Noname manuscript No.
(will be inserted by the editor)

Cutting to the Chase

Solving Linear Integer Arithmetic

Dejan Jovanovié - Leonardo de Moura

the date of receipt and acceptance should be inserted later

Abstract We describe a new algorithm for solving linear integer programming
problems. The algorithm performs a DPLL style search for a feasible assignment,
while using a novel cut procedure to guide the search away from the conflicting
states.

1 Introduction

One of the most impressive success stories of computer science in industrial ap-
plications was the advent of linear programming algorithms. Linear programming
(LP) became feasible with the introduction of Dantzig’s simplex algorithm. Al-
though the original simplex algorithm targets problems over the rational numbers,
in 1958 Gomory [16] introduced an elegant extension to the integer case (ILP). He
noticed that, whenever the simplex algorithm encounters a non-integer solution,
one can eliminate this solution by deriving a plane, that is implied by the original
problem, but does not satisfy the current assignment. Incrementally adding these
cutting planes, until an integer solution is found, yields an algorithm for solving
linear systems over the integers. Cutting planes were immediately identified as a
powerful general tool and have since been studied thoroughly both as an abstract
proof system [7], and as a practical preprocessing step for hard structured prob-
lems. For such problems, one can exploit the structure by adding cuts tailored to
the problem, such as the clique cuts, or the covering cuts [26], and these cuts can
reduce the search space dramatically.

The main idea behind the algorithm of Gomory, i.e., to combine a model search-
ing procedure with a conflict resolution procedure — a procedure that can derive
new facts in order to eliminate a conflicting candidate solution — is in fact quite
general. Somewhat later, for example, in the field of Boolean satisfiability (SAT),
there was a similar development with equally impressive end results. Algorithms

Dejan Jovanovi¢
New York University

Leonardo de Moura
Microsoft Research



2 Dejan Jovanovié, Leonardo de Moura

and solvers for the SAT problem, although dealing with a canonical NP-complete
problem, have seen a steady improvement over the years, culminating in thrilling
advances in the last decade. Contrary to what one would expect of an NP-complete
problem, it has become a matter of routine to use a SAT solver on problems with
millions of variables and constraints. Of course, it would be naive to attribute one
single reason to this success, for there are many ingredients that contribute to
the efficiency of modern SAT solvers. But, one of the most conceptually appealing
techniques that these SAT solvers use is a combination of two orthogonal views
on how to go about solving a satisfaction problem. One is a backtracking search
for a satisfying assignment, as described in the original DPLL [10] algorithm. The
other is a search for a proof that there is no solution, in this case a refutation
using Boolean resolution, as described in the DP algorithm [11].

In order to combine these two approaches Silva and Sakallah [25] noticed that,
although completely different, they can be used to complement each other in a sur-
prisingly natural manner. If the search for a satisfying assignments encounters a
conflicting state, i.e. one in which some clause is falsified by the current candidate
assignment, one can use resolution to derive a clause, commonly called an expla-
nation, that succinctly describes the conflict. As is the case with Gomory’s cutting
planes, this explanation clause eliminates the current assignment, so the search is
forced to backtrack and consider a different one. Moreover, since this explanation
is a valid deduction, it can be kept to ensure that the conflict does not occur again.
These explanations can often eliminate a substantial part of the subsequent search
tree. The important insight here is that the application of resolution is limited to
the cases where it is needed by the search, or in other words the search is guid-
ing the resolution. As is usually the case with search algorithms that attack hard
problems, the search process can be greatly improved by applying heuristics at
the appropriate decision points. In the case of the SAT problem, the decision of
which variable to try and assign next is one of the crucial ones. With the above
idea of search complemented with conflict resolution in mind, Moskewicz et al.
[20] introduced the VSIDS heuristic. This heuristic prefers the variables that were
involved in the resolution of recent conflicts, effectively adding the feedback in the
other direction, i.e. the resolution is guiding the search. This approach to solving
SAT problems is commonly called conflict-directed clause learning (CDCL), and
is employed by most modern SAT solvers.

Unsurprisingly, the success of SAT solvers has encouraged their adoption in
attacking problems from other domains, including some that were traditionally
handled by the ILP solvers [3]. These ILP problems are the ones where variables
are restricted to the {0, 1} domain, and are commonly referred to as pseudo-Boolean
(PB) problems. Although these problems still operate over Boolean variables, con-
flict resolution is problematic even at this level [6]. The key problem is to find an
analogue conflict resolution principle for integer inequalities, since the Fourier-
Moztkin resolution is imprecise for the integers, and the deduced inequalities are
often too weak to resolve a conflict. For example, consider the inequalities

3z3 + 200+ 21 >4, —3zz3+ao+2x1 >1 .

Assume that the search algorithm is considering a partial assignment such that
x1 — 1 and z2 — 1. Under this assignment, the left inequality implies that z3 > 1,
and the right inequality implies that z3 < 0. In other words, it is not possible to
extend the partial assignment to x3 and we are therefore in a conflicting state.



Cutting to the Chase 3

We can try to apply a Fourier-Motzkin resolution step to the above inequalities
in order to explain the conflict. If we do so, we eliminate the variable xz3 and
obtain the inequality 3x2 + 321 > 5, which in the integer domain is equivalent to
x2 + x1 > 2. This inequality is not strong enough to explain the conflict, as it is
satisfied under the current partial assignment.

In this paper we will resolve this issue and provide an analogue of Boolean res-
olution, not only for PB problems, but for the general ILP case. We achieve this
by introducing a technique for computing tightly-propagating inequalities. These in-
equalities are used to justify every propagation performed by our procedure, and
have the property that Fourier-Moztkin resolution is precise for them. Tightly-
propagating inequalities guarantee that our conflict resolution can succinctly ex-
plain each conflict.

Using the new conflict resolution procedure we then develop a CDCL-like pro-
cedure for solving arbitrary ILP problems. The procedure is inspired by recent
algorithms for solving linear real arithmetic [19,18,9], and has all the important
theoretical and practical ingredients that have made CDCL-based SAT solvers so
successful. As in CDCL, the core of the new procedure consists of a search for an
integer model that is complemented with generation of resolvents that explain the
conflicts. The search process is aided with simple and efficient propagation rules
that enable reduction of the search space and early detection of conflicts. The re-
solvents that are learned during analysis of conflicts can enable non-chronological
backtracking. Additionally, all resolvents generated during the search are valid, i.e.
implied by the input formula, and not conditioned by any decisions. Consequently,
the resolvents can be removed when not deemed useful, allowing for flexible mem-
ory management by keeping the constraint database limited in size. Finally, for
bounded problems all decisions (case-splits) during the search are not based on a
fixed variable order, thus enabling dynamic reordering heuristics.

Existing ILP solvers can roughly be divided into two main categories: satura-
tion solvers, and cutting-planes solvers. Saturation solvers are based on quantifier
elimination procedures such as Cooper’s algorithm [8] and the Omega Test [23,4].
These solvers are essentially searching for a proof, and have the same drawbacks
as the DP procedure. On the other hand, the cutting-planes solvers are model
search procedures, complemented with derivation of cutting planes. The main dif-
ference with our procedure is that these solvers search for a model in the rational
numbers, and use the cutting-planes to eliminate non-integer solutions. Moreover,
although it is a well-known fact that for every unsatisfiable ILP problem there
exists a cutting-plane proof, to the best of our knowledge, there is no effective way
to find this proof. Most systems based on cutting-planes thus rely on heuristics,
and termination is not guaranteed. In most cases, the problem with termination is
hidden behind the assumption that all the problem variables are bounded, which
is common in traditional practical applications. In theory, this is not an invalid
assumption since for any set of inequalities C, there exists an equisatisfiable set
C’, where every variable in ¢’ is bounded [22]. But these theoretical bounds are
of little practical value since even for very small problems (< 10 variables), unless
they are of very specific structure [24], the magnitudes of the bounds obtained this
way are beyond any practical algorithmic reasoning.

In contrast, our procedure guarantees termination directly. We describe two
arguments that imply termination. First, we propose a simple heuristic for deciding
when a cutting-planes based approach does not terminate, recognizing variables



4 Dejan Jovanovié, Leonardo de Moura

contributing to the divergence. Then, we show that, in such a case, one can isolate a
finite number of small conflicting cores that are inconsistent with the corresponding
current partial models. These cores consist of two inequalities and at most one
divisibility constraint. Finally, we apply Cooper’s quantifier elimination procedure
to derive a resolvent that will block a particular core from ever happening again,
which in turn implies termination. And, as a matter of practical importance, the
resolvents do not involve disjunctions and are expressed only with valid inequalities
and divisibility constraints.

2 Preliminaries

As usual, we will denote the set of integers as Z. We assume a finite set of variables
X ranging over Z and use z, y, z, k to denote variables, a, b, ¢, d to denote constants
from Z, and p, ¢, r and s for linear polynomials over X with coefficients in Z. In
the following, all polynomials are assumed to be in sum-of-monomials normal form

aix1+---+anxTn +c .

