Microsoft’
I W° .L. Research

Orchestrating Decision Engines
CP 2011, Perugia, Italy

Leonardo de Moura (Microsoft Research) and
Grant Passmore (University of Cambridge)

Satisfiability Modulo Theories (SMT)

A Satisfiability Checker
with built-in support for useful theories

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) £ f(c-b+1)

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c¢ and f(read(write(a,b,3), c-2) £ f(c-b+1)

Arithmetic

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) £ f(c-b+1)

Array Theory

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO

SMT Solvers & LIB & COMP

Solvers:

AProve, Barcelogic, Boolector, CVC3, CVC4, MathSAT5, OpenSMT,
SMTInterpol, SOLONAR, STP2, veriT, Yices, Z3

SMT-LIB: library of benchmarks (> 100k problems)
http://www.smtlib.org

SMT-COMP: annual competition
http://www.smtcomp.org

Microsoft

Research

Applications

Test case generation

Predicate Abstraction
Invariant Generation
Type Checking

Model Based Testing

Scheduling & Planning

Microsoft

Research

Some Applications @ Microsoft

Spect - HAvOC |ForgLa

Programming System

[Terminator T-2 J

VCC foYe?
e ’\./OJ

S Vigilante |

SpecExplorer Pex E7
 SAGE | I—IS

Microso ft-

Research

Application Scenarios

“Big” and hard formulas

Thousands of “small” and easy formulas

Short timeout (< 5secs)

Microso ft-

Research

Application Scenarios

Speci#

Programming System

“Big” and hard formulas
~ HAVOC = VCC

Thousands of “small” and easy formulas 500
O

Short timeout (< 5secs) SAGE

Microso ft-

Research

’)

Template

I, 7

\erification/Analysis Too

@ Problem

Ve
Verification/Analysis J

Tool

@ Logical Formula
s >
Theorem Prover/ J

Satisfiability Checker

|
$ ¢
i s Satisfiable Unsatisfiable

Microsoft’
(Counter-example) Research

&

SMIT @Miicrosoft; Solver

e Z3is a solver developed at Microsoft Research.

e Development/Research driven by internal customers.
© Free for non-commercial use.

° |nterfaces:

e http://research.microsoft.com/projects/z3

Microsoft

Research

Gf‘f .;I @ http://risedfun.com/Z3

P~aX | & 73 @ RiSE4fun - Efficient T...

rise4fun.com/z3

Click on a tool to Load @ sample then ask!

RiSE4fun

gave 146,333 answers!

(251 | bei boogie] code contracts | concurrent: revizions [dafny | akal | exn | ¢]| formis | nespabg | posrot Joex [rex R riaver [zpect Jvee | =2

declare-fun =
declare-fun y
declarse-fun =

() Int)

(

(
assert (>= (* 2 %) (+ v z)))

(

(

)
)} Int)
) Int)

(

{

(

(

(declare-fun £ (Int) Int)
(declare-fun g (Int Int) Int)
fassert (< (f =) (g = ®)))
(assert (> (£ v) (g x =®)))
(check-sat)

(get-model)

(push)

(assert (= = v))
(check-sat)

(pop)

(exit”

m Is this formula satisfiable? Click 'ask z3'! m m

samples

tutorials projects live permalink developer
8 2811 Microscft Corporation - Terms of Use - Privacy
Microsoft’

Research

about

- Tweet |] Like 164

for Windows”
Phone 7

Microsoft

Research

Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning

Microsoft:
Research

Symbolic Reasoning

e Logicis “The Calculus of Computer Undegidable
Science” (Z. Manna). (ROL+ LA)

© High computational complexity seniMecidable

(Eigstrerder logic)

NEXPTime:complete
(ERR)

PSpace-comiplete
(@BIR)

NP-complete
B-time (Propgsiticnaljiedlic)
(Equality)

Microsoft

Research

Symbolic Reasoning

Yes, we cannot solve arbitrary problems
from the “complexity ladder”.

