
Deciding Effectively Propositional Logic using

DPLL and substitution sets

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. We introduce a DPLL calculus that is a decision procedure
for the Bernays-Schönfinkel class, also known as EPR. Our calculus al-
lows combining techniques for efficient propositional search with data-
structures, such as Binary Decision Diagrams, that can efficiently and
succinctly encode finite sets of substitutions and operations on these. In
the calculus, clauses comprise of a sequence of literals together with a
finite set of substitutions; truth assignments are also represented using
substitution sets. The calculus works directly at the level of sets, and ad-
mits performing parallel constraint propagation and decisions, resulting
in potentially exponential speedups over existing approaches.

1 Introduction

Effectively propositional logic, also known as the Bernays-Schönfinkel class, or
EPR, of first-order formulas provides for an attractive generalization of pure
propositional satisfiability and quantified Boolean formulas. The EPR class com-
prise of formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-free formula with
relations, equality, but without function symbols. The satisfiability problem for
EPR formulas can be reduced to SAT by first replacing all existential variables
by skolem constants, and then grounding the universally quantified variables
by all combinations of constants. This process produces a propositional formula
that is exponentially larger than the original. In a matching bound, the satis-
fiability problem for EPR is NEXPTIME complete [1]. An advantage is that
decision problems may be encoded exponentially more succinctly in EPR than
with purely propositional encodings [2].

Our calculus aims at providing a bridge from efficient techniques used in
pure SAT problems to take advantage of the succinctness provided for by the
EPR fragment. One inspiration was [3], which uses an ad-hoc extension of a
SAT solver for problems that can otherwise be encoded in QBF or EPR; and
we hope the presented framework allows formulating such applications as strate-
gies. A main ingredient is the use of sets of instantiations for both clauses and
literal assignments. By restricting sets of instantiations to the EPR fragment, it
is feasible to represent these using succinct data-structures, such as Binary Deci-
sion Diagrams [4]. Such representations allow delaying, and in several instances,
avoiding, space overhead that a direct propositional encoding would entail.

The main contributions of this paper comprise of a calculus DPLL(SX) with
substitution sets which is complete for EPR (Section 2). The standard calculus

for propositional satisfiability lifts directly to DPLL(SX), allowing techniques
from SAT solving to apply on purely propositional clauses. However, here, we
will be mainly interested in investigating features specific to non-propositional
cases. A distinguishing feature of conflict resolution in DPLL(SX) is the use
of factoring, well-known from first-order resolution, but to our knowledge not
used in any liftings of DPLL so far. We show how the calculus lends itself to
an efficient search strategy based on a parallel version of Boolean constraint
propagation (Section 3). We exhibit cases where the parallel technique may
produce an exponential speedup during propagation. By focusing on sets of
substitutions, rather than substitutions, we open up the calculus to efficient
implementations based on data-structures that can encode finite sets succinctly.
Our current prototype uses a BDD package for encoding finite domains, and
we report on a promising, albeit preliminary, empirical evaluation (Section 4).
Section 5 concludes with related work and future extensions.

2 The DPLL(SX) Calculus

2.1 Preliminaries

We use a, b, c,4, ?, 0, . . . to range over a finite alphabet Σ of constants, while
a, b, c are tuples of constants, x, y, z, x0, x1, x2, . . . for variables from a set V ,
x,y, z are tuples of variables, and p1, p2, p, q, r, s, t, . . . for atomic predicates of
varying arities. Signed predicate symbols are identified by the set L. As usual,
literals (identified by the letter `) are either atomic predicates or their negations
applied to arguments. For example, p(x1, x2) is the literal where the binary
atomic predicate p is negated. Clauses consist of a finite set of literals, where each
atomic predicate is applied to distinct variables. For example p(x1, x2)∨ q(x3)∨
q(x4) is a (well formed) clause. We use C,C′, C1, C2 to range over clauses. The
empty clause is identified by a 2. Substitutions, written θ, θ′, are idempotent
partial functions from V to V ∪ Σ. Substitutions that map to constants only
(Σ) are called instantiations. As shorthand for sets of substitutions we use Θ,
Θ′, Θ1, Θ2. We discuss in more detail how substitution sets are represented in
Section 3.3. A substitution-set constrained clause is a pair C · Θ where C is
a clause and Θ is a substitution set. We will assume clauses is an a “normal”
form where the literals in C are applied to different variables, so it is up to the
substitutions to create equalities between variables.

Literals can also be constrained, and we use the notation `Θ for the literal `
whose instances are determined by Θ. If Θ is a singleton set, we may just write
the instance of the literal directly. So for example p(a) is shorthand for p(x){a}.

Example 1 (Constrained clauses). The set of (unit) clauses:

p(a, b), p(b, c), p(c, d)

can be represented as the set-constrained clause

p(x1, x2) · {[x1 7→ a, x2 7→ b], [x1 7→ b, x2 7→ c], [x1 7→ c, x2 7→ d]},

or simply:

p(x1, x2) · {(a, b), (b, c), (c, d)}

Substitution sets can be directly viewed as n-ary relations, and operations
from relational algebra will be useful in manipulating substitution sets. We sum-
marize the operations we will be using below:

Selection σϕ(x)Θ is shorthand for {θ ∈ Θ | ϕ(θ(x)), θ is an instantiation}.

