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A Satisfiability Checker 

 with built-in support for useful theories 



 

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1) 



 

Arithmetic 

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1) 



 

Arithmetic Array Theory 

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1) 



 

Arithmetic Array Theory 
Uninterpreted 

Functions 

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1) 



Solvers:  
AProve, Barcelogic, Boolector, CVC3, CVC4, MathSAT5, OpenSMT, 
SMTInterpol,  SOLONAR, STP2, veriT, Yices, Z3 

 

SMT-LIB: library of benchmarks (> 100k problems) 
http://www.smtlib.org 

 

SMT-COMP: annual competition 
http://www.smtcomp.org 



 

Test case generation 

Verifying Compilers 

Predicate Abstraction 

Invariant Generation 

Type Checking 

Model Based Testing 

Scheduling & Planning 

… 



 

VCC 

Hyper-V 
Terminator T-2 

NModel 

HAVOC 

F7 
SAGE 

Vigilante 

SpecExplorer 



“Big” and hard formulas 

 

 

 

Thousands of “small” and easy formulas 

 

 

 

Short timeout (< 5secs) 



“Big” and hard formulas 

 

 

 

Thousands of “small” and easy formulas 

 

 

 

Short timeout (< 5secs) 

VCC HAVOC 

SAGE 





 

Z3 is a solver developed at Microsoft Research. 

Development/Research driven by internal customers. 

Free for non-commercial use. 

Interfaces: 

 

 

 

 

 

http://research.microsoft.com/projects/z3 

 

Z3 
Text 

C/C++ .NET 

OCaml 



rise4fun.com/z3 



 

Verification/Analysis tools 
need some form of 

Symbolic Reasoning 



Logic is “The Calculus of Computer 
Science” (Z. Manna). 

High computational complexity 





We can try to solve the 
problems we find in 

 real applications 



Scalability (huge formulas) 

Complexity 

Undecidability 

Quantified formulas 



A Sample 



 

Execution 
Path 

Run Test and Monitor Path Condition 

Solve 

seed 

New input 

Test 
Inputs 

Constraint 
System 

Known 
Paths 



unsigned GCD(x, y) { 
  requires(y > 0); 
  while (true) { 
 unsigned m = x % y; 
  if (m == 0) return y; 
  x = y; 
  y = m; 
   } 
} We want a trace where the loop is 

executed twice. 

(y0 > 0) and 

(m0 = x0 % y0) and 

not (m0 = 0) and 

(x1 = y0) and 

(y1 = m0) and 

(m1 = x1 % y1) and 

(m1 = 0) 

model 

x0 = 2 

y0 = 4 

m0 = 2 

x1 = 4 

y1 = 2 

m1 = 0 

SSA 

Assignment 











Apply DART to large applications (not units). 

Start with well-formed input (not random). 

Combine with generational search (not DFS). 
Negate 1-by-1 each constraint in a path constraint. 

Generate many children for each parent run. 

 

 

 

 

 

parent 

generation 1 



Starting with 100 zero bytes … 

SAGE generates a crashing test for Media1 parser 

SMT@Microsoft 

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000060h: 00 00 00 00                                     ; .... 

Generation 0 – seed file 



Starting with 100 zero bytes … 

SAGE generates a crashing test for Media1 parser 

SMT@Microsoft 

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............ 

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000060h: 00 00 00 00                                     ; .... 

Generation 1 



Starting with 100 zero bytes … 

SAGE generates a crashing test for Media1 parser 

SMT@Microsoft 

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** .... 

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................ 

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids 

00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ; ....strf²uv:(... 

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ; ................ 

00000060h: 00 00 00 00                                     ; .... 

Generation 10 – CRASH 



Formulas are usually big conjunctions. 

SAGE uses only the bitvector and array theories. 

Pre-processing step has a huge performance impact. 
Eliminate variables. 

Simplify formulas. 

Early unsat detection. 
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MSIL 

Z3 

V.C. generator 

Verification condition 

“correct” or list of errors 

Spec# compiler 

Spec# C 

Bytecode 

translator 

C 

Boogie 

VCC HAVOC 



V C C

VCC translates an annotated C program into a Boogie 
PL program. 

A C-ish memory model 
Abstract heaps 

Bit-level precision 

Microsoft Hypervisor: verification grand challenge. 



     

      

      

 

 

 
Meta OS: small layer of software  
between hardware and OS 

Mini: 60K lines of non-trivial  
concurrent systems C code 

Critical: must provide functional resource abstraction 

Trusted: a verification grand challenge 

 

 

 

 

 

 

 

 
 

Hardware 

Hypervisor 



 

VCs have several Mb 

Thousands of non ground clauses 

Developers are willing to wait at most 5 min per VC 

 



Model programs (M. Veanes – MSRR) 

Termination (B. Cook – MSRC) 

Security protocols (A. Gordon and C. Fournet - MSRC) 

Business Application Modeling (E. Jackson - MSRR) 

Cryptography (R. Venki – MSRR) 

Verifying Garbage Collectors (C. Hawblitzel – MSRR) 

Model Based Testing (L. Bruck – SQL)  

Semantic type checking for D models (G. Bierman – 
MSRC) 

More coming soon… 



Pex, Spec#, VCC and many other 
tools are available online. 





Current SMT solvers provide   

a combination 

of different engines 



DPLL 

Simplex 

Grobner 
Basis 

-
elimination 

Superposition 

Simplification 

Congruence 
Closure 

KB 
Completion 

SMT 

… 



Theorem Prover/ 
Satisfiability Checker 

F Satisfiable 

(model) 

Unsatisfiable 

(proof) 
Config 

Z3 has approx. 300 
options 



Actual feedback provided by Z3 users: 

“Could you send me your CNF converter?” 