But,... =iiSorder logic)

Microsoft

Research

Symbolic Reasoning

We can try to solve the
problems we find in

real applications

OOOOOOOO

Main challenges

e Scalability (huge formulas)
e Complexity

e Undecidability

e Quantified formulas

Microso ft

Research

SMT@MS: Applications

A Sample

Directed Automated Random Testing (DART)

Run Test and Monitor Execution Path Condition
Path

Constraint
System

Microso ft-

Research

Test case generation

unsigned GCD(x, y) { (yo > () and - X =92
o 0
requires(y > 0);

(my =X, % Y,) and

. yo] 4
while (true) { SSR > not (m. = 0) and modeJ> =9
. =

unsigned m = x % v;

(x, =y, and — 4
if (m == 0) return y; e .

(y, =m,) and y, =2

(m, =x, %y,) and m =0

ASSIORIMENRT

} We want a trace where the loopiis
executed twice.

Microsoft

Research

White box testing in practice

How to test this code?
(Real code from .NET base class libraries.)

Lotion.LinkDemand, Flags=SecurityPermissionfFlag.SerializationFormatter)]

[Securi
public
{

espurceReader (Stream stream)

if (stream=—null)
throw new LroumentMullException ("stream™)

if (l=ztream.lanBead)
throw new ArgumentException(Environment.fetBesourceftring("Argument StreamotBReadable")|

_reaCache = new Dictionary<itring, Resourcelocatorr (FostResourceComparer,Defoault)
_store = new DBinaryResder(stream, Encoding.UTFB);

S We have a faster code path for reading rescource Ifiles from an assembly.

uns = stream as UnmanagedremorySTream;

BCLDEbug.LDgt"RESHFEFILEFﬂRHET", "HesourceReadsr .ctor(Stream). UmmanagedMemoryStream: "+(ums!=null});
EeadBesources () !

White box testing in practice

S/ BReads in the header information for a2 .resources file. Verifizs =ome
S of the assumptions about this resource sst, and builds the class table
/f for the default resource file format.

BCLDebhuo. OEHE —orare = null, "HesourceReader i= clo=zed!™):

BinaryvFormatter bBE = new BimarvFormatter (null, new StreamingContext (StcreamingContextStates.File |

#if !FEATURE DAL
_typelimitingBindsr = new TypelimitingDessrislizationbindexc();
Brf.Binder = uypelimitingBinder:

Fendif
_objFormatter = bf;
try |
[/ BEead ResourcelManager header
(L Check for mamic pumber
int magiclum = _store.ReadInt32|(}:
if (magiclum !'= BesourceMdanager MagicHumber)
throw new IroumentEixception [Environment .GetRasourcelftring("Bezourc=s BEtreamMlotValid™)):

Pa——
j ey

r
[/ mafter the vers=ion number there is a2 number of bytes to skip
7/ To bypass che rest ol the ResHMgr header.

int resMgrHeaderVersion = store.ReadIntiZ|).
if (resMgrHeaderVerszion > 1) {
int numBycesToSkip = store.ReadInt32()!
BECLIebug.A=ssert (nunBytesTalSkip »= (0, "numBytesToSkip in ReaMgr header should be poaitive!™
—=to —= . =TT FTOITIE S mwpp S B
yoal=e
BCLDebug . Log ("EESMEEFILEFCEMATY, "HeadBEesources=s: Parsing BesMgr hesder w1, 72
SkipInt32(): S/ We don't cars about numBytesToSkip.

S/ Bead in type name for a2 suitable ResourceReader

P ar . E=3 - . - = . - - - - . .

White box testing in practice

Jf Beads in the header information for a2 .resources file. Verifiss =ons
Jf of the assumptions about this resource ss2t, and builds the class takle
// for the default resgurce file format.