Projection πxΘ is shorthand for the set of substitutions obtained from Θ by
removing domain elements other than x. For example, πx{[x 7→ a, y 7→
b], [x 7→ a, y 7→ c]} = {[x 7→ a]}.

Co Projection π̂xΘ is shorthand for the set of substitutions obtained from Θ by
removing x. So π̂x{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} = {[y 7→ b], [y 7→ c]}.

Join Θ 1 Θ′ is the natural join of two relations. If Θ uses the variables x and
y, and Θ′ uses variables x and z, where y and z are disjoint, then Θ 1 Θ′

uses x,y and z and is equal to {θ | π̂z(θ) ∈ Θ, π̂y(θ) ∈ Θ′}. For example,
{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} 1 {[y 7→ b, z 7→ b], [y 7→ b, z 7→ a]} = {[x 7→
a, y 7→ b, z 7→ b], [x 7→ a, y 7→ b, z 7→ a]}.

Renaming δx→yΘ is the relation obtained from Θ by renaming the variables x

to y. We here assume that y is not used in Θ already.

Substitution θ(Θ) applies the substitution θ to the set Θ. It is shorthand for a se-
quence of selection and co-projections. For example [x 7→ a](Θ) = π̂xσx=aΘ.

Set operations Θ ∪ Θ′ creates the union of Θ and Θ′, Θ is the complement of
Θ, and Θ \Θ′ is a shorthand for Θ 1 Θ′.

Notice, that we can compute the most general unifier of two substitutions θ and
θ′, by taking the natural join of their substitution set equivalents (the join is the
empty set if the most general unifier does not exist). If two clauses C ∨ `(x) and
C′ ∨ ¬`(x), have substitution sets Θ and Θ′ respectively, we can compute the
resolvent (C∨C′)·π̂x(Θ 1 Θ′). We quietly assumed that the variables in C and C′

were disjoint and renamed apart from x, and we will in the following assume that
variables are by default assumed disjoint, or use appropriate renaming silently
instead of cluttering the notation.

2.2 Inference rules

We will adapt the proof calculus for DPLL(SX) from an exposition of DPLL(T)
as an abstract transition system [5, 6].

States of the transition system are of the form

Γ ||F

where the context Γ is a sequence of constrained literals and decision markers
(�). For instance, the sequence `1Θ1, �, `2Θ2, `3Θ3, . . . , `kΘk is a context. We
allow concatenating contexts, so for instance Γ, Γ ′, `Θ, �, `′Θ′, Γ ′′ is a context

that starts with a sequence of constrained literals in Γ , continues with another
sequence Γ ′, contains `Θ, a decision marker, then `′Θ′, and ends with Γ ′′. The
set F is a collection of constrained clauses. Constrained literals are furthermore
annotated with optional explanations. In this presentation we will use one kind
of explanation of the form:

`C·ΘΘ′ All Θ′ instances of ` are implied by propagation from C ·Θ

We maintain the following invariant, which is crucial for conflict resolution:

Invariant 1. For every derived context of the form Γ, `C·ΘΘ′, Γ ′ it is the case
that C = (`1 ∨ . . . ∨ `k ∨ `(x)) and there are assignments `iΘi ∈ Γ , such that
Θ′ ⊆ π̂x(Θ 1 Θ1 1 . . . 1 Θk).

We take advantage of this invariant to associate a function premises(`C·ΘΘ′)
that extracts Θ 1 Θ1 1 . . . 1 Θk.

During conflict resolution, we also use states of the form

Γ ||F ||C ·Θ,Θr

where C ·Θ is a conflict clause, and Θr is used to guide conflict resolution.

` ∈ F If `Θ′ ∈ Γ or `Θ′ ∈ Γ , then Θ 1 Θ′ = ∅
Decide

Γ ||F =⇒ Γ, �, `Θ ||F

C = (`1 ∨ . . . ∨ `k ∨ `(x)), `iΘi ∈ Γ, i = 1, .., k

Θ′ = πx(Θ 1 Θ1 1 . . . 1 Θk) \
⋃
{Θ` | `Θ` ∈ Γ} 6= ∅

UnitPropagate
Γ ||F, C · Θ =⇒ Γ, `C·Θ · Θ′ ||F, C · Θ

C = (`1 ∨ . . . ∨ `k), `iΘi ∈ Γ, Θr = Θ 1 Θ1 1 . . . 1 Θk 6= ∅
Conflict

Γ ||F, C · Θ =⇒ Γ ||F, C · Θ ||C · Θ, Θr

Fig. 1. Search inference rules

We split the presentation of DPLL(SX) into two parts, consisting of the
search inference rules, given in Fig. 1, and the conflict resolution rules, given in
Fig. 2. Search proceeds similarly to propositional DPLL: It starts with the initial
state ||F where the context is empty. The result is either unsat indicating that F
is unsatisfiable, or a state Γ ||F such that every clause in F is satisfied by Γ . A
sequence of Decide steps are used to guess an assignment of truth values to the
literals in the clauses F . The side-conditions for UnitPropagate and Conflict are
similar: they check that there is a non-empty join of the clause’s substitutions
with substitutions associated with the complemented literals. There is a conflict
when all of the literals in a clause has complementary assignments, otherwise,
if all but one literal has a complementary assignment, we may apply unit prop-
agation to the remaining literal. Semantically, a non-empty join implies that

there are instances of the literal assignments that contradict (all but one of) the
clause’s literals.