Given a polynomial p = a1x1+...+anzn+c, and a constant b, we use bp to denote
the polynomial (a1b)z1 + ...+ (anb)zn + (be).

The main constraints we will be working with are linear inequalities, which are
of the form

anTp + - +a1z1 +c¢<0

and we denote them with letters I and J. We assume the above form for all
inequalities as, in the case of integers, we can rewrite p < 0 as p+ 1 < 0, and
p=0as (p <0)A(—p < 0). In order to isolate the coefficient of a variable z in
a linear polynomial p (inequality I), we will write coeff(p, z) (coeff(I,x)), and we
define coeff(p, z) = 0 if = does not occur in the polynomial p (inequality I).

Definition 1 (Tightly-Propagating Inequality) We say that an inequality I is
tightly-propagating for a variable z, if the coefficient with x in the inequality I is
unit, i.e. if coeff(I,z) € {-1,1}.

We call a function v that maps variables to integer values a variable assignment.
A constraint anzn + -+ ai1z1 + ¢ < 0 is satisfied by a variable assignment v if all
the variables z1, ..., zn are assigned by v and an v(zn)+---+a1 v(z1)+c < 0. A set
of constraints C' is satisfiable if there is an assignment that satisfies all constraints
in C. Otherwise the set of constraints C' is unsatisfiable. Finally, given a set of
constraints C' and a constraint I, we use C 7 I to denote that I is implied by C
in the theory of linear integer arithmetic.

3 A Cutting-Planes Proof System

In this section, we introduce a cutting-planes proof system that will be the basis
of our procedure. Each rule consists of the premises on the top and derives the
conclusion at the bottom of the rule, with the necessary side-conditions presented
in the box on the side.

The CoMBINE rule derives a positive linear combination of two linear integer
inequalities.



Cutting to the Chase 5

—_—

ROUNDING

—_—

0

3
o

VI

i=} N
— 4
+ ~
5 +
> —
| &
~ |
8 ~
=) 8
| [

-1
1 2 3

x2

Fig. 1 Cutting-plane derivation of Example 1.

I I
CoMBINE ——— if

Al + A2l

A special case of the above rule is the resolution step used in the Fourier-Motzkin

elimination procedure that eliminates the top variable from a pair of inequalities
—ax +p <0 and bx — g < 0, generating the inequality bp — aq < 0.

The CoMBINE rule is a valid deduction in both rational and integer arithmetic.

In the context of integers arithmetic, the main deductive step, essential to any

cutting-planes proof system, is based on strengthening an inequality by rounding.

The NorMALIZE rule divides an inequality with the greatest common divisor of

variable coefficients, while rounding the free constant.

aix1+...+anxn +c¢ <0

NORMALIZE if ’ d=gcd(ai,...,an)
Yoyt ot B+ 5] <0

Ezample 1 Consider the two inequalities
—3x3 — 222 —21 +4<0 3r3 — 20— 221 +1<0 .

We can apply the COMBINE rule with coefficients A1 = A2 = 1, simulating Fourier-
Motzkin elimination, to derive an inequality where the top variable x3 is elimi-
nated, and then normalizing the result, obtaining the following derivation.
—3x3 — 229 —x1 +4 <0 3zr3 —x9 — 221 +1<0
—3x9 —3x1+5<0
—x2—x1+2<0

This derivation is depicted in Figure 1, where it is more evident how the rounding
helps eliminate the non-integer parts of the solution space. The shaded part of the
figure corresponds to the real solutions of the inequalities at 1 = 0, and the part
of this space that does not contain any integer solutions is removed (cut off) by the
derived inequality (cutting plane). Since we are interested only in integer solutions,
performing rounding on an inequality corresponds to pushing the hyper-plane that
defines the border of the space defined by the inequality, until it touches at least
one integer point.

COMBINE

NORMALIZE



6 Dejan Jovanovi¢, Leonardo de Moura

4 The Abstract Search Procedure

We describe our procedure as an abstract transition system in the spirit of the
Abstract DPLL procedure [21]. The states of the transition system are pairs of
the form (M, C), where M is a sequence of bound refinements, and C is a set of
constraints. We use [] to denote the empty sequence. Bound refinements in M can
be either decisions or implied bounds. Decided lower and upper bounds are decisions
we make during the search, and we represent them in M as z > b and z < b. On
the other hand, lower and upper bounds that are implied in the current state by
some inequality I, are represented as z >; b and xz <; b. We say that a sequence of
bound refinements M is non-redundant if, for all variables x, the bound refinements
in M are monotone, i.e. all the lower (upper) bounds are increasing (decreasing),
and M does not contain the same bound for z, decided or implied.

Let lower(z, M) and upper(x, M) denote the strongest, either decided or implied,
lower and upper bounds for the variable z in the sequence M, where we assume
the usual values of —oco and co when the corresponding bounds do not exist. We
say that a sequence M is consistent if there is no variable = such that lower(x, M) >
upper(z, M). We lift the lower and upper bound functions to linear polynomials
using identities such as: lower(p+ g, M) = lower(p, M) + lower(q, M), when variables
in p and ¢ are disjoint, lower(b, M) = b, and lower(ax, M) = a(lower(z, M)) if a > 0,
and lower(ax, M) = a(upper(z, M)) otherwise.!

If in a sequence M, a variable x has both of its bounds equal, i.e. if lower(z, M) =
upper(z, M), we say that the variable z is fized. Similarly a polynomial p is fixed
if all of its variables are fixed. To clarify the presentation, for fixed variables and
polynomials we write val(z, M) and val(p, M) as a shorthand for lower(z, M) and
lower(p, M ). Given a sequence M, with variables z1,...,z, fixed, we can construct
a variable assignment v[M] that maps each variable z; to the value val(z;, M).

Given a sequence of bound refinements M and an inequality I that contains a
variable z, the inequality I implies a bound on z assuming the bounds in M. To
capture this we define the function bound(I,z, M) representing the implied bound
as

__rlower(p,M) 1

ifa>0 )
bound(az +p < 0,2, M) = {_waer?pm ifa<0
G :

Above, if a > 0 the computed bound is an upper bound on the variable z, and if
a < 0 it is a lower bound on z.

Ezample 2 Consider the inequalities I; = —3xs — 2290 — 21 +4 < 0, Io = 323 —
xzo —2z1 + 1 < 0, and the sequence of bound refinements M = [z; < 1,29 < 3].
Knowing the bounds on z; and x2, the inequality I; implies a lower bound on z3,
and the inequality I2 implies an upper bound on z3. We have that

lower(—2xz2 — z1 + 4, M) = —2upper(z2, M) — upper(z1, M) +4= -3 ,
lower(—xzo — 221 + 1, M) = —upper(z2, M) — 2upper(z1, M) +1=—4 .
Therefore, inequality I; implies the lower bound bound(/1,z3, M) = L—g] =—

and inequality I implies the upper bound bound(I2,z3, M) = 7(?1 1.

1 In general, when estimating bounds of polynomials, since two polynomials might have
variables in common, for a consistent sequence M it holds that, if lower(p, M) and lower(g, M)
are defined, then lower(p + ¢, M) > lower(p, M) + lower(g, M).



Cutting to the Chase 7

Definition 2 (Well-Formed Sequence) We say a sequence M is well-formed with
respect to a set of constraints C' when M is non-redundant, consistent and M is
either an empty sequence or is of the form M = [M’ ~], where the prefix M’ is
well-formed and the bound refinement ~ is either

—x>7b, with I = (—x+¢<0),CFz I, and b < lower(q, M'); or
— <y b, with I =(z—¢<0),CkzI, and b > upper(q, M’); or
— x > b, where M’ contains = <j b; or

z < b, where M’ contains = > b.

Intuitively, in a well-formed sequence, every decision z > b (z < b) amounts
to deciding a value for z that is equal to the best upper (lower) bound so far in
the sequence. Additionally all the implied bounds are justified by tight inequalities
that are implied in Z by the set of constraints C. We say that a state (M,C) is
well-formed if M is well-formed with respect to C.

Note that in the first two properties, when refining a bound, we allow the new
bound b to mot necessarily be the most precise one with respect to I. The reason
behind this is a practical one. As we show later, given any inequality that propa-
gates a better bound on a variable we can compute a tightly-propagating inequality
that implies the same (or better) bound. But, since the procedure for computing
tightly-propagating inequalities is non-trivial, in practice it is desirable to compute
these tightly-propagating inequalities on-demand. During the search process we
propagate new bounds using the existing (possibly non-tight) inequalities, and we
compute their tight counterparts only when needed during conflict analysis. The
computed tightly-propagating inequalities can often be stronger than the original
inequality, implying a better bound than the original one, and the allowance of
this definition enables us to compute them on-demand.

Given an implied lower (upper) bound refinement  >; b (z <; b) and an
inequality az + p < 0, we define the function resolve that combines (if possible) the
tight inequality I = +x + ¢ < 0 with ax + p < 0 to eliminate the variable x. If the
combination is not applicable, resolve just returns az + p < 0. It is defined as

resolve(z <y b,ax +p <0)

resolve(z >1 b,ax +p <0)  Jlalg+p <0 ifaxcoeff(f,z2) <0,
ar+p<0 otherwise .