BCOCLDOebnog. AE oS rore = null, "BesmurreReader iz cloged!l™) s

BinaryvFormatter BE = new BimaryFormatter (null, new StresmingContext (StreaminglContextState=s.File |

#if !FEATURE PAL
_typelimitingBinder = new TypelimitingDessrislizationBindecs();
BEf.Binder = typelimitingBinder;

Fendif
_objFormatter = bf;
try |
[/ FRead EesourceManager header

[Chesrk for ma~ndi~ pomher

int magiclum = _store.ReadInt32|():
if|public wirtuazl int ReadInt32(} f
if (m_isMemoryStream) {

S

= o 77 r'tad Oirecrly LIOm MemorySCcIcal DUllier
i Memory5tream mStream = m stream as MemorvStream;
4 ECLDebug.Assert (mStream !'= null, "m_stream a5 MemoryStream != null"™):
inf
if return mStream. InternalBeadInt32 [)
¥
cl=e
i

FillEutfter{g) =
Fog return (inc) (m_buffer[0] | m buffer[l] << 8 | m buffer(2] <« 18 | m_buffer([3] «< 24);

Pex—Test Input Generation

|/ TestProject! - Microsaft Vizual Studio. [FESEER)

File Edit View Refactor Project Build Debug Data Teols Test Window Community Help

A-E-Ed | %G9 -85 p Debug - =

uilll. “ResourceReaderTest]_cs* - W
F_if' G@f‘-."lsmrliI::rTlests.FlESl:u..lrl::lelineandErTnasts * W ParameterizedTest{byte(] a) -
=
= publi~ class Rezourc=s=ReaderTe=ts
m _~
e {
=
= [PexTeat]
= public unsafe void ParameterizedTesglbyre[] a)
1]
¥ {
o Fexbzzumes. I=sNotluall (a) ;
(=]
o fixed (byte® p = &)
(=)
= using (stream = new UnmanagedMemcrvStreamip, a.length)) 7 . ™
; Test input,
var reader = new REezonrceReader (ztream) : enerated b PB){
readEncries (readex) g y
! (% Pexit Ctrl+Fa | byte[] a = new byte[14]:
H P N a[d] = 20&;
! Refactor 3 a[l] = 202;
) al2] = 239;
q =, Insert Snippet... a[3] = 190
Ready =, Surround With... a[7] = &4;
B Go To Definition e -
Find Al References \ FarameterizedTest(al :
Ereakpoint [;
¥= Fun To Cursor
£ cut
Ea Copy
Cutlining 3

e Apply DART to large applications (not units).
e Start with well-formed input (not random).

e Combine with generational search (not DFS).

© Negate 1-by-1 each constraint in a path constraint.
e Generate many children for each parent run.

- @ =) @ =) @ Ommm) @ narent

Microsoft

Research

Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
@ SAGE generates a crashing test for Medial parser

00000000h:
00000010h:
00000020h:
00000030h:

00000040h:
00000050h:
00000060h:

Generation 0 — seed file

Microsoft

Research

Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
@ SAGE generates a crashing test for Medial parser

00000000h:
00000010h:
00000020h:
00000030h:

00000040h:
00000050h:
00000060h:

Generation 1

Microsoft

Research

Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
@ SAGE generates a crashing test for Medial parser

00000000h: xxoHkk k20 00
00000010h: 00 00 00 00 00
00000020h: 00 00 00 00 00
00000030h: 00 00 00 00 76

00000040h: B2 [[E_16_234) 28
00000050h: 00 00 00 00 01
00000060h:

Generation 10 — CRASH

Microsoft

Research

SAGE<—> Z3

e Formulas are usually big conjunctions.
o SAGE uses only the bitvector and array theories.

e Pre-processing step has a huge performance impact.
e Eliminate variables.
e Simplify formulas.

e Early unsat detection.

Microsoft

Research

Verfication architecture

A

Spec# compiler y, &

m VCC HAVOC
Bytecode ,

translator

‘ L

Boogie

V.C. generator

V M ondition

Z3
N

—~
Q
(@)
@)
@)
m
N
S
D
(tr—
o
()
>
S
©
S
(@)
@)
S
o
=
S
©
i
)

A erifying ompiler

e VCC translates an annotated C program into a Boogie
PL program.

@ A C-ish memory model
e Abstract heaps
e Bit-level precision

e Microsoft Hypervisor: verification grand challenge.

