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Abstract—In recent years, bit-precise reasoning has gained is thus ideally suited as an interface between the verifinati
importance in hardware and software verification. Of renewal  or synthesis tool and the decision procedure.
interest is the use of symbolic reasoning for synthesisingép In many practically relevant applications, support for un-
invariants, ranking functions, or whole program fragments and . t ted functi . t ired and if this is th
hardware circuits. Solvers for the quantifier-free fragment of In erpr(_e e .unc lons IS not required and | IS 1S the cg;e
bit-vector logic exist and often rely on SAT solvers for effiiency. quantified bit-vector formulas can be reduced to quantified
However, many techniques require quantifiers in bit-vectorfor- Boolean formulas (QBF). In practice however, QBF solvers
mulas to avoid an exponential blow-up during construction. face performance problems and they are usually not able
Solvers for quantified formulas usually flatten the input to dtain 1 hroduce models for satisfiable formulas, which is crucial
a quantified Boolean formula, losing much of the word-level . thesi licati Th holds t f
information in the formula. We present a new approach based b In_synthesis applicaions. € same holds true tor many
a set of effective word-level simplifications that are tradiionally ~automated theorem provers. SMT solvers on the other hand
employed in automated theorem proving, heuristic quantifie are efficient and produce models, but usually lack complete
instantiation methods used in SMT solvers, and model finding support for quantifiers.
techniques based on skeletons/templates. Experimentalsts on The ideas in this paper combine techniques from automated

two different types of benchmarks indicate that our method . . . .
outperforms the traditional flattening approach by multiple th€orem proving, SMT solving and synthesis algorithms. We

orders of magnitude of runtime. propose a set of simplifications and rewriting techniques th
transform the input into a set of equations that an SMT solver
. INTRODUCTION is able to solve efficiently. A model finding algorithm is then

employed to refine a candidate model iteratively, while we us
The complexity of integrated circuits continues to grow gtinction or circuit templates to reduce the number of iferat
an exponential rate and so does the size of the verificatidn aaquired by the algorithm. Finally, we evalutate a protetyp
synthesis problems arising from the hardware design psocegplementation of our algorithm on a set of hardware and
To tackle these problems, bit-precise decision procedanea  software benchmarks, which indicate speedups of up to five

requirement and oftentimes the crucial ingredient thanésfi orders of magnitude compared to flattening the input to QBF.
the efficency of the verification process.

Recent years also saw an increase in the utility of bit- Il. BACKGROUND
precise reasoning in the area of software verification wherewe will assume the usual notions and terminology of
low-level languages like C or C++ are concerned. In botitst order logic and model theory. We are mainly interested
areas, hardware and software design, methods of automaieehany-sorted languages, and bit-vectors of differene¢ssiz
synthesis (e.g., LTL synthesis [23]) become more and magérrespond to different sorts. We assume that, for each bit-
tangible with the advent of powerful and efficient decisioRector sort of sizen, the equality=,, is interpreted as the
procedures for various logics, most notably SAT and SMiBientity relation over bit-vectors of size. The if-then-else
solvers. In practice, however, synthesis methods are oft@nultiplexer) bit-vector termite,, is interpreted as usual as
incomplete, bound to very specific application domains, @fe(true,t,e) = t and ite(false,t,e) = e. As a notational
simply inefficient. convention, we will always omit the subscript. We cal

In the case of hardware, synthesis usually amounts dgty function symbolsonstantsymbols, and-arity predicate
constructing a module that implements a specification [23jymbols propositions Atoms literals, clauses and formulas
[20], while for software this can take different shapeseming are defined in the usual way. Terms, literals, clauses and
program invariants [16], finding ranking functions for téna formulas are callegroundwhen no variable appears in them.
tion analysis [28], [24], [8], program fragment synthedd$]; A sentences a formula in which free variables do not occur.
or constructing bugfixes following an error-descriptior?[2 A CNF formulais a conjunctionC; A ... A C,, of clauses.
are all instances of the general synthesis problem. We will write CNF formulas as sets of clauses. We usé