πyΘr 1 Θ` = ∅ for every `(y) ∈ C′, C` = (C(y) ∨ `(x))

Θ′

r = π̂x(Θr 1 Θ` 1 premises(`Θ`)) 6= ∅, Θ′′ = π̂x(Θ 1 Θ′)
Resolve

Γ, `
C`·Θ

′

Θ` ||F || (C′(z) ∨ `(x)) · Θ, Θr =⇒ Γ ||F || (C(y) ∨ C′(z)) · Θ′′, Θ′

r

πyΘr 1 Θ` = ∅ for every `(y) ∈ C
Skip

Γ, `
C`·Θ

′

Θ` ||F ||C · Θ, Θr =⇒ Γ ||F ||C · Θ, Θr

Θ′

r = π̂zσy=zΘr 6= ∅, Θ′ = π̂zσy=zΘ
Factoring

Γ ||F || (C(x) ∨ `(y) ∨ `(z)) · Θ, Θr =⇒ Γ ||F || (C(x) ∨ `(y)) · Θ′, Θ′

r

C · Θ 6∈ F
Learn

Γ ||F ||C · Θ, Θr =⇒ Γ ||F, C · Θ ||C · Θ, Θr

Θ 6= ∅
Unsat

Γ ||F ||2 · Θ, Θr =⇒ unsat

C = (`1 ∨ . . . ∨ `k ∨ `(x)), `iΘi ∈ Γ1

Θ′ = πx(Θ 1 Θ1 1 . . . 1 Θk) \
⋃
{Θ` | `Θ` ∈ Γ1} 6= ∅

Backjump
Γ1, �, Γ2 ||F ||C · Θ, Θr =⇒ Γ1, `

C·ΘΘ′ ||F

∅ 6= Θ′

1 ⊂ Θ1

Refine
Γ, �, `Θ1, Γ

′ ||F ||C · Θ, Θr =⇒ Γ, �, `Θ′

1 ||F

Fig. 2. Conflict resolution rules

Conflict resolution rules, shown in Fig. 2, produce resolution proof steps based
on a clause identified in a conflict. The Resolve rule unfolds literals from conflict
clauses that were produced by unit propagation, and Skip bypasses propagations
that were not used in the conflict. The precondition of Resolve only applies if
there is a single literal that is implied by the top of the context, if that is not the
case, we can use factoring. Unlike propositional DPLL, it is not always possible
to apply factoring on repeated literals in a conflict clause. We therefore include a
Factoring rule to explicitly handle factoring when it applies. Any clause derived
by resolution or factoring can be learned using Learn, and added to the clauses
in F . The inference system produces the result unsat if conflict resolution results
in the empty clause. There are two ways to transition from conflict resolution to
search mode. Back-jumping applies when all but one literal in the conflict clause
is assigned below the current decision level. In this case the rule Backjump adds
the uniquely implied literal to the logical context Γ and resumes search mode.
As factoring does not necessarily always apply, we need another rule, called
Refine, for resuming search. The Refine rule allows refining the set of substitutions
applied to a decision literal. The side condition to Refine only requires that Θ1

be a non-empty, non-singleton set. In some cases we can use the conflict clause to
guide refinement: If C contains two occurrences `(x1) and `(x2), where πx1

(Θr)
and πx2

(Θr) are disjoint but are subsets of Θ1, then use one of the projections
as Θ′

1.
To illustrate the inference rules, and in particular the use of factoring and

splitting consider the following example.

Example 2 (Factoring). Assume we have the clauses:

F :

{
p(x) ∨ q(y) ∨ r(z) · {(a, a, a)}, p(x) ∨ s(y) ∨ t(z) · {(b, b, b)},
q(x) ∨ s(y) · {(a, b)}

A possible derivation may start with the empty assignment and take the shape:

||F
=⇒ Decide
�, r(x){a, b, c} ||F

=⇒ Decide
�, r(x){a, b, c}, �, t(x){b, c} ||F

=⇒ Decide
�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b} ||F

=⇒ UnitPropagate
�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b}, q(x){a} ||F

=⇒ UnitPropagate
�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b}, q(x){a}, s(x){b}
︸ ︷︷ ︸

Γ

||F

=⇒ Conflict
Γ ||F || q(x) ∨ s(y) · {(a, b)}

=⇒ Resolve
Γ ||F || p(x) ∨ s(y) ∨ r(z) · {(a, b, a)}

=⇒ Resolve
Γ ||F || p(x) ∨ p(x′) ∨ t(y) ∨ r(z) · {(a, b, b, a)}

We end up with a conflict clause with two occurrences of p. Factoring does not
apply, because the bindings for x and x′ are different. Instead, we can choose
one of the bindings as the new assignment for p. For example, we could take the
subset {b}, in which case the new stack is:

=⇒ Refine
�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){b} ||F

2.3 Soundness, Completeness and Complexity

It is an easy observation that all inference rules preserve satisfiability since all
clauses added by conflict resolution are resolvents of the original set of clauses
F . Thus,

Theorem 1 (Soundness). DPLL(SX) is sound.