The resolve function will be used in conflict resolution due to the property that
it eliminates the variable z if possible, while keeping valid deductions, and the fact
that it preserves (or even improves) the bounds that can be implied. The following
lemma states this property more precisely.

Lemma 1 Given a well-formed state (M,C), with M = [M’,~], such that v is an
implied bound, p < 0 an inequality, and q < 0 = resolve(y,p < 0) then

Ctyz (p<0) implies Ctyz(g<0), (1)

lower(q, M") > lower(p, M) . (2)

Proof Having that v is an implied bound, we need only consider the following two
cases:

1. v is of the form z > b, where I = (—x + r < 0);
2. ~ is of the form z <; b, where I = (z — r < 0);



8 Dejan Jovanovi¢, Leonardo de Moura

Let us consider only the first case, as the proof of the second case is similar. Since
(M, C) is a well-formed state and M = [M’,~], we have that b < lower(r, M) and
C tz —x+r < 0. We consider two cases based on the sign of the coefficient of x in

p-

— If p is of the form —axz + s, for some a > 0 then by the definition of resolve,
we have that resolve(y,p < 0) = p < 0. Then, ¢ = p, and C +z (¢ < 0). Since
lower(p, M) = —aupper(z, M) + lower(s, M), and removing the lower bound ~
from M does not influence upper(z, M), we have that lower(p, M) = lower(p, M) =
lower(q, M").

— If p is of the form ax + s, for some a > 0. By the definition of resolve, we have
that resolve(y,p < 0) = ar + s < 0. Then, C 7 (¢ < 0), since ¢ = ar + s is a
positive linear combination of the inequalities p < 0 and —x + r < 0. Finally,
we have that

lower(q, M") = lower(ar + s, M") > a(lower(r, M")) + lower(s, M")
> a(lower(x, M)) + lower(s, M) = lower(p, M) .

Since in both of the cases the statement holds, this concludes the proof.

Ezample 3 In the statement of Lemma 1, we get to keep (or improve) the bound
lower(q, M) > lower(p, M) only because all of the implied bounds were justified
by tightly-propagating inequalities. If we would allow non-tight justifications, this
might not hold. Consider, for example, a state (M, C) where

I J
—N —
C={-2<0, -3y+z+2<0}, M=Jz>;0,y>;1] ,

i.e. the propagation of the bound on y is propagated by a non-tight inequality J.
Now, consider the inequality 1+ 6y < 0. We have that

resolve(y >;71, 1+6y<0)=22+5<0 .

After performing resolution on y using a non-tight inequality J, the inequality
became weaker since

lower(2x + 5,z > 0]) =5 lower(1 4 6y, M) =17 .

Finally, we define a predicate improves(I,z, M) as a shorthand for stating that
the inequality I = ax + p < 0 implies a better bound for x in M, but does not
make M inconsistent. It is defined as

lower(z, M) < bound(I,z, M) < upper(z, M), ifa <0,
improves(I,z, M) = < lower(z, M) < bound(I,z, M) < upper(z, M), ifa >0,

false, otherwise.



Cutting to the Chase 9

4.1 Deriving tight inequalities

Since we require that all the implied bound refinements in a well-formed sequence
M are justified by tightly-propagating inequalities, and we’ve hinted that this is
important for a concise conflict resolution procedure, we will now show how to
deduce such tightly-propagating inequalities when needed in bound refinement.
Given an inequality +az + p < 0 such that improves(+az + p < 0,z, M) holds, we
show how to deduce a tightly propagating inequality that can justify the improved
bound implied by +azxz +p < 0.

The intuition behind the derivation is the following. Starting with an inequality
I =azx+biy1 + -+ bayn < 0, that implies a bound on z, we will transform it
using valid deduction steps into an inequality where all coefficients are divisible
by a. We can do this since, in order for I to be able to imply a bound on z, the
appropriate bounds for the variables yi,...,yn have to exist, and moreover these
bounds are justified by tightly-propagating inequalities. For example, the bound
on variable y; might be justified by the inequality J = y1 + ¢ < 0. If so, we can
add the inequality J to I as many times as needed to make the coefficient with y;
divisible by a.

The deduction is described using an auxiliary transition system with the states
of this system being tuples of the form

<M/,:I:ax—|— as EB’I“> ,

where a > 0, s and r are polynomials, M’ is a prefix of the initial M, and we keep
the invariant that

Ctyz tax+as+r <0, lower(as+r, M) > lower(p, M) .

The invariant above states that the derived inequality is a valid deduction that
implies at least as strong of a bound on z, while the coefficients to the left of the
delimiter symbol & are divisible by a.

The initial state for tightening of the inequality +axz + p < 0 is (M, tax @ p)
and the transition rules are listed below.

Consume
(M, +tax + as ® aky + r) = (M,taz+as+aky Sr)
where x # y.

Resolve-Implied
(IM,~], £az + as ® p) = (M,tax+as®q)

where v is an implied bound and ¢ < 0 = resolve(y,p < 0)

Decided-Lower
(IM,y > b],tax+as®cy+r) = (M,xax+as+aky®dr+ (ak—c)q)
where y <; bin M, with I =y+ ¢ <0, and k = [¢/a].

Decided-Lower-Neg
(M,y > b],2az+asPcy+r) = (M,tax+as®cq+r)
where y <7 bin M, with I =y—¢ <0, and c<O0.

Decided-Upper
(IM,y <b],xar+asDcy+r) = (M,xazx+as+akydr+ (c—ak)q)
where y >7 bin M, with I = —y+¢ <0, and k = |¢/a].

Decided-Upper-Pos



10 Dejan Jovanovié, Leonardo de Moura

(M,y <b],zax+as®cy+r) =— (M,tax+as®cq+r)
where y >7 bin M, with I = —y+q <0, and ¢ > 0.

Round (and terminate)
(M, tax + as & b) = tx+s+[b/a] <0

We use tight(I,z, M) to denote the tightly propagating inequalities derived
using some strategy for applying the transition rules above.

Note that, at a particular state, there might be more than one rule that is appli-
cable. For example, if the Decided-Lower-Neg rule is enabled, then so is the Decided-
Lower rule (and similarly for the Decided-Upper-Pos and Decided-Upper rules). The
Decided-Lower-Neg and Decided-Upper-Pos rules eliminate the variable y, due to the
appropriate sign of the coefficient ¢ with variable y. On the other side, the Decided-
Upper and Decided-Lower rules only make the coefficient with variable y divisible by
a. Additionally, any variable y that does not have a decided bound can always be
eliminated completely, by choosing not to apply apply the Consume rule. This can
be used if we wish to completely eliminate a variable from an inequality, which we
use in Section 5.

Ezample 4 Given a well-formed state (M, C), where

C={-y<0,—24+2<0,—y+74+2<0,-32+2y — 5z <0}
——
I, I I3 1y
M=[y>,0, 2>1,2, y>21,9, <2 ]

In this state we have that bound(I4, 2z, M) = 3, that is, I4 is implying a lower bound
of z in the current state Since Ij is not tightly-propagating on z. we now derive
a tight inequality that justifies this lower bound by applying the rules as we go
backwards in the trail of bound refinements.

lyz2n0, 21,2, y>71,9, 2<2],-3202y — 52)
— Decided-Upper
z < 2 is a decided bound, M contains implied bound z >y, 2.
We make the coefficient of = divisible by 3 by adding I = —z+2 < 0.
(lyv>n0, 2>1,2, y>7,9],-32—-6x®2y+2)
— Resolve-Implied
We eliminate y by adding two times I3 = —y+ 7+ x < 0.
lyv>r0, 2>1,2],—32z— 6z ®2zx+ 16)
— Resolve-Implied
We eliminate z in 2z + 16 by adding two times I = —z + 2 < 0.
([ y=>1, 0 1,-32 — 6. 20)
= Round
—z—2x+7<0

The derived tightly propagating inequality —z — 2z + 7 < 0 implies the same lower
bound bound(—z — 2z 4+ 7 < 0,2, M) = 3 for z.

The following lemma shows that by deriving tightly propagating inequalities
using the system above we do not lose precision in terms of the bounds that the
inequality can imply.



Cutting to the Chase 11

Lemma 2 Given a well-formed state (M, C) and an implied inequality I, i.e. such that
C +y I, and improves(I,x, M) the procedure for deriving tightly-propagating inequalities
terminates with a tight-inequality J such that C tFz J and

— if I improves the lower bound on z, then bound(I,x, M) < bound(J,z, M),

— if I improves the upper bound on x, then bound(I,z, M) > bound(J,z,M).

Proof Note that for any inequality I = +ax + p < 0 as in the statement of the
lemma, i.e. one that improves a bound of x in M, the bounds of all variables from
1, except for maybe x, are justified in M. Moreover, since we'’re in a well-formed
state, all of the inequalities that justify these bounds are also tightly-propagating.