In this paper, we present a new approach to solving quardind ¢ for constants,f and g for function symbolsp and ¢
fied bit-vector logic. This logic allows for a direct mappinfy for predicate symbolsy andy for variables,C for clauses,
hardware and (finite-state) software verification problemd ¢ for formulas, andt for terms. We usec:n to denote that



variablez is a bit-vector of sizex. When the bit-vector size EPR formula is always finite. The satisfiability problem for

is not specified, it is implicitly assumed to 2. We use EPR is NEXPTIME-complete.

fini,...,n; — n, to denote to denote that function symbol Theorem 1:The satisfiability problem for QBVF s

f has arityk, argument bit-vectors have sizes, ...,n, and NEXPTIME-complete:

the result bit-vector has size.. QBVF can be used to compactly encode many practically
We usey[z1, ..., x,] to denote a formula that may contairrelevant verification and synthesis problems. In hardware

variablesry, ...,z,, and similarilyt[z1, . .., z,] is defined for verification, a fixpoint check consists in deciding whetler

atermt. Where there is no confusion, we denefe, ..., x,] unwindings of a circuit are enough to reach all states of the

by ¢[z] andt[z1,...,x,] by t[Z]. In the rest of this paper, thesystem. To check this, two copies of ttheunwindings are

difference between functions and predicates is triviatl ae used: Letl’[z, 2] be a formula encoding the transition relation

will thus only discuss functions except at a few places.  and I[z] a formula encoding the initial states of a circuit.
We use the standard notion of a structure (interpretation).Furthermore, we define

structure that satisfies a formula is said to be a model for b1

F. A theory is a collection of first-ord_er sentenc_es. _Inte1r¢m§ T*z,2'] = Tz, xo) A /\ Tlzi—1, i) AT|zp_1,2'] .

symbols are those symbols whose interpretation is restrict ie1

to the models of a certain theory. We say a symbol is fr

or uninterpreted if its interpretation is not restricted hy

theory. We useBit Vec to denote the bit-vector theory. In this

paper we assume the usual interpreted symbols for bit-vecto Vz,z’ . I[z] A T*[z, 2’| — 3y, v Iy ATy, '],

theory: +,,, *p, concaty n, <n, On, 1,, .... Where there is , , .
no confusion, we omit the subscript specifying the actuze si V€' @', y, andy’ are (usually large) bit-vectors.
of the bit-vector. Of renewed interest is the use of symbolic reasoning for
A formula is satisfiableif and only if it has a model. A synthesing code .[2.6]’ loop invariants [7], [16] and _ranking
formula F' is satisfiable modulo the theo®it Vec if there is functions [8]_ for f|n|te-staj[e programs. A” these applloa_s
a model for{ F'} U Bit Vec. can _be easily enc_oded in QBVF. To illustrate these ideas,
consider the following abstract program:

[1l. QUANTIFIED BIT-VECTORFORMULAS pre

A Quantified Bit-Vector Formul§QBVF) is a many sorted while (¢) { T }
first-order logic formula where the sort of every variable 5!
is a bit-vector sort. The QBVF-satisfiability problem, iseth In the loop invariant synthesis problem, we want to synthe-
problem of deciding whether a QBVF is satisfiable modulsise a predicatd that can be used to show thatst holds
the theory of bit-vectors. This problem is decidable beeauafter execution of thevhile-loop Let, pre[z] be a formula
every universal (existental) quantifier can be expandea ant encoding the set of states reachable before the beginning of
conjunction (disjunction) of potentially exponential,tiinite the loop,c[z] be the encoding of the entry conditiofi[z, 2’|
size. A distinguishing feature in QBVF is the support fobe the transition relation, angbst[z] be the encoding of the
uninterpreted function and predicate symbols. property we want to prove. Then, a suitable loop invariant
Example 1:Arrays can be easily encoded in QBVF usingxists if the following QBV formula is satisfiable.
guantifiers and uninterpreted function symbols. In theofeil
ing formula, the uninterpreted functiorfsand f/ are used to
represent arrays from bit-vectors of size 8 to bit-vectdrhe
same size, and’ is essentially the array updated at position

