic
goal

Tactic

Tactic

Proof

builder
Proof

builder

Proof

builder

Proof

Builder
proof

Proof

Builder

Proof

Builder

Proof

Builder
proof

Proof

Builder

Proof

Builder

thm in LCF

terminology
proof in LCF

terminology

 then(,) = Tactic Tactic Tactic

orelse(,) = Tactic Tactic Tactic

repeat() = Tactic Tactic

Tactic

goal

subgoals

Proof

builder

Model

builder

end-game tactics:

never return unknown(sb, mc, pc)

non-branching tactics:

sb is a sigleton in

 unknown(sb, mc, pc)

Empty goal [] is trivially satisfiable

False goal * …, false, …+ is trivially unsatisfiable

basic : tactic

Tactic:

elim-vars

Proof

builder
Model

builder

Tactic:

elim-vars

Proof

builder
Model

builder

M

M, M(a) = M(b) + 1

Tactic:

split-or

Proof

builder

Model

builder

simplify

nnf

cnf

tseitin

lift-if

bitblast

gb

vts

propagate-bounds

propagate-values

split-ineqs

split-eqs

rewrite

p-cad

sat

solve-eqs

Probing structural features of formulas.

diff logic?

atom/dim < k

no yes

no yes

simplex

simplex floyd warshall

Fail if condition is not satisfied.

Otherwise, do nothing.

Under-approximation

unsat answers cannot be trusted

Over-approximation

sat answers cannot be trusted

Under-approximation

model finders

Over-approximation

proof finders

Under-approximation

S  S  S’

Over-approximation

S  S \ S’

Under-approximation

Example: QF_NIA model finders

add bounds to unbounded variables (and blast)

Over-approximation

Example: Boolean abstraction

Combining under and over is bad!

sat and unsat answers cannot be trusted.

In principle, proof and model converters can check
if the resultant models and proofs are valid.

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

We want to write tactics that can check whether a
goal is the result of an abstraction or not.

Solution

Associate an precision attribute to each goal.

Store extra logical information

Examples:

precision markers

goal depth

polynomial factorizations

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA

Theory conflict

Apply “cheap” propagation/pruning steps;

and then apply complete “expensive” procedure

AP-CAD (tactic) = tactic

Simplification

Constant propagation

Interval propagation

Contextual simplification

If-then-else elimination

Gaussian elimination

Unconstrained terms

proof procedure as a transition system

Abstract DPLL, DPLL(T), Abstract GB, cutsat, …

proof procedure as a transition system

Abstract DPLL, DPLL(T), Abstract GB, cutsat, …

Challenge:

Efficient strategic control

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Tactic and Tacticals: big step approach.

More transparency.