For the initial state (M, +az @ p), all the variables in p have a bound in M.
The transition system then keeps the following invariants for any reachable state
(Mg, tax +q®r):

(a) all the variables in r have a bound in Mj;

(b) all the variables in ¢ have a bound in M;

(c) all the coefficients in g are divisible by a; and
(d) lower(g + r, M) > lower(p, M).

Proving these invariants is an easy exercise, with the interesting and important
case being (d), which follows in a manner similar to Lemma 1. The cases where
the transition rule eliminates a variable follow as in Lemma 1. Assume therefore
that we are in the case when we don’t eliminate the top variable. For example,
assume a state where the decided lower bound of y in M), (and hence in M) is at
b.

<IIMk—17y Z b]],iaz+q€BT> )

Then y must have an implied upper bound y <; b in M},_;, and we add a positive
multiple of a tightly-propagating inequality I = y 4+ ¢ < 0. Note that in My _;, by
property of implied bounds in the definition of the well-formed state, we have that
b > upper(—t, M}_1) = —lower(t, M}_1). Now, for any A > 0 we then have

lower(q +r + Ay +t), M) > lower(q + r, M) 4+ A(lower(y, M) + lower(t, M)) (3)
> lower(g + 7, M) + A(lower(y, M) + lower(t, My_1)) (4)
> lower(q + 7, M) + A(lower(y, M) — b) (5)
= lower(q +r, M) . (6)

The inequality (3) holds just through computation of lower and it is not an equality
as some the variables in the terms might be shared, as discussed in the definition
of lower. The inequality (4) holds as lower bounds on terms can only increase in a
well-formed state and My _; is a subsequence of M. The inequality (5) holds since
as discussed above we have that lower(t, M},_;) > —b. Finally, (6) holds simply be
definition of lower when a variable has a decided value in a well-formed state.
The improvement of bounds stated in the lemma then easily follows from (d).
Termination follows directly, as at least one of the rules is always applicable (using
(a)), and each rules either consumes a part of the sequence M or terminates. The
length of the derivation is therefore bounded by the length of the sequence M.

Note that in the statement above, improves(.J, z, M) does not necessarily hold,
although the implied bound is the same or better. This is because the improves
predicate requires the new bound to be consistent, and the derived inequality
might in fact imply a stronger bound that can be in conflict.



12 Dejan Jovanovié, Leonardo de Moura

4.2 Main procedure

We are now ready to define the main transition system of the decision procedure.
In the following system of rules, if a rule can derive a new implied bound = > b or
x <1 b, the tightly propagating inequality I is written as if computed eagerly. This
simplification clarifies the presentation, but we can use them as just placeholders
and compute them on demand, which is what we do in our implementation. The
transition rules alternate between the search phase with states denoted as (M, C),
where new bounds are propagated and decisions on variables are made, and the
conflict resolution phase with states denoted as (M,C) + I, where we try to ex-
plain the conflict encountered by the search phase. We call the inequality I in
the conflict-resolution states the conflicting inequality. The conflicting inequality
I =p <0 will always be implied by C' and be in conflict with the current bound
(lower(p, M) > 0).

Search rules. The search phase of the transition system can either propagate a
new bound on a variable using one of the Propagate rules, or decide a new bound
of variable using one of the Decide rules. As mentioned before, the Propagate rule
infers the new bound using a possibly non-tight inequality J, and its tight coun-
terpart I is computed so as to enable conflict analysis. Both rules keep the state
consistent while transitioning from well-formed states to well-formed states. If an
inconsistency is detected, we transition into the conflict analysis phase using the
Conflict rule. In addition to these basic rules, if we detect that some inequality can
be inferred from other inequalities, we can remove it using the Forget rule.?

Decide
upper(z, M) # +o0
(M, C) = ([M,z >10],C) {Iower(x,M) < b = upper(z, M)
. lower(z, M) # —o0
(M,C) = (M2 <8],0) " {|ower<x,M> = b < upper(z, M)
Propagate

coeff(J,z) < 0
improves(J, x, M),
b = bound(J, z, M).
I = tight(J, z, M),

(M,CU{J}) = ([M,z>;b],CU{J}) if

coeff(J,z) > 0
improves(J, x, M),
b = bound(J, z, M).
I = tight(J,z, M),

(M,CU{JY) = ([M,z <;b],CU{J}) if

Conflict

(M, C) = (M,C)Fp<0 if p<0eC, lower(p, M) >0
Sat

(M,C) = (v[M],sat) if v[M] satisfies C
Forget

(M,CU{J}) = (M,C) if CFyJ,and JgC

2 This rule can be used to remove the new inequalities that were learned during conflict
analysis.



Cutting to the Chase 13

Conflict analysis rules. After entering the conflict resolution phase the conflict-
resolution rules are used to backtrack the search and learn a reason for the detected
conflict as we traverse the bound sequence backwards.

Resolve

(IM,~],C)-1T = (M,C) I resolve(y,I) if -+ is an implied bound.
Skip-Decision

I1LCH P 0= MOy rp<0 i {] 2 deried pound
Unsat

(IM,~],C)Fb<0 = unsat if >0
Backjump
~ is a decided bound
coeff(J,z) < 0
([M,~, M'],C) - J = ([M,z >1 b],C) if ¢ improves(J,z, M),
I = tight(J, z, M),
b = bound(J, z, M).

v is a decided bound
coeff(J,z) > 0
([M,~,M'],C) +J = ([M,z <1 b],C) if ¢ improves(.J, z, M),

I =tight(J,z, M),
b = bound(J, z, M).

Learn
M,CYFT = (M,CUDFI if I¢gC

When applying any of the presented search rules, any newly introduced inequal-
ity is either a tight version of existing inequalities, or introduced during conflict
resolution. In both cases we can see from Lemma 1 and Lemma 2 and simple
inductive reasoning that these new inequalities are always implied by the original
problem. This observation and standard case analysis on the rules can be used to
show the soundness of the transition system.

Theorem 1 (Soundness) For any derivation sequence ([],Co) = S1 = -+ =
Sn, if Sn is of the form (Mn,Cy), then Co and Cyn are equisatisfiable. If Sy is of the
form (Mn,Cn) F I, then Co implies I, and Co and Cpn are equisatisfiable. Moreover,
(Mn, Cr) is well-formed.

From the theorem above it is easy to see that if the transition system enters
the unsat state, then the original constraints Cy are unsatisfiable. The only way to
enter the unsat state is by deriving a trivial false inequality b < 0, for some b > 0,
and since this inequality is implied by Cy, it must be that Cy (and therefore Cp)
is unsatisfiable.

Ezample 5 Consider the set of inequalities C'

{—z<0, 62—3y—2<0, —6z+3y+1<0}
~———

Iy Iy I3

Now we show C' to be unsatisfiable using our abstract transition system.



14 Dejan Jovanovié, Leonardo de Moura

(.c)

— Propagate z using [1 = —x <0

<[[$ 2[1 0]],0)

—> Decide =

([x =21, 0, 2 <0],C)

— Propagate y using I3 = —6x+3y+1<0
M

(le >1, 0, 2 <0, y <y —1],C), where J = tight(Is,y, [z >, 0,z < 0])
(x>, 0, 2 <0],3y & —62 + 1)
= Consume
(x>, 0, 2 <0],3y — 6z b 1)
= Round
J=y—-2x+1<0
= Conflict using I = 6z — 3y — 2 < 0, since lower(6z — 3y —2,M)=1>0
(le 21,0, 2<0, y<; —-1],C) F 6z —3y—2<0
= Resolve resolve(y <j; —1,60 —3y—2<0)=3(-2z+1)+6z—-2<0)
(IM,z <0],C)F1<0
= Unsat
unsat

4.3 Finite Problems

We say a set of inequalities C is a finite problem if for every variable x in C, there
are two integer constants a and b such that {zx—a < 0, —z+b < 0} C C. We say a set
of inequalities C' is an infinite problem if it is not finite. That is, there is a variable
z in C such that there are no values a and b such that {x —a < 0,—z+b <0} C C.
We say an inequality is simple if it is of the form 2 —a <0 or —z 4+ b < 0.

Let Propagate-Simple be a rule such as Propagate, but with an extra condition
requiring J to be a simple inequality. We say a strategy for applying the rules is
reasonable if a rule R different from Propagate-Simple is applied only if Propagate-
Simple is not applicable. Informally, a reasonable strategy prevents the generation
of derivations where simple inequalities are ignored and C' is essentially treated as
an infinite problem.

Theorem 2 (Termination) Given a finite problem C, there is no infinite derivation
sequence starting from ([], C) that uses a reasonable strategy.

Proof The proof of the statement is an adaptation of the proof used to show
termination of the Abstract DPLL [21]. We say that a state (M;, C;) is reachable
if there is a derivation sequence

(0,C) == (M;,C;) .

A sequence M is bounded if there is no variable z in C such that lower(z, M) = —o0
or upper(z, M) = oco. Given a derivation T starting at ([],C), let (Mo, Co) be the
first state in T" where Propagate-Simple is not applicable. Then, My is bounded
because C is a finite problem. We say (My, Co) is the actual initial state of T.
The level of a state (M;, C;) is the number of decided bounds in M;. The level
of any reachable state (M;,C;) is < n, where n is the number of variables in C.