The use of premises and the auxiliary substitution Θr have been delicately for-
mulated to ensure that conflict resolution is finite and stuck-free, that is, Resolve
and Factoring always produce a conflict clause that admits either Backjump or
Refine.

Theorem 2 (Stuck-freeness). For every derivation starting with rule Conflict
there is a state Γ ||F ||C ·Θ,Θr, such that Backjump or Refine is enabled.

Note that Refine is always enabled when there is a non-singleton set attached to
a decision literal, but the key property that is relevant for this theorem is that
adding premises to a resolvent does not change the projection of old literals in
the resolved clause. In other words, for every y disjoint from premises(`Θ`) it is
the case that: πy(Θr) = πy(Θr 1 premises(`Θ`)).
Similarly, we can directly simulate propositional grounding in the calculus, so:

Theorem 3 (Completeness). DPLL(SX) is complete for EPR.

The calculus admits the expected asymptotic complexity of EPR. Suppose the
maximal arity of any relation is a, the number of constants is n = |Σ|, and the
number of relations is m, set K ← m× (na), then:

Theorem 4 (Complexity). The rules of DPLL(SX) terminate with at most
O(K · 2K) applications, and with maximal space usage O(K2).

Proof. First note that a context can enumerate each literal assignment explicitly
using at most O(K) space, since each of the m literals should be evaluated at up
to na instances. Literals that are tagged by explanations require up to additional
O(K) space, each.

For the number of rule applications, consider the ordering ≺ on contexts
defined as the transitive closure of:

Γ, `′Θ′, Γ ′ ≺ Γ, �, `Θ, Γ ′′ (1)

Γ, �, `Θ′, Γ ′ ≺ Γ, �, `Θ, Γ ′′ when Θ′ ⊂ Θ (2)

The two rules for ≺ correspond to the inference rules Backjump and Refine
that generate contexts of decreased measure with respect to ≺. Furthermore,
we may restrict our attention to contexts Γ where for every literal `, such that
Γ = Γ ′, `Θ, Γ ′′ if ∃Θ′ . `Θ′ ∈ Γ ′, Γ ′′, then Θ′

1 Θ = ∅. There are at most K!
such contexts, but we claim the longest ≺ chain is at most K · 2K . First, if all
sets are singletons, then the derivation is isomorphic to a system with K atoms,
which requires at most 2K applications of the rule (1). Derivations that use
non-singleton sets embed directly into a derivation with singletons using more
steps. Finally, rule (2) may be applied at most K times between each step that
corresponds to a step of the first kind.

Note that the number of rule applications does not include the cost of ma-
nipulating substitution sets. This cost depends on the set representations. While
the asymptotic time complexity is (of course) no better than what a brute force
grounding provides, DPLL(SX) only really requires space for representing the

logical context Γ . While the size of Γ may be in the order K, there is no require-
ment for increasing F from its original size. As we will see, the use of substitution
sets may furthermore compress the size of Γ well below the bound of K. One
may worry that in an implementation, the overhead of using substitution sets
may be prohibitive compared to an approach based on substitutions alone. Sec-
tion 3.3 describes a data-structure that compresses substitution sets when they
can be represented as substitutions directly.

3 Refinements of DPLL(SX)

The calculus presented in Section 2 is a general framework for using substitu-
tion sets in the context of DPLL. We first discuss a refinement of the calculus
that allows to apply unit propagation for several assignments in parallel. Sec-
ond, we examine data-structures and algorithms for representing, indexing and
manipulating substitution sets efficiently during search.

3.1 Parallel propagation and FUIP-based conflict resolution

In general, literals are assigned substitutions at different levels in the search. Unit
propagation and conflict detection can therefore potentially be identified based
on several different instances of the same literals. For example, given the clause
(p(x)∨q(x)) and the context p(a), p(b), unit propagation may be applied on p(a)
to imply q(a), but also on p(b) to imply q(b). We can factor such operations into
parallel versions of the UnitPropagate and Conflict rules. The parallel version of
the propagation and conflict rules take the form:

C = (`1 ∨ . . . ∨ `k ∨ `(x)),

Θ′
i = ∪{Θi | `iΘi ∈ Γ}, Θ

′
` =

⋃
{Θ` | `Θ` ∈ Γ},

Θ′ = πx(Θ 1 Θ′
1 1 . . . 1 Θ′

k) \Θ′
` 6= ∅

P-UnitPropagate
Γ ||F,C ·Θ =⇒ Γ, `C·Θ ·Θ′ ||F,C ·Θ

C = (`1 ∨ . . . ∨ `k), Θ′
i = ∪{Θi | `iΘi ∈ Γ},

Θ′ = Θ 1 Θ′
1 1 . . . 1 Θ′

k 6= ∅
P-Conflict

Γ ||F,C ·Θ =⇒ Γ ||F,C ·Θ ||C ·Θ,Θ′

Correctness of these parallel versions rely on the basic the property that 1

distributes over unions:

(R ∪R′) 1 Q = (R 1 Q) ∪ (R′
1 Q) for every R,R′, Q (3)

Thus, every instance of P-UnitPropagate corresponds to a set of instances of
UnitPropagate, and for every P-Conflict there is a selection of literals in Γ that
produces a Conflict. The rules suggest to maintain accumulated sets of substi-
tutions per literal, and apply propagation and conflict detection rules once per
literal, as opposed to once per literal occurrence in Γ . A trade-off is that we
break invariant 1 when using these rules. Instead we have:

Invariant 2. For every derived context of the form Γ, `C·ΘΘ′, Γ ′ where C =
(`1 ∨ . . . ∨ `k ∨ `), it is the case that Θ′ ⊆ π̂x(Θ 1 Θ′

1 1 . . . 1 Θ′
k) where

Θ′
i =

⋃
{Θi | `iΘi ∈ Γ}.

The weaker invariant still suffices to establish the theorems from Section 2.3.
The function premises is still admissible, thanks to (3).

Succinctness Note the asymmetry between the use of parallel unit propagation
and the conflict resolution strategy: while the parallel rules allow to use literal
assignments from several levels at once, conflict resolution traces back the origins
of the propagations that closed the branches. The net effect may be a conflict
clause that is exponentially larger than the depth of the branch. As an illustration
of this situation consider the clauses where p is an n-ary predicate:

¬p(0, . . . , 0) ∧ shape(?) ∧ shape(4) (4)

∧i [p(x, ?, 0, .., 0) ∧ p(x,4, 0, .., 0) → p(x, 0, 0.., 0)]where x = x0, . . . , xi−1

∧0≤j<nshape(xj) → p(x0, . . . , xn−1)

Claim. The clauses are contradictory, and any resolution proof requires 2n steps.

Justification. Backchaining from p(0, . . . , 0), we observe that all possible deriva-
tions are of the form:

p(0, . . . , 0)← p(?, 0, . . . , 0), p(4, 0, . . . , 0)
← p(?,4, 0, .., 0), p(?, ?, 0, .., 0), p(4,4, 0, .., 0), p(4, ?, 0, .., 0)
← . . .

← p(?, ?, . . .), . . . , p(4,4, . . .) all 2n combinations
← shape(?) . . . shape(4)

Claim. DPLL(SX) with parallel unit propagation requires O(n) steps to com-
plete the derivation.

Justification. The two assertions shape(?) and shape(4) may be combined into
shape(x){?,4} and then used to infer p(x){?,4} × . . . × {?,4} in one propa-
gation. Each consecutive propagation may be used to produce p(x)Θ, where Θ
contains a suffix with k consecutive 0’s and the rest being all combinations of ?
and 4.

In this example, we did in fact not need to perform conflict resolution at all be-
cause the problem was purely Horn, and no decisions were required to derive the
empty clause. But it is simple to modify such instances to non-Horn problems,
and the general question remains how and whether to avoid an exponential cost
of conflict resolution as measured by the number of propagation steps used to
derive the conflict.

One crude approach for handling this situation is to abandon conflict reso-
lution if the size of the conflict clause exceeds a threshold. When abandoning
conflict resolution apply Refine, or if all sets associated with decision literals are
singleton sets, then apply U(nit)-Refine:

c ∈ Σk � 6∈ Γ ′, `1Θ1, . . . , `mΘm are the decision literals in Γ

C′ = ` ∨ `1 ∨ . . . ∨ `m, Θ′ = {c} 1 Θ1 1 . . . 1 Θm is a singleton
U-Refine

Γ, �, `{c}, Γ ′ ||F ||C ·Θ,Θr =⇒ Γ, `{c}
C′·Θ′

||F

But it is possible to match the succinctness of unit propagation during conflict
resolution. Suppose P-Conflict infers the conflict clause C ·Θ and set Θr. Let θ0
be an arbitrary instantiation in Θr. Initialize the map Ψ from the set of signed
predicate symbols to substitution sets as follows:

Ψ(`)←
⋃

{πxi
θ0 | `(xi) ∈ C}, for ` ∈ L. (5)

Note that a clause C may have multiple occurrences of a predicate symbol with
the same sign, but applied to different arguments. The definition ensures that if
` ∈ L is a signed predicate symbol that does not occur in C, then Ψ(`) = ∅.

Example 3. Assume C = p(x1) ∨ p(x2) ∨ q(x3) and θ = (a, b, c), then Ψ(p) =
{a, b}, Ψ(p) = ∅, Ψ(q) = {c}, Ψ(q) = ∅.