Microsoft

Research

Hypervisor: A Manhattan Project

Hypervisor

Hardware

e Meta OS: small layer of software
between hardware and OS

e Mini: 60K lines of non-trivial
concurrent systems C code

e Critical: must provide functional resource abstraction
e Trusted: a verification grand challenge

Hypervisor: Some Statistics

@ VCs have several Mb
e Thousands of non ground clauses
@ Developers are willing to wait at most 5 min per VC

Microso ft-

Research

Other Microsoft clients

» Model programs (M. Veanes — MSRR)

e Termination (B. Cook — MSRC)

e Security protocols (A. Gordon and C. Fournet - MSRC)
@ Business Application Modeling (E. Jackson - MSRR)

e Cryptography (R. Venki — MSRR)

e Verifying Garbage Collectors (C. Hawblitzel — MSRR)

e Model Based Testing (L. Bruck — SQL)

@ Semantic type checking for D models (G. Bierman —
MSRC)

e More coming soon...

Microso ft-

Research

http://rise4fun.com

Pex, Spec#, VCC and many other
tools are available online.

Microsoft:
Research

Orchestrating Decision Engines

Combining Engines

Current SMT solvers provide
a combination
of different engines

Combining Engines

Congruence m

Closure
R Grobner
Simplification \w/ Basis

V3-
KB elimination

Completion
Superposition

Configuring SAT/SMT Solvers: “state-of-the-art”

Config

=)
=)

-

Theorem Prover/

N

Satisfiability Checker

=)

/

Z3 has approx. 300

options

Satisfiable
(model)

Unsatisfiable
(proof)

Opening the “Black Box”

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”
“I want to include these rewriting rules in Z3.”
“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

The Strategy Challenge

To build theoretical and practical tools
allowing users to exert strategic control
over core heuristic aspects of high
performance SMT solvers.

What is a strategy?

Theorem proving as an exercise of
combinatorial search

Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

The Need for “Strategies”

Different Strategies for Different Domains.

The Need for “Strategies”

Different Strategies for Different Domains.

From timeout to 0.05 secs...

Example in Quantified Bit-\Vector Logic

Join work with C. Wintersteiger and Y. Hamadi
FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: I[z]and T'|x,2’]
Vo, o’ . I[a] AT [z, 2] = 3y, 4" Ty ATy, o]

Ranking function synthesis.

Hardware Fixpoint Checks

[sec] [sec]
1k 1k
100 100
Z3 10 L 73 10

% 3

+ E3 + 3

1 o S 1 o+

] i + T + " "

i + LT+ |+ .

0.1 = + = 0.1 ++ 3 +

N T A O S s £ wt | 3

¥ i + +H ++ + 4 +

+ +- 1 L 4

0.01 HHtHE |+ 4 0.01 + H + 4

0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo

Ranking Function Synthesis

[sec] [sec]
1k 1k
100 100
Z3 10 - Z3 10 =
= + -
1 + 1 +
¥ T OE
+7 *
0.01 0.01
0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo

Why is Z3 so fast in these benchmarks?

/3 is using different engines:
rewriting, simplification, model checking, SAT, ...

/3 is using a customized strategy.

We could do it because
we have access to the source code.

The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines.
Users should be able to define their own strategies.

IMain inspiration: LCF-approach

o

goal

Tactic

builder

IMain inspiration: LCF-approach

subgoals

@ Tactic i> O
Proof

goal

builder

®,
o X e
O

Proof for goal

Proofs for subgoals

IMain inspiration: LCF-approach

Tactic

i>© i> Tactic

@, i> Tactic

Proof
builder

Proof
builder

e
r

Proof
builder

IMain inspiration: LCF-approach

© (1 e (I
O Proof <i O

Builder

proof
® Proof Q
Builder Q

IMain inspiration: LCF-approach

<:] Proof <:]Q
o <i Broof <:] Builder

roof Builder
Proof Q
k Builder
thm in LCF proof in LCF
terminology terminology

Tacticals aka Combinators

then(| Tactic , | Tactic)

Tactic

Tactic

orelse(| Tactic | ,| Tactic |)