Cutting to the Chase 15

Let subseq;(M) denote the maximal prefix subsequence of M of level < j. Let V/
denote the set of variables used in C.
First, we define an auxiliary function w(M) as

(M) 00 if M is unbounded,
> wcv (upper(z, M) — lower(x, M))  otherwise.

Now, we define a function weight that maps a sequence M into a (n + 1)-tuple,
where n is the number of variables in C. It is defined as

weight(M) = (w(subseqy(M)), w(subseq, (M)), ..., w(subseq,, (M))) .

Given two bounded sequences M and M’, we say M < M’ if weight(M) <jex
weight(M"), where <o, is the lexicographical extension of the order < on natural
numbers.

For any transition (M;, C;) = (M;41,C;+1) performed by Decide, Propagate or
Propagate-Simple, as these rules only improve the variable bounds, if M; is bounded,
then M, is also bounded and M;;; < M;.

Now let’s consider the conflict resolution rules. The conflict resolution process
starts from a state (M,C) F I and then traverses over the elements of the trail
backwards. Since the size of the sequence M is finite, conflict resolution is always
a finite sequence of steps. For each conflict resolution step of the transition system

(M, Cr) Fp < 0= (M} 41,Crq1)Fq<0,

the sequence My is a subsequence of My, and the rules keep as invariant the
fact that ¢ < 0 is a valid deduction and lower(g, M) > 0. For applications of the
Resolve rule this follows from Lemma 1 and Lemma 2, and for applications of the
Skip-Decision rule this follows from the preconditions of the rule itself.

Let’s show that we can not get stuck in conflict analysis, i.e. that a transition
using the conflict resolution rules is always possible. Assume that no rule other
than possibly Backjump is applicable, i.e. that we are in a state (M, Cy)Fp <0
where M}, = [Mj,,~] such that

— v is a decided bound (Resolve is not applicable); and
— lower(p, Mj,) < 0 (Skip-Decision is not applicable).

If y = x < b, then we know that lower(x, Mj,) = b and, additionally, that p = —az+q
for some a > 0 as otherwise we would have that lower(p, M},) = lower(p, Mj,) > 0.
We can now compute

0 < lower(—az + q, My,) = —aupper(z, My,) + lower(q, M) = —ab + lower(q, Mj,) ,

and therefore lower(q, M},) > ab. From here we see that —az +¢ < 0 implies a lower
bound bound(p < 0,2, M) > b on z, improving on the current lower(z, M) = b.
For the Backjump rule to be applicable we must also show that the new bound
does not exceed any existing upper bounds in Mj,. Assume the opposite, i.e. that

I M!
upper(z, Mj,) < bound(p < 0,2, M) = {WW



16 Dejan Jovanovié, Leonardo de Moura

But then we can conclude that

lower(—az + g, My,) = —aupper(z, M},) + lower(g, M},)
> —aupper(x, Mj},) + aupper(z, M) =0 .

This contradicts our assumption and therefore the new bound does not exceed the
existing bound and the Backjump rule is applicable. Similarly, if v =« > b we can
conclude that the Backjump rule is applicable.

The only way to exit the conflict analysis state and get back into the search
mode, is by an application of the Backjump rule. But, for any transition (M;, C;) F
p < 0 = (M;4+1,Cs41) performed by the Backjump rule, since this transition
can backtrack at most up to the first decision and will therefore not eliminate the
bounded initial state My, if subseq(M;) is bounded, then M; 4 is also bounded and
M;4+1 < M;. Tough Backjump may eliminate several bounds from M;, it improves
the bound of a variable in some lower level. Since, for finite problems, the actual
initial state (Mo, Cp) is bounded and < is well-founded for bounded states, we
have that any derivation will eventually terminate.

Theorem 3 (Completeness) Given a finite problem C, any derivation starting from
the initial state ([], C), that uses a reasonable strategy, terminates either in the (v, sat)
state, or in the unsat state. In the former case C is satisfiable, and in the latter case
C is unsatisfiable.

Proof If we terminate a derivation in the (v, sat) state we know by the precondition
of the Sat rule and Theorem 1 that C is satisfiable with v being a witness variable
assignment. If we terminate a derivation in the state unsat, again by Theorem 1,
we know that C is unsatisfiable. Since we know from the previous theorem that
any reasonable derivation will terminate, lets show that these are the only two
possible terminal states.

The conflict analysis rules either enter the unsat state, or eventually return
to the search phase. Therefore, we need only consider the search phase states as
possible other terminal states. Assume that the derivation terminates in a search
state (M, C’). By Theorem 1 we know that M is a well-formed sequence. If there is
a variable = from C’ that is not fixed, since M is a well-formed sequence, it must
be that lower(z, M) < upper(xz, M). Since we’re using a reasonable strategy, then
both of these bounds must be finite and therefore both Decide rules are enabled
for a transition. Assume therefore that all variables = from C’ are fixed in M. If
so, then either the variable assignment v[M] satisfies all the constraints from C’
and we can transition into the sat state, or there is a constraint p < 0 € C’ such
that v[M](p) = lower(p, M) > 0 and we can transition into a conflict analysis state.
Since in both cases there is a transition available, no search state can be a terminal
state.

4.4 Infinite Problems.

As mentioned in the introduction, for infinite problems a termination argument
can be constructed using the fact that for any set of inequalities C, there is an
equisatisfiable C’ where every variable in C’ is bounded, but it has little practical
value. In Section 5, we describe an extra set of rules that guarantee termination



Cutting to the Chase 17

even for infinite problems. Here we discuss some possible heuristics remedies that
are sufficient to solve many infinite problems encountered in practice.

Slack Introduction. One of the obvious drawbacks of the presented system is that
it is easy to find a system of constraints where the transition system can not make
any progress. For example, if the original constraints don’t contain any explicit
variable bounds, then the Propagate rule is not applicable as no inequality can infer
new bounds, and the Decide rule is not applicable since it requires a variable that
is already bounded from one side. Therefore for such sets of constraints, no search
rule is applicable and the system can not make progress. This issue can be resolved
by introducing fresh variables that create artificial bounds that can start-up the
computation.

Given a state S = (M, C), we say that a variable z is unbounded at S if there
is no bound on z is M, i.e. when lower(z, M) = —oo and upper(xz, M) = co. We also
say that = is stuck at state S if it is unbounded and the Propagate rule cannot be
used to deduce a lower or upper bound for z. A state S is stuck if all undecided
variables in S are stuck, and no inequality in C is false in M. That is, there is no
possible transition for a stuck state S.

We avoid stuck states, by observing that for every finite set of inequalities C,
there is an equisatisfiable set C’ such that for every variable z in C’, (—z < 0) € C".
The idea is to replace every occurrence of x in C' with (z¥ — z7), and add the
inequalities —zt < 0 and —z~ < 0. Using this transformation we can avoid the
problem of stuck states since having a lower bound for each variable implies that
Decide rule is always applicable. Instead of using this eager preprocessing step, we
use a lazy approach, where slack variables are dynamically introduced. When in
a stuck state (M, C), we simply select an unbounded variable z, add a fresh slack
variable s > 0, and add new inequalities to C that “bound” z in the interval
[-zs,xs]. This idea is captured by the following rule:

Slack-Intro
(M, C) is stuck

<M,C> = <M70U{m7$s <0,—z—2s <0,—xs SO}) lf{(L's is fresh

Note that it is sound to reuse a slack variable x5 used for “bounding” z, to bound
some other variable y, and this is what we do in our implementation.

4.5 Relevant propagations

Although we can avoid the stuck states using the slack variables as described above,
this still does not guarantee termination for infinite problems. Unlike in SAT and
Pseudo-Boolean solvers, the Propagate rules cannot be applied to exhaustion for
infinite problems, since the Propagate rules may remain applicable indefinitely.

Ezample 6 Consider the following set of constraints

Im Iy Iz I J

— N
C={-2<0,-y<0,—2<0,—z+y+1<0,z—y—2<0} .




18 Dejan Jovanovié, Leonardo de Moura

The constraints are satisfiable by the assignment z = 1, y = 0, z = 1. Starting
from the initial state ([], C') we can first obtain lower bounds for the variables and
then decide the value of the variable z as follows

(I,C) =" ([« >1, 0,y >1, 0,z >1, 0,2 < 0],C) .

M

In this branch of the search, where 2 is fixed to the value 0, the constraints are
unsatisfiable. We can now generate the following infinite sequence of states by only
applying the Propagate rule.

(M, C) = ([M,z >, 1],C)
= <[[M,.’E > 1,?1 ZJ 1ﬂvc> =
(Myz > Ly>; 1,221 2],C) = ...