We can directly reconstruct a clause from Ψ by creating a disjunction of
Σ

`∈L|Ψ(`)| literals and a substitution that is the product of all elements in the
range of Ψ . This inverse mapping is called clause of(Ψ). Sets in the range of
Ψ may get large, but we can here rely on the same representation as used for
substitution sets. We can now define a (first-unique implication point) resolution
strategy that works using Ψ :

resolve(Γ1, �, Γ2, Ψ) = Backjump with Γ1`
C·Θ{c} if

c ∈ Ψ(`), Ψ(`) \ {c} ⊆
⋃
{Θ′ | `Θ′ ∈ Γ1}

Ψ(`′) ⊆
⋃
{Θ′ | `′Θ′ ∈ Γ1} for ` 6= `′

C ·Θ = clause of(Ψ)

resolve(Γ, `Θ, Ψ) = resolve(Γ, Ψ) if Θ ∩ Ψ(`) = ∅

resolve(Γ, `C∨`·ΘΘ′, Ψ) = resolve(Γ, Ψ), if Θ′ ∩ Ψ(`) = {c}, and where
Ψ(`)← Ψ(`) \Θ′

for `′(x) ∈ C: Ψ(`′)← Ψ(`′) ∪ πx(premises(`C∨`·ΘΘ′))

resolve(Γ, �, `Θ, Ψ) = Refine if other rules don’t apply.

Besides the cost of performing the set operations, the strategy still suffers
from the potential of generating an exponentially large implied learned clause
C ·Θ′ during backjumping. An implementation can choose to resort to applying
Refine or U-Refine in these cases.

3.2 Selecting decision literals and substitution sets

Selecting literals and substitution sets blindly for Decide is possible, but not
a practical heuristic. As in the Model-evolution calculus, we take advantage of
the current assignment Γ to guide selection. Closure of substitution sets under
complementation streamlines the task a bit for the case of DPLL(SX). First

observe that Γ induces a default interpretation of the instances of every atom p

by taking:

[[p]] =
⋃

{Θ′ | pΘ′ ∈ Γ} and [[p]] = [[p]] (6)

Note that we can assume that Γ is consistent, so
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]]. Using

the current assignment for the positive literals and the complement thereof for
negative ones is an arbitrary choice in the context of DPLL(SX). One may fix
a default interpretation differently for each atom. But note that this particular
choice coincides with negation as failure for the case of Horn clauses.

We now say that `i is a candidate decision literal with instantiation Θ′
i if

there is a clause C ·Θ, such that C = (`1 ∨ . . . ∨ `k), 1 ≤ i ≤ k, and:

Θ′
i = (Θ 1 [[`1]] 1 . . . 1 [[`k]]) \

⋃

{Θ′ | `iΘ
′ ∈ Γ} 6= ∅ (7)

Our prototype uses a greedy approach for selecting decision literals and sub-
stitution sets: predicates with lower arity are preferred over predicates with
higher arities. In particular, propositional atoms are used first and they are as-
signed using standard SAT heuristics. Predicates with non-zero arity that are
not completely assigned are checked for condition (7) and we pick the first ap-
plicable candidate. The process either produces a decision literal, or determines
that the current set of clauses are satisfiable in the default interpretation, as the
following easy lemma summarizes:

Lemma 1. If for a state Γ ||F, (`1 ∨ . . . ∨ `k) ·Θ it is the case that neither Unit-
Propagate or Conflict are enabled and

Θ 1 [[`1]] 1 . . . 1 [[`k]] 6= ∅ (8)

then there is some i, such that 1 ≤ i ≤ k, that satisfies (7). Furthermore, the
identified substitution Θ′

i is disjoint from any Θ′, where `iΘ
′ ∈ Γ or `iΘ

′ ∈ Γ .
Conversely, if the current state is closed under propagation and conflict and there
is no clause that satisfies (8), then the default interpretation is a model for the
set of clauses F .

Proof. If the current state is closed under Conflict and UnitPropagate, then for
every clause (`1 ∨ . . . ∨ `k) · Θ: Θ 1 Θ′

1 1 . . . 1 Θ′
k = ∅ for Θ′

i =
⋃
{Θ′ | `iΘ′ ∈

Γ}. Suppose that (8) holds, then by
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]] and distributivity of

1 over ∪ there is some i where (7) holds. The converse direction is immediate.

3.3 Hybrid substitution sets

Representing all substitution sets directly as BDDs is not practical. In particular,
computing Θ 1 Θ′

1 1 . . . 1 Θ′
k by directly applying the definitions of 1 as

conjunction and δ→ as BDD renaming does not work in practice for clauses with
several literals: simply building a BDD for Θ can be prohibitively expensive. We
here investigate a representation of substitution sets called hybrid substitution

sets that admit pre-compiling and factoring several of the operations used during
constraint propagation. The format is furthermore amenable to a two-literal
watch strategy for the propositional case.

Definition 1 (Hybrid substitution sets). A hybrid substitution set is a pair
(θ,Θ), where θ is a substitution, and Θ is a relation (substitution set). Further-
more, the domain of Θ coincides with the domain of θ where θ is idempotent.
That is, Dom(Θ) = {x ∈ Dom(θ) | θ(x) = x}. The substitution set associ-
ated with a hybrid substitution is given by the relation: σx∈Dom(θ).θ(x)=x(Θ 1

Dom(θ)).

In one extreme, a proper substitution θ is equivalent to the hybrid substitu-
tion set (θ,>). In the other extreme, every substitution set Θ can be represented
as (id, Θ), where id is the identity substitution over the domain of Θ. We will
therefore take the liberty to abuse notation and treat substitutions θ and sub-
stitution sets Θ also as hybrid substitution sets.