Tactic

S
I

repeat(| Tactic

SMIT Tactic

goal

Tactic

o
Q subgoals

»
Proof

builder

Model
builder

SMIT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt

SMIT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt

T

end-game tactics:
never return unknown(sb, mc, pc)

SMIT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt
\ o
non-branching tactics:
sb is a sigleton In

unknown(sb, mc, pc)

Trivial goals

Empty goal [] is trivially satisfiable
False goal [..., false, ...] is trivially unsatisfiable

basic : tactic

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
elim-vars
Proof Model
bUlIder [(b—Fl{UVb—l—l}U),b}S]

builder

SMT Tactic example

la=b+1, (a<0Va>0),b>3]

@

Tactic:
elim-vars

Proof

-~

bUlIder [(b—Fl{UVb—l—l}U),b}S]

M, M(a) = M(b) +1

m Ny

Model
builder

-~
M

SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
split-or

-_=

Proof la=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder

SMIT Tactics

simplify propagate-bounds
nnf propagate-values
cnf split-inegs

tseitin split-eqs

lift-if rewrite

bitblast p-cad

gb sat

vts solve-eqs

SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,%2) applies ¢; to the given goal and 5 to every subgoal produced by t;.
thenx : (tactic X tactic Sequence) — tactic
thenx(t1, [t2,, ..., t2,,]) applies ¢1 to the given goal, producing subgoals g1, ..., gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,t2) first applies #1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic
par(t1,t2) excutes t1 and t2 in parallel.

SMT Tacticals

then(skip,t) = then(t,skip) = ¢

orelse(fail, t) = orelse(t, fail) = ¢

SMT Tacticals

repeat : tactic — tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic X nat — tactic
Keep applying the given tactic until no subgoal is modified by it, or the max-
imum number of iterations is reached.

tryfor : tactic X seconds — tactic
tryfor(t, k) returns the value computed by tactic ¢ applied to the given goal if
this value is computed within k seconds, otherwise it fails.

Feature / Measures

Probing structural features of formulas.

Feature / Measures: Yices Strategy

diff logic?
o - < yes
simplex

atom/dim < k

no @ @ yes

simplex floyd warshall

Feature / Measures: Yices Strategy

orelse(then (failif (diff A atom

- > k), simplex), floydwarshall)

Fail if condition is not satisfied.
Otherwise, do nothing.

Feature / Measures: Examples

bw: Sum total bit-width of all rational coefficients of polynomials in case.
diff: True if the formula is in the difference logic fragment.

linear: True if all polynomials are linear.

dim: Number of arithmetic constants.

atoms: Number of atoms.
degree: Maximal total multivariate degree of polynomials.

size: Total formula size.

Tacticals: syntax sugar

if(c, t1, ta) = orelse(then(failif(—c),t1),t2)
when(c, t) = if(c, t, skip)

Under/Over-Approximations

Under-approximation
unsat answers cannot be trusted

Over-approximation
sat answers cannot be trusted

Under/Over-Approximations

Under-approximation
model finders

Over-approximation
proof finders

Under/Over-Approximations

Under-approximation
SH>SUY

Over-approximation
S—>S\¢

Under/Over-Approximations

Under-approximation
Example: QF NIA model finders
add bounds to unbounded variables (and blast)

Over-approximation
Example: Boolean abstraction

Under/Over-Approximations

Combining under and over is bad!
sat and unsat answers cannot be trusted.

Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

We want to write tactics that can check whether a
goal is the result of an abstraction or not.

Tracking: under/over-approximations

Solution
Associate an precision attribute to each goal.