To try and avoid the infinite loops we adopt a simple heuristic that limits
the applications of the propagate rule. Using this heuristic we cut the possible
propagation loops. Let nb(z, M) denote the number of lower and upper bounds
for a variable z in the sequence M. Given a state S = (M, C), some ¢§ > 0, and
a bound on a number of propagations Max, we say a new lower bound = >; b is
d-relevant at S if

1. upper(xz, M) # 400, or
2. lower(z, M) = —oo0, or
3. lower(z, M) + d|lower(z, M)| < b and nb(z, M) < Max.

The intuition for the above definition of relevancy is as follows. If x has a
upper bound, then any lower bound is é-relevant because = becomes bounded,
and termination is not an issue for bounded variables. If x does not already have
a lower bound, then any new lower bound z >; b is relevant. Finally, the third
case states that the magnitude of the improvement must be significant and the
number of bound improvements for x in M must be smaller than Max. In theory, to
prevent non-termination during bound propagation we only need the cutoff Max.
The condition lower(x, M) + d|lower(z, M)| < b is pragmatic, and is inspired by an
approach used in [1]. The idea is to block any bound improvement for z that is
insignificant with respect to the already known bound for z.

Even when only §-relevant propagations are performed, it is still possible to
generate an infinite sequence of transitions. The key observation is that Backjump
is essentially a propagation rule, that is, it backtracks M, but it also adds a new
improved bound for some variable z. It is easy to construct non-terminating ex-
amples, where Backjump is used to generate an infinite sequence of non §-relevant
bounds.

5 Strong Conflict Resolution

In this section, we extend our procedure to be able to handle divisibility con-
straints, by adding propagation, solving and consistency checking rules specific
to divisibility constraints into our system. Then we show how to ensure that our



Cutting to the Chase 19

procedure terminates even in cases when some variables are unbounded. A linear
divisibility constraints is of the form

d | aiz1+---+anzn+c,

where d is a non-zero integer constant. We denote divisibility constraints with the
(possibly subscripted) letter D. A variables assignment v satisfies the divisibility
constraint D, if v assigns the variables z1,...,2n and d | a1 v(z1) 4+ -+ an v(zn) +
c. Throughout this section we allow divisibility constraints as part of the input
problem.

Solving divisibility constraints. We will add one proof rule to the proof system, in
order to help us keep the divisibility constraints in a normal form. As Cooper
originally noticed in [8], given two divisibility constraints, we can always eliminate
a variable from one of them, obtaining equivalent constraints.

d1 | a1z + p1,ds | a2 + p2 . d = ged(aida, asdy)

DIV-SOLVE if
d di)=d
didz | dz + a(dap1) + B(dip2) o(a1dz) + Hlazd)

d | a2p1 — aip2

Since we could not find the proof of correctness of the above rule in the liter-
ature, we provide the following simple one.

Lemma 3 Consider the following two divisibility constraints

dq ‘ air +p1 , (7)
da ‘ a2r +p2 . (8)
These are equivalent to the divisibility constraints
dids | dz+ a(dap1) + B(dip2) 9)
d | azp1 —aipz , (10)

where d = ged(aidz, asd1) and a(airdz) + B(azdi) = d.

Proof (=) Assume (7) and (8). Multiplying them with d2 and di, receptively, we
also have that dids | deaiz + dap1 and didz | diazx 4+ dip2. We can add these two
together, multiplied with « and 3 to obtain (9).

On the other hand, multiplying (7) and (8) with a2 and a1, respectively, we get
that dias | araz2x + azp1 and doai | ara2x + ai1p2. Now, since d = gcd(aldg,agdl)
we also know that d | ajasz + azp1 and d | ajazx + a1p2. Subtracting these two we
get (10).

(<) Assume (9) and (10). Using the assumption that d = a(a1d2) + B(a2d1),
we can be rewrite them as

didz | adz(arz + p1) + Bdi(azz + p2) (11)
d|az(a1z 4+ p1) — a1(azz + p2) . (12)

Using the first direction applied to above (taking a1z + p1 as the variable) we get
that

dds | ged(didzaz, adds) | a2Bdi(azx + p2) + adzai (azz + p2)
dds ‘ d(ag;l’ +p2) s

form which we get (8). Similarly, assuming asz + p2 is the variable, we get (7).



20 Dejan Jovanovié, Leonardo de Moura

We use the above proof rule to enable normalization of divisibility constraints
into a triangular form, and basic consistency checking, by adding transition rules
Solve-Div and Unsat-Div to our transition system.

Solve-Div
D1,Ds € C,
(M, C) = (M,C") if { (D}, D}) = p1v-sowvE(D1, D3),
C' = C\{D1,D2} U{D}, Ds}.
Unsat-Div

(M,Cu{(d]aiz1+ -+ anxTn+c)}) = unsat if ged(d,a1,...,an)tc

Propagation. With divisibility constraints as part of our problem, we can now
achieve even more powerful bound propagation. We allow propagation on divisi-
bility constraint D if all but one variable in D are fixed.

Let (M,C) be a well-formed state, let D = (d | az + p) € C be a divisibility
constraint with @ > 0, d > 0. Assume that the variable z has a lower bound
lower(x, M) = b, with x >; b € M and I = (—z + q). Assume, additionally, that p is
fixed, i.e. assume that val(p, M) = k. If the bound b does not satisfy the divisibility
constraint, i.e. if d { ab+ k = lower(az 4+ p, M), we can deduce a better lower bound
on z. This bound is obtained by skipping over the integer values that do not satisfy
the divisibility constraint. Let ¢ be the first such value, i.e. the smallest ¢ > b with
d|ac+k.

Since (M, C) is a well formed state we know that b < lower(q, M’) for some
prefix M’ of M, and therefore b < lower(q, M). Now, in order to satisfy the divis-
ibility constraint we must have an integer z such that dz = ax + p, and therefore
I = —dz+ax+p < 0. Note that b, the lower bound of x, does not satisfy the divis-
ibility constraint, and therefore this inequality implies a bound on z that requires
rounding. Since p is fixed, and we have a lower bound on x, we can now use our
system for deriving tight inequalities to deduce a tightly propagating inequality
Is = —z +r < 0 that, in the state, bounds z from below. Moreover, by using a
strategy that never uses the Consume rule on the variable =, we can ensure that r
does not include . From Lemma 2 we can now conclude that

Iower(a;r:—l—p,M)“ _ [ab—l—k—‘ _ac+k

d d a <7

lower(r, M) > [

with the last inference resulting by choice of ¢. Now, we use the new inequality I
to derive an inequality Is that provides a new bound on z.

I D
—_—— —_—
—z+7r<0 dz=ar+p

—dz+dr <0 dz—ar—p<0

COMBINE
—ar+dr—p<0
N e’

Is

Since we know that r and p don’t include z (and therefore z did not get eliminated)
we can compute the bound that this inequality infers on z in the current model

_ _ dactk _ 1
bound(I3, 2, M) = Pc’wer(dr b M)l > [d'mr(r’ M) k)w > { d w —c.

a a a



Cutting to the Chase 21

We can also use our procedure to convert this new constraint into a tightly prop-
agating inequality J. Similar reasoning can be applied for the upper bound in-
equalities. We denote, as a shorthand, the result of this whole derivation with
J = div-derive(D, z, M) and the constant ¢ with bound(D,z, M).

We can now use the derivation above to empower propagation and inconsis-
tency detection driven by divisibility constraints, as summarized below.

Propagate-Div

D=(d|az+p)€C, val(p, M) =k,
b = lower(z, M), d{ab+ k,

¢ =bound(D,z, M), ¢ < upper(z, M)
I = div-derive(D, z, M)

(M,Cy = ([M,z>7],C) if

D=(d|ax+p)€C, vallp, M) =k,
b = upper(xz, M), dtab+ k,

¢ =bound(D,z, M), c > lower(z, M)
I = div-derive(J, D, z, M)

(M,C) = ([M,z<;],C) if

Conflict-Div
D= (d|az+p) € C, val(p, M) = k,
. b = lower(x, M), d1ab+ k,
(M,C) = (M,C)+1 "9 bound(D, z, M) > upper(z, M)
I = div-derive(D, z, M)
D=(d|ax+p) e, vallp,M) =k
(M,C) = (M,C)+1 . ) b=upper(z, M), dfab+F,

bound(D, z, M) < lower(x, M)
I = div-derive(J, D, x, M)

Note that, as in the case of propagation with inequalities, we do not need to
derive the explanation inequality eagerly, but instead only record the new bound
and do the derivation on demand, if needed for conflict analysis.

5.1 Eliminating Conflicting Cores.

As we have seen in the previous section, for sets of inequality constraints contain-
ing unbounded variables, there is no guarantee that the procedure described in
the previous section will terminate. In this section, we describe an extension of
the transition system, based on Cooper’s quantifier elimination procedure, that
guarantees termination and can additionally handle divisibility constraints.

Let U be a subset of the variables in X. We will select the set U to contain the
unbounded variables from from the initial set of constraint C, and refer to U as
the set of unbounded variables. Let < be a total order over the variables in X such
that for all variables x € X \ U and y € U, = < y. We say a variable x is mazimal
in a constraint C' containing x if y < z for all variables y in C different from z. For
now, we assume that < is fixed, but we describe later how to change dynamically
U and < without compromising termination.