Hybrid substitution sets are attractive because common operations are cheap
(linear time) when the substitutions are proper. They also enjoy closure prop-
erties under the main relational algebraic operations that are used in conflict
resolution.

Lemma 2. Proper substitutions are closed under the operations: 1, πx, π̂x,

σx=y, and δx→y, but not under union nor complementation.

Even if the hybrid substitution sets are not proper, the complexity of the
common operations is reduced by using the substitution component when it
is not the identity. For example, representing each variable in a BDD requires
log(|Σ|) bits, and if the bits of two variables are spaced apart by k other bits,
the operation that restricts a BDD equating the two variables may cause a
size increase of up to 2k. The problem can be partially addressed using static
or dynamic variable reordering techniques, but variable orderings have to be
managed carefully when variables are shared among several substitution sets.

Constraint propagation Consider a clause C ·(θ,Θ) ∈ F and a substitution Θ′
i

(associated with literal `i(x) in Γ , where `i occurs C). The main operation during
constraint propagation is computing (θ,Θ) 1 δx→xi

Θ′
i, which is equivalent to

(θ,Θ 1 ri(Θ
′
i)) where ri = [x 7→ θ(δx→xi

x) | x ∈ x]. (9)

The equivalence suggests to pre-compute and store the substitution ri, for every
clause C and literal in C. Each renaming may be associated with several clauses;
and we can generalize the two-literal watch heuristic for a clause C by using
watch literals `i and `j from C as guards if the current assignments Θ′

i and Θ′
j

satisfy ri(Θ
′
i) = rj(Θ

′
j) = ∅.

Resolution In general, when taking the join of two hybrid substitution sets
we have the equivalence: (θ,Θ) 1 (θ′, Θ′) = (m,m(Θ) 1 m(Θ′)), where m =
mgu(θ, θ′), if the most general unifier exists, otherwise the join is (id,⊥). Res-
olution requires computing π̂x((θ,Θ) 1 (θ′, Θ′)) or in general π̂x(δy→z(θ,Θ) 1

δu→v(θ′, Θ′)) where x, y, z, u, v are suitable vectors of variables. Again, we can
compose the re-namings first with the substitutions, compute the most gen-
eral unifier m = mgu(δy→zθ, δu→vθ

′), in such a way that if m(y) = m(x), for
x ∈ x, y 6∈ x, then m(y) is a constant or maps to some variable also not in x;
and returning (m \ x, ∃x(m(Θ) ∧m(Θ′))). It is common for BDD packages to
supply a single operation for ∃x(ϕ ∧ ψ).

4 Implementation and evaluation

We implemented DPLL(SX) as a modification of the propositional SAT solver
used in the SMT solver Z3. The implementation associates with each clause a hy-
brid substitution set and pre-compiles the set of substitutions ri used in (9). This
allows the BDD package, we use BuDDy 1, to cache results from repeated sub-
stitutions of the same BDDs (the corresponding operation is called vec compose

in BuDDy). BDD caching was more generally useful in obliterating special pur-
pose memoization in the SAT solver. For instance, we attempted to memoize
the default interpretations of clauses as they could potentially be re-used after
back-tracking, but we found so far no benefits of this added memoization over
relying on the BDD cache. BuDDy supports finite domains directly making it
easier to map a problem with a set of constants Σ = c1, . . . , ck into a finite
domain of size 2dlog(k)e. Rounding the domain size up to the nearest power of
2 does not change satisfiability of the problem, but has a significant impact on
the performance of BDD operations. Unfortunately, we have not been able to
get dynamic variable re-ordering to work with finite domains in BuDDy, so all
our results are based on a fixed default variable order.

As expected, our prototype scales reasonably well on formula (4). It requires
n propagations to solve an instance where p has arity n. With n = 10 takes
0.01s., n = 20 takes 0.2s., and n = 200 takes 18s. (and caches 1.5M BDD nodes,
on a 32bit, 2GHz, 2GB, TS2500). Darwin handles n = 10 in 0.4 seconds and
2049 propagations, while increasing n to 20 is already too overwhelming.

Example 4. Suppose p is an n-ary predicate, and that we have n unary predicates
a0, . . . , an−1, then consider the (non-Horn) formula:

∧0≤i<n∀x . [p(x)→ p(.., xi−1, 1, xi+1, ..)] (10)

∧ p(0, . . . , 0) ∧ ∧0≤i<n(ai(0) ∨ ai(1)) ∧ ∀x . [(∧iai(xi))→ ¬p(x)]

DPLL(SX) uses n propagations to learn the assignment p(x)>. Since no splitting
was required to learn this assignment, it can be used to eliminate p from conflict
clauses during lemma learning. The resulting conflict clauses during backjumping
are then ∀x .

∨

0≤i<m ¬ai(xi) for m = n − 1, . . . 1. Accordingly, the prototype
uses 0.06 seconds for n = 30, 0.9s for n = 80, and 26s. for n = 200, while even a
very good instantiation based prover Darwin requires O(2n−1) branches, which
is reflected in the timings: for n = 11, 12, 13, 14, 15, 16, take 1, 4, 16, 60, 180, 477
seconds respectively.