“I want to implement my own search strategy.” 

“I want to include these rewriting rules in Z3.” 

“I want to apply a substitution to term t.” 

“I want to compute the set of implied equalities.” 



 To build theoretical and practical tools 
allowing users to exert strategic control 

over core heuristic aspects of high 
performance SMT solvers. 



 Theorem proving as an exercise of 
combinatorial search 

 Strategies are adaptations of general search 
mechanisms which reduce the search space by 
tailoring its exploration to a particular class of 
formulas. 



Different Strategies for Different Domains. 

 

 



Different Strategies for Different Domains. 

 

 
From timeout to 0.05 secs… 



 

 

Hardware Fixpoint Checks. 

Given:          and  

 

 

Ranking function synthesis. 

Join work with C. Wintersteiger and Y. Hamadi 

FMCAD 2010 

QBVF = Quantifiers + Bit-vectors + uninterpreted functions 







Z3 is using different engines: 

rewriting, simplification, model checking, SAT, … 

 

Z3 is using a customized strategy. 

 

We could do it because  

we have access to the source code. 



 

SMT solvers are collections of little engines. 
 

They should provide access to these engines. 

Users should be able to define their own strategies. 
 



 

Tactic 

goal 

subgoals 

Proof 

builder 



 

Proofs for subgoals 

Proof 

builder 

Proof for goal 

Tactic 
goal 

subgoals 

Proof 

builder 



 

Tactic 
goal 

Tactic 

Tactic 

Proof 

builder 
Proof 

builder 

Proof 

builder 



 

Proof 

Builder 
proof 

Proof 

Builder 

Proof 

Builder 



 

Proof 

Builder 
proof 

Proof 

Builder 

Proof 

Builder 

thm in LCF 

terminology 
proof in LCF 

terminology 



 

 then(                    ,                   )    =     Tactic Tactic Tactic 

orelse(                    ,                   )    =     Tactic Tactic Tactic 

repeat(                   )    =     Tactic Tactic 



 

Tactic 

goal 

subgoals 

Proof 

builder 

Model 

builder 



 



 

end-game tactics: 

never return unknown(sb, mc, pc) 



 

non-branching tactics: 

sb is a sigleton in 

 unknown(sb, mc, pc) 



 

Empty goal [ ] is trivially satisfiable 

 

False goal * …, false, …+ is trivially unsatisfiable 

 

basic : tactic 



 

Tactic: 

elim-vars 

Proof 

builder 
Model 

builder 



 

Tactic: 

elim-vars 

Proof 

builder 
Model 

builder 

M 

M, M(a) = M(b) + 1 



 

Tactic: 

split-or 

Proof 

builder 

Model 

builder 



simplify 

nnf 

cnf 

tseitin 

lift-if 

bitblast 

gb 

vts 

propagate-bounds 

propagate-values 

split-ineqs 

split-eqs 

rewrite 

p-cad 

sat 

solve-eqs 



 



 



 



 

Probing structural features of formulas. 



 

diff logic? 

atom/dim < k 

no yes 

no yes 

simplex 

simplex floyd warshall 



 

Fail if condition is not satisfied. 

Otherwise, do nothing. 



 



 



 

Under-approximation 

unsat answers cannot be trusted 

Over-approximation 

sat answers cannot be trusted 



 

Under-approximation 

model finders 

Over-approximation 

proof finders 



 

Under-approximation 

S  S  S’ 

Over-approximation 

S  S \ S’ 

 

 



 

Under-approximation 

Example: QF_NIA model finders 

add bounds to unbounded variables (and blast) 

Over-approximation 

Example: Boolean abstraction 

 



 

Combining under and over is bad! 

sat and unsat answers cannot be trusted. 



 

In principle, proof and model converters can check 
if the resultant models and proofs are valid. 



 

In principle, proof and model converters can check 
if the resultant models and proofs are valid. 

 

Problem: if it fails what do we do?  



 

In principle, proof and model converters can check 
if the resultant models and proofs are valid. 

 

Problem: if it fails what do we do? 

 

We want to write tactics that can check whether a 
goal is the result of an abstraction or not.  



 

Solution 

Associate an precision attribute to each goal. 



 

Store extra logical information 

Examples: 

precision markers 

goal depth 

polynomial factorizations 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 
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SAT  
Solver 
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Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 

SAT  
Solver 

Assignment 
p1,  p2, p3, p4 
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Basic Idea 
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Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 

SAT  
Solver 

Assignment 
p1,  p2, p3, p4 x  0, y = x + 1,  

(y > 2), y < 1 

Theory 
Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 

New Lemma 

p1p2p4 

 

 



 

Theory 
Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 

New Lemma 

p1p2p4 

 

 
AKA 

Theory conflict 



 

Apply “cheap” propagation/pruning steps; 

and then apply complete “expensive” procedure 



 

AP-CAD ( tactic ) = tactic  



 



 



 

Simplification 

Constant propagation 

Interval propagation 

Contextual simplification 

If-then-else elimination 

Gaussian elimination 

Unconstrained terms 



 

proof procedure as a transition system 

Abstract DPLL, DPLL(T), Abstract GB, cutsat, … 



 

proof procedure as a transition system 

Abstract DPLL, DPLL(T), Abstract GB, cutsat, … 

Challenge: 

Efficient strategic control 



Different domains need different strategies. 

 

We must expose the little engines in SMT solvers. 

 

Interaction between different engines is a must. 

 

Tactic and Tacticals: big step approach. 

 

More transparency. 