22 Dejan Jovanovié, Leonardo de Moura

Let S = (M, C) be a well-formed state and consider two inequalities from C
and the bounds that they imply

I1=br—q<0, b1 = bound(I1,z, M) ,
Ib=—-ar+p<0, bgzbound(lgw,M) .

If the polynomials p and g are fixed at S and the implied bounds are in conflict,
i.e. by > ba, we call the set {I1,I2} an interval conflicting core. If the bounds are
not in conflict but there is a divisibility constraint D = (d | cx + s) € C, with s
fixed, such that for all values k € [b1, b2], the divisibility constraint does not hold
i.e. dfck+val(s, M), we call the set {I1, Iz, D} a divisibility conflicting core. We do
not consider cores containing more than one divisibility constraint because we can
always use the Solve-Div rule to eliminate all but one of them. From hereafter, we
assume a core is always of the form {11, Iz, D}, since we can include the redundant
divisibility constraint (1 | ) in any interval conflicting core.

We say x is a conflicting variable at state S if there is an interval or divisibility
conflicting core for z. The variable z is the minimal conflicting variable at S if there
is no y < z such that y is also a conflicting variable at S. Let = be a minimal
conflicting variable at state S = (M, C) and

D={-ar+p<0,bxr—q<0, (d|cz+r)}

be a conflicting core for x, We call a strong resolvent for D a set R of inequality
and divisibility constraints equivalent to

. —ax+p<0Abx—g<O0A(d|cx+T) .

The key property of the strong resolvent R is that in any state (M’,C’) with
R c C’', z is not the minimal conflicting variable or D is not a conflicting core.

We compute the resolvent R using Cooper’s left quantifier elimination proce-
dure. It can be summarized by the rule

(d|cx+s), —ar+p<0, bx—q<0

COOPER-LEFT if

0<k<m, bp—aq+bk <0,
alk+p, ad|ck+cp+as

where k is a fresh variable and m = lem(a, Wadd,c)) — 1. The fresh variable k is
bounded so it does not need to be included in U. We extend the total order < to &
by making k the minimal variable. For the special case, where (d | cx+s) is (1 | z),
we get that m = a — 1 and the rule above simplifies to

—arx+p<0, bx—qg<0

0<k<a,bp—ag+bk<0,a|p+k

Lemma 4 The COOPER-LEFT rule is sound and produces a strong resolvent.



Cutting to the Chase 23

Proof Multiplying the premises with appropriate coefficients we can obtain new,
equivalent constraints that have abc as coefficient with x

(ab)d | (abc)z + (ab)s (13)
(be)p < (abc)x ,  (abc)z < (ac)q . (14)

In order for an integer solution to the inequalities above to exist, from the left
inequality we can conclude that there must exist a k > 0 such that (abc)z =
(be)p + (be)k, and therefore

alp+k .

Additionally, there must be enough room for this solution so, it must be that
(ac)g — (be)p > (be)k, i.e

bp—aq+bk <0 .

Now, substituting (abc)x into the divisibility constraint we get that (ab)d | (bc)k +
(be)p + (ab)s, or equivalently that

ad|ck+cp+as .

In order to bound k from above, we note that a sufficient (and necessary)
condition for a divisibility constraint a | bz + ¢ to have a solution, is to have a
solution with 0 < z < m. We use this and deduce that in our case, since we
have two divisibility constraints, it must be that

ad
<k<lI _ .
0<k<lem (a, ged(ad, c))

The rule Cooper-Left is biased to lower bounds. We may also define the Cooper-
Right rule that is based on Cooper’s right quantifier elimination procedure and is
biased to upper bounds. We use cooper(D) to denote a procedure that computes
the strong resolvent R for a conflicting core D. Now, we extend our procedure with
a new rule for introducing resolvents for minimal conflicting variables.

Resolve-Cooper
rzeU,
(M,C) = (M,C Ucooper(D)) if < z is the minimal conflicting variable,
D is a conflicting core for x.

Note that in addition to fresh variables, the Resolve-Cooper rule also introduces
new constraints without resorting to the Learn rule. We will show that this cannot
happen indefinitely, as the rule can only be applied a finite number of times.

Lemma 5 For any initial state ([], C), the Resolve-Cooper rule can be applied only a
finite number of times, if

— it is never applied to cores containing inequalities introduced by the Learn rule, and;
— the Forget rule is never used to eliminate resolvents introduced by Resolve-Cooper.



24 Dejan Jovanovié, Leonardo de Moura

Proof First notice that, although the Cooper-Left and Cooper-Right rules introduce
fresh variables k, these variables are initially bounded, and are therefore never
included in the set U. Consequently, these variables are never considered by Resolve-
Cooper and, therefore Resolve-Cooper will only apply to the variables from the initial
set of constraints C.

Now, consider a conflicting core

D={-az+p<0,bx—q¢<0, (d|cx+71)} ,

and a derivation sequence T satisfying the conditions above. In such a derivation
sequence, the Resolve-Cooper rule can only be applied once. This is true because the
resolvent R = cooper(D) is equivalent to 3z.D. Although the resolvent introduces
a fresh variable, it is a finite one and therefore smaller than all the variables in U.
Therefore, for any state where we could try and apply the strong resolution again,
i.e. (M',C") such that R C C’, x is not the minimal conflicting variable or D is not
a conflicting core. The rule Resolve-Cooper will therefore not be applicable to the
same core, at any state that already contains the resolvent R. Additionally, since
we do not eliminate resolvents introduced by Resolve-Cooper using the Forget rule,
a resolvent for a core D will be generated at most once.

Now, let U be the set of unbounded variables {yi,...,ym}, such that ym <
... < y1. Since Resolve-Cooper considers these variables in an ordered fashion, all
possible resolvents can be defined by saturation, using the following sequence

So=C Siy1 =S;iU{R| R is a resolvent for a core D C S; for variable y; 1}

The final set of all possible resolvents will be saturated(C) = Sy+1. Since Resolve-
Cooper can be applied at most once for a core D, and there are a finite number of
cores D in each S;, it follows that the Resolve-Cooper rule can be applied only a
finite number of times.

Now we are ready to present and prove a simple and flexible strategy that will
guarantee termination of our procedure even in the unbounded case.

Definition 3 (Two-layered strategy) We say a strategy is two-layered for an
initial state ([], Co) if

1. it is reasonable (i.e., gives preference to the Propagate-Simple rules);

2. the Propagate and Propagate-Div rules are limited to d-relevant bound refine-
ments;

3. the Forget rule is never used to eliminate resolvents introduced by Resolvent-
Cooper;

4. it only applies the Conflict and Conflict-Div rules if Resolve-Cooper is not appli-
cable.

Theorem 4 (Termination) Given a set of constraints C, there is no infinite deriva-
tion sequence starting from So = ([], C) that uses a two-layered strategy when U con-
tains all unbounded variables in C.

Proof First we note that, if the Conflict or the Conflict-Div rule applies to a non-
U-constraint, it must be that Resolve-Cooper is not applicable. Since the strategy



Cutting to the Chase 25

prefers Resolve-Cooper this, in effect, splits the procedure into two layers, one deal-
ing with bounded variables, and the other one dealing with the unbounded vari-
ables using the strong resolution. And, since the Learn rule will therefore only be
able to learn constraint over bounded variables, we will never apply Resolve-Cooper
to cores involving those constraints.

The strategy also dictates that we don’t remove the strong resolvents intro-
duced by Resolve-Cooper so we know, by Lemma 5, that in any derivation sequence

T = ([],Co) = (M1,C1) = - = (M, Cy)) = ---

produced by a two-layered strategy, the Resolve-Cooper rule can only be applied a
finite number of times. Consequently, the number of fresh variables introduced in
T is bounded.

Then, there must be a state S, = (Mn,Cy) in T such that the Resolve-Cooper
rule is not applicable to any state that is reachable from Sy,. Therefore no additional
fresh variable is created after Sy,.

Now, assume that the derivation sequence T is infinite. Then, since the prop-
agation step is limited to the §-relevant ones, it must be that, after Sy, the Con-
flict rule is being applied infinitely often. Moreover, since Resolve-Cooper does not
apply after the state Sy, it must be that the Conflict rule is applied to only non-
U-constraints. But we know, by Theorem 2, that if all variables are bounded, this
can not happen.

As an improvement, we note that we do not need to fix the ordering < at the
beginning. It can be modified but, in this case, termination is only guaranteed
if we eventually stop modifying it. Moreover, we can start applying the strategy
with U = @. Then, for any non-d-relevant bound refinement v(x), produced by the
Backjump rules, we add z to the set U. Moreover, a variable x can be removed
from U whenever a lower and upper bound for z can be deduced, and they do not
depend on any decided bounds (variable becomes bounded).