1 http://buddy.wiki.sourceforge.net

We also ran our prototype on the CASC-21 benchmarks from the EPS and
EPT divisions. In the EPT division fails to prove PUZ037-3.p, with a timeout of
120 seconds, as the BDDs built during propagation blow up 2. It solves the other
49 problems, using less than 1 second for all but SYN439-1.p, which requires
894 conflicts and 9.8 seconds. In the EPS division our prototype at time of this
submission solves 46 out of 50 problems within the given 120s. timeout.3

5 Conclusions

Related work DPLL(SX) is a so called instance-based method [7] and it shares
several features with instance-based implementations derived from DPLL, such
as the Model Evolution Calculus (ME) calculus [8], the iProver [9], and the ear-
lier work on a primal-dual approach for satisfiability of EPR [10]. These methods
are also decision procedures for EPR that go well beyond direct propositional
grounding (as do resolution methods [11]). Lemma learning in ME [12] com-
prises of two rules GRegress and a non-ground lifting Regress. In a somewhat
rough analogy to Regress, the resolution rules used in DPLL(SX) uses the set
Θr to guide a more general lifting for the produced conflict clause. Factoring
is not used in ME lemma generation. The use of BDDs for compactly repre-
senting relations is wide-spread. Of high relevance to DPLL(SX) is the system
BDDBDDB, which is a Datalog engine based on BDDs [13]. Semantics of nega-
tion in Datalog aside, DPLL(SX) essentially reduces to BDDBDDB for Horn
problems. Parallel unit propagation is for instance implicit in the way clauses
get compiled to predicate transformers, but on the other hand, apparatus for
handling non-Horn problems is obviously absent from BDDBDDB.

Extensions A number of compelling extensions to DPLL(SX) remain to be
investigated. For example, we may merge two clauses C · Θ and C · Θ′ by tak-
ing the union of the substitution sets. The clause C · Θ′ could for instance be
obtained by resolving binary clauses, so this feature could simulate iterative
squaring known from symbolic model checking. We currently handle equality
in our prototype by supplying explicit equality axioms (reflexivity, symmetry,
transitivity, and congruence) for the binary equality relation ', but supporting
equality as an intrinsic theory is possible and the benefits would be interesting
to study. Supporting other theories is also possible by propagating all instances
from substitution sets, but it would be appealing to identify cases where an ex-
plicit enumeration of substitution sets can be avoided. We used reduced ordered
BDDs in our evaluation of the calculus, but this is by no means the only possible
representation. We may for instance delay forming canonical decision diagrams
until it is required for evaluating (non-emptiness) queries (a technique used for

2 Z3, on the other hand, solves this problem in 9s. using matching-based quantifier
instantiation

3 Our prototype and logs for the reported numbers is available to the referees on
http://research.microsoft.com/users/nbjorner/epr/paper.zip.

Boolean Expression Diagrams). It would also be illustrative to investigate how
DPLL(SX) applies to finite model finding and general first-order problems. Dar-
win(FM) already addressed using EPR for finite model finding, and as GEO [14]
exemplifies, one can extend finite model finders to the general first-order setting.

Another avenue to pursue is relating our procedure with methods used for
QBF. While there is a more or less direct embedding of QBF into EPR (obtained
by Skolemization) the decision problem for QBF is only PSPACE complete, while
the procedure we outlined requires up to exponential space.

References

1. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21 (1980) 317–353

2. Pérez, J.A.N., Voronkov, A.: Encodings of Bounded LTL Model Checking in Ef-
fectively Propositional Logic. [15] 346–361

3. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In
Bacchus, F., Walsh, T., eds.: SAT. Volume 3569 of Lecture Notes in Computer
Science., Springer (2005) 408–414

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35 (1986) 677–691

5. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53 (2006) 937–977

6. Krstic, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Konev, B., Wolter, F., eds.: FroCos. Volume 4720 of Lecture Notes
in Computer Science., Springer (2007) 1–27

7. Baumgartner, P.: Logical engineering with instance-based methods. [15] 404–409
8. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL

method. Artif. Intell. 172 (2008) 591–632
9. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.

In: LICS, IEEE Computer Society (2003) 55–64
10. Gallo, G., Rago, G.: The satisfiability problem for the Schönfinkel-Bernays frag-

ment: partial instantiation and hypergraph algorithms. Technical Report 4/94,
Dip. Informatica, Universit‘a di Pisa (1994)

11. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision proce-
dures. In Robinson, J.A., Voronkov, A., eds.: Handbook of Automated Reasoning.
Elsevier and MIT Press (2001) 1791–1849

12. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution
calculus. In Hermann, M., Voronkov, A., eds.: LPAR. Volume 4246 of Lecture
Notes in Computer Science., Springer (2006) 572–586

13. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In Yi, K., ed.: APLAS. Volume 3780 of Lecture
Notes in Computer Science., Springer (2005) 97–118

14. de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite
model search. In Furbach, U., Shankar, N., eds.: IJCAR. Volume 4130 of Lecture
Notes in Computer Science., Springer (2006) 303–317

15. Pfenning, F., ed.: Automated Deduction - CADE-21, 21st International Conference
on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings. In
Pfenning, F., ed.: CADE. Volume 4603 of Lecture Notes in Computer Science.,
Springer (2007)