Goal Attributes

Store extra logical information
Examples:
precision markers
goal depth
polynomial factorizations

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),
ps=(y>2),p,=(y<1)

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

@ ps=(y>2), py=(y<1)

SAT
Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

Y? ps=(y>2), py=(y<1)

Assignment
SAT
[J j‘> p]_l p21 _'p3l p4

Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

p]_l p21 (p3\/ p4) plz(XZO), pZE(y=X+ 1)1

@ Ps=(y>2), py=(y<1)
U

SAT Assignment x>0,y=x+1,
j‘> pll p21 _'p3l p4 j‘>

Solver —(y>2),y<1

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ ps=(y >2), p,=(y<1)
T P vy SR)
Solver vore Ty —(y>2),y<1

Unsatisfiable <,i Theory
x>0,y=x+1,y<1 Solver

SMT =» SAT Abstraction/Refinement

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ ps=(y>2), p,=(y<1)
SAT j>§ss'§m:ep”tp N X>0,y=x+1,
Solver vore Ty —(y>2),y<1

v

New Lemma <:j Unsatisfiable <’t Theory
=P VP V=P, Y X20,y=x+1,y<1 Solver

SMT =» SAT Abstraction/Refinement

New Lemma @ Unsatisfiable <’t Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict

Decision Engines as Tacticals

then(preprocess, smt(finalcheck))

a7/

Apply “cheap” propagation/pruning steps;
and then apply complete “expensive” procedure

Decision Engines as Tacticals

AP-CAD (tactic) = tactic

Strategy: Example

then(then(simplify, gaussian), orelse(modelfinder, smt(apcad(icp))))

RAHD Calculemus Strategy

dim deg iv calc-0 cale-1 cale-2 gepcad-b redlog/rlge redlog/rlcad
PO 5 4 N A1 1.59 1.7 416.45% 40.4 -
P1 6 4 N 1.69 3.08 3.42 -* - -
P2 5 4 N 1.34 2.41 2.62 -* - -
P3 5 4 N 1.52 2.56 2.75 -* - -
P4 5 4 N 1.14 2.02 2.16 -* - -
P5 14 2 N 25 26 27 -* 97.4 -
P& 11 5 N 147 .4 07 06 - <201 <_.01
PT 8 2 N 05 <.01 <.01 08 .01 <.01
PS8 7 32 N 4.5 1 .01 3.38 <201 -
P9 7 16 N 4.51 A5 <.01 .29 .01 6.7
P10 7 12 N | 100.74 20.76 3.85 -* - -
P11 6 2 Y 1.6 5 53 .01 .01 .05
P12 D 3 N T8 .3 .36 .02 .01 07
P13 4 10 N 3.83 3.95 4.02 -* - -
Pl4d 2 2 N 4.55 1.67 .07 01 - -
P15 4 3 Y ATT .2 .12 01 =201 <.01
P16 4 2 N 9.99 217 2.1 02 <201 <_.01
P17 4 2 N .62 .59 .65 28 .02 61
P18 4 2 N 1.25 1.28 1.27 01 <01 <..01
P19 3 6 Y 3.34 1.72 2.08 .02 .01 i
P20 3 4 N 1.18 .65 .65 01 <201 3
P21 3 2 N .02 03 <.01 02 .01 N
P22 2 4 N <01 <.01 <.01 01 =201 <.01
P23 2 2 Y <01 <.01 .01 .01 <201 <_.01

/3 QF LIA Strategy

then(preamble, orelse(mf, pb, bounded, smt)

Simplification

Constant propagation
Interval propagation
Contextual simplification
If-then-else elimination
Gaussian elimination
Unconstrained terms

Challenge: small step configuration

proof procedure as a transition system
Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

UnitPropagate :

M|F, Cvl =
Pureliteral :

M|F =
Decide :

M|F —
Fail :

M|F,C =
Backtrack :

MEN|FC —

MIU|F CvI

MI|F

MU|F

FailState

M-I|F,C

M):{:

[1s undefined in M

[oceurs in some clause of F

—[ocecurs in no clause of F
[is undefined in M

if

¢ [or =l occurs in a clause of F
! [is undefined in M

M= —C

if
M contains no decision literals

MIEN=-C

N contains no decision literals

if

[

Challenge: small step configuration

proof procedure as a transition system
Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

a A

Challenge:
Efficient strategic control

Backtrack :
AMHIE N E -
MUEN|F,C — M-l|F.C if {J’” N -C

N contains no decision literals

Conclusion

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Tactic and Tacticals: big step approach.

More transparency.