6 Experimental Evaluation

We implemented the procedure described in a new solver cutsat. The implemen-
tation uses only the basic rules, with addition of slack introduction, and does not
include strong conflict resolution. The strategy of applying the rules resembles
those found in SAT solvers, and includes heuristics from the SAT community such
as dynamic ordering based on conflict activity and Luby restarts. When a vari-
able is to be decided, and we have an option to choose between the upper and
lower bound, we choose the value that could satisfy most constraints. We propa-
gate bounds on a variable x only when the variable z is to be decided next, and
the propagation only includes inequalities where all variables but = are already
assigned. The solver source code, binaries used in the experiments, and all the
accompanying materials are available at the authors website®.

In order to evaluate our procedure we took a variety of already available in-
teger problems from the literature, but we also crafted some additional ones. We
include the problems used in [14] to evaluate their new simplex-based procedure

3 http://cs.nyu.edu/"dejan/cutsat/



26 Dejan Jovanovié, Leonardo de Moura

Table 1 Experimental results.

problems miplib2003 (16) | pb2010 (81) dillig (250) slacks (250) | pigeons (19) | primes (37)
cutsat 722.78 12| 1322.61 46| 4012.65 223| 2722.19 152 0.15 19| 5.08 37
smt solvers time(s) solved time(s) solved time(s) solved time(s) solved  time(s) solved time(s) solved
mathsat5+cfp | 575.20 11| 2295.60 33|2357.18 250 160.67 98 0.23 19| 1.26 37
mathsat5 89.49 11| 122491 38| 3053.19 245|3243.77 177 0.30 19| 1.03 37
yices 226.23 8 57.12 37| 5707.46 159| 7125.60 134| 0.07 19| 0.64 32
z3 532.09 9| 168.04 38 885.66 171 589.30 115 0.27 19|11.19 23
pb solvers

sat4j 22.34 10| 798.38 67 0.00 0 0.00 0]110.81 8| 0.00 0
sat4j+cp 28.56 10 349.15 60 0.00 0 0.00 0| 4.85 19| 0.00 0
mip solvers

glpk 242.67 12| 1866.52 46 4.50 248 0.08 10| 0.09 19| 0.44 37
cplex 53.86 15| 1512.36 58 8.65 250 8.76 248 0.51 19| 3.47 37
gurobi 28.96  15|1332.53 58| 5.48 250| 8.12 248| 0.21 19| 0.80 37

that incorporates a new way of generating cuts to eliminate rational solutions.
These problems are generated randomly, with all variables unbounded. This set of
problems, which we denote with dillig, was reported hard for modern SMT solvers.
We also include a reformulation of these problems, so that all the variables are
bounded, by introducing slack variables, which we denote as slack. Next, we in-
clude the pure integer problems from the MIPLIB 2003 library [2], and we denote
this problem set as miplib2003. The original problems are all very hard optimiza-
tion instances, but, since we are dealing with the decision problem only, we have
removed the optimization constraints and turned them into feasibility problems.*
We include PB problems from the 2010 pseudo-Boolean competition that were
submitted and selected in 2010, marked as pb2010, and problems encoding the
pigeonhole principle using cardinality constraints, denoted as pigeons. The pigeon-
hole problems are known to have no polynomial Boolean resolution proofs, and will
therefore be hard for any resolution solver that does not use cutting planes. And
finally, we include a group of crafted benchmarks encoding a tight n-dimensional
cone around the point whose coordinates are the first n prime numbers, denoted
as primes. In these benchmarks all the variables are bounded from below by 0. We
include the satisfiable versions, and the unsatisfiable versions which exclude points
smaller than the prime solution.

In order to compare to the state-of-the art we compare to three different types
of solvers. We compare to the top SMT solvers that support integer reasoning, i.e
yices 1.0.29 [15], z3 2.15 [12], mathsat5 [17] and mathsat5+cfp that simulates the
algorithm from [14]. On all 0-1 problems in our benchmark suite, we also compare
to the sat4j [5] PB solver, one of the top solvers from the PB competition, and a
version sat4j+cp that is based on cutting planes. And, as last, we compare with
the two top commercial MIP solvers, namely, gurobi 4.0.1 and cplex 12.2, and the
open source MIP solver glpk 4.38. The MIP solvers have largely been ignored in
the theorem-proving community, as it is claimed that, due to the use of floating
point arithmetic, they are not sound.

4 All of the problems have a significant Boolean part, and 13 (out of 16) problems are pure
PB problems



Cutting to the Chase 27

100000

Cutsat
mathsat5+cfp -------
mathsats --------

10000 yices ]

1000 |

100

cumulative time

01 |

0.01

0 100 200 300 400 500 600
problems

Fig. 2 Comparison of cutsat with other SMT solvers. The plot presents the number of prob-
lems solved against the cumulative time (logarithmic time scale).

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with
individual runs limited to 2GB of memory and 600 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual solvers, and columns separate the problem sets. For each problem
set we write the number of problems that the solver managed to solve within 600
seconds, and the cumulative time for the solved problems. We mark with bold the
results that are best in a group of solvers, and we underline the results that are
best among all solvers. For the better understanding of the comparison of cutsat
with individual SMT solvers we present cumulative solving times in Figure 2.

Compared to the SMT solvers, cutsat performs surprisingly strong, particularly
being a prototype implementation. On all problem sets it outperforms, or is the
same as, all smt solvers except mathsats. Most importantly, it outperforms even
mathsat5 on the real-world miplib2003 and pb2010 problem sets. The random dillig
problems seem to be attainable by the solvers that implement the procedure from
[14], but the same solvers surprisingly fail to solve the same problems with the
slack reformulation (slacks). The commercial MIP solvers outperform all the SMT
solvers and cutsat by a big margin.

7 Conclusion

We proposed a new approach for solving ILP problems. It has all key ingredients
that made CDCL-based SAT solvers successful. Our solver justifies propagation
steps using tightly-propagating inequalities that guarantee that any conflict de-
tected by the search procedure can be resolved using only inequalities. We pre-
sented an approach to integrate Cooper’s quantifier elimination algorithm in a
model guided search procedure. Our first prototype is already producing encour-
aging results.



28 Dejan Jovanovié, Leonardo de Moura

We see many possible improvements and extensions to our procedure. A solver
for mixed integer-real problems is the first natural extension. One basic idea would
be to make the real variables bigger than the integer variables in the variable order
<, and use Fourier-Moztkin resolution (instead of Cooper’s procedure) to explain
conflicts on rational variables. We plan to integrate the the cutsat solver into an
SMT solver using a proposed mcSAT calculus [13] that allows the integration of
model-based procedures with the standard DPLL(T) framework. This would also
allow the promising possibility of our solver to be complemented with a Simplex-
based procedure. The idea is to use Simplex to check whether the current state or
the search is feasible in the rational numbers.

Acknowledgements. We would like to thank Ken McMillan for reading an early
draft and providing useful feedback, and Alberto Griggio for providing us with a
custom version of mathsat5.

References

1. Tobias Achterberg. SCIP: Solving constraint integer programs. PhD thesis, TU Berlin,
2007.

2. Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):361-372, 2006.

3. Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Research Report MPI-1-95-2-003, Saarbriicken, 1995.

4. Sergey Berezin, Vijay Ganesh, and David L. Dill. An online proof-producing decision pro-
cedure for mixed-integer linear arithmetic. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 2619 of LNCS, pages 521-536. Springer, 2003.

5. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2 system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59-64, 2010.

6. Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3), 2005.

7. Vasek Chvéatal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305-337, April 1973.

8. D.C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intelligence,
7(91-99):300, 1972.

9. Scott Cotton. Natural domain SMT: A preliminary assessment. In FORMATS, 2010.

10. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):397, 1962.

11. Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM (JACM), 7(3):201-215, 1960.

12. Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT Solver. In TACAS 2008,
Budapest, Hungary, volume 4963 of LNCS, page 337. Springer, 2008.

13. Leonardo de Moura and Dejan Jovanovié. A model-constructing satisfiability calculus. In
Verification, Model Checking, and Abstract Interpretation, volume 7737 of LNCS, pages
1-12. Springer, 2013.

14. Isili Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and practical
technique for solving linear inequalities over integers. In CAV, 2009.

15. Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV, LNCS, pages 81-94, 2006.

16. Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275-278, 1958.

17. Alberto Griggio. A practical approach to SMT(LA(Z)). SMT workshop, 2010.

18. Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. Conflict resolution. In
Principles and Practice of Constraint Programming, 2009.

19. Kenneth L. McMillan, Andreas Kuehlmann, and Mooly Sagiv. Generalizing DPLL to
richer logics. In CAV, 2009.



Cutting to the Chase 29

20.

21.

22.

23.

24.

25.

26.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver. In DAC, 2001.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract DPLL procedure to DPLL(T). J. ACM, 53(6):937-977, 2006.
Christos H. Papadimitriou. On the complexity of integer programming. Journal of the
ACM, 28(4):765-768, 1981.

William Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. In ACM/IEEE conference on Supercomputing, 1991.

Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free Presburger formulas using
parameterized solution bounds. In Logic in Computer Science, pages 100-109. IEEE, 2004.
Joao P. Marques Silva and Karem A. Sakallah. GRASP — a new search algorithm for
satisfiability. In ICCAD, 1997.

Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial optimization.
Wiley New York, 1999.