Shen a fixpoint check fok unwindings corresponds to the
QBV formula

V. pre[z] — I(s) A
Vo, o' I(z) A clz] ATz, 2] — I(z') A
V. I(x) A —clx] — post|x]

a + 1 with value0: An actual invariant can be extracted from any model that
satisfies this formula.
flla+1)=0 A (Vz:8. z=a+1V f'(z) = f(x)). Similarly, in the ranking function synthesis problem, we

. o want to synthesise a functiorunk that decreases after each
QuantifiedBooleanformulas (QBF) are a generalization of,,, jteration and that is bounded from below. The idea is

Boolean formulas, where quantifiers can be applied 10 €3¢l e this function to show that a particular loop in the

variable. Deciding a QBF is a PSPACI_E-compIete proble rogram always terminates. This problem can be encoded as
Note that any QBF problem can be easily encoded in QBVk, following QBVF satisfiability problem.
by using bit-vectors of size 1. The converse is not true, QBVF

is more expressive than QBF. For instance, uninterpreted Va. rank(xz) > 0 A
function symbols can be used to simulate non-linear quantifi Va,z'. clz] ATz, 2'] — rank(z') < rank(z)

prefixes. The EPR fragment of first-order logic comprisa§ote that the general case of this encoding requires uninter

formulas of the form3*v*p, where ¢ is a quantifier-free Ij_greted functions. The call teank can not be replaced with an
formula with predicates but without function symbols. EP

is a decidable fragment because the Herbrand universe of &or a proof of this theorem, see Appendix A.



existentially quantified variable, as it is impossible tgpess we observed this naive implementation was a bottleneck in
the correct variable dependencies in a linear quantififiore benchmarks where hundreds of variables could be eliminated
The natural solution is to eliminate as many variables simul
IV. SoLviNG QBVF taneously as possible. The only complication in this apgnoa
In this section, we describe a QBVF solver based on ide@sthat some of the variables being eliminated ndapendon
from first-order theorem proving, SMT solving and synthesisach other. We say a variabledirectly dependsn y in DER,

tools. First, we present a set of simplifications and rengiti when there is a literat: # ty]. In general we are presented
rules that help to greatly reduce the size and complexity @fith a formula of the following form:

typical QBVF formulas. Then, we describe how to check 3 3
whether a given model satisfies a QBVF and how to use this {1 - - - s Zn, J- 21 FUV. .. Vo, #taVolzr,...,20,7],
construct new models, using templates to speed up the Broge

. ; ﬁere eachr; may depend on variables;, j .. First,
(sometimes exponentially). i may dep v J 7# 0

we build a dependency grapfi where the nodes are the
A. Simplifications & Rewriting variablesz;, andG contains an edge from; to z; whenever

Modern first-order theorem provers spend a great part g&-(;jepr?nds or;. Ne>|<t, _vvedperforran ahtopolpg[cal sort d
their time in simplifying/contracting operations. Theggema- and w enefver aé:yc ed Is detected when visiting nm@lev_ve
tions are inferences that remove or modify existing forraula€MOVe i from G and movex; # ¢; to pler,- .o 20,7,

Our QBYV solver implements several simplification/conti@ct Flnzlly, \éjv% uts1e the Ivar_latile Orde”’ﬁ’i“’ka _(mlg n) |
rules found in first-order provers. We also propose new rulB§2duced by the topological sort to apply DER simultanepus

that are particularly useful in our application domain. Le_t_9 be as_ubstitutior,li.e., a mapp_ing from va_riables to terms.

1) Miniscoping: Miniscoping is a well-known techniqueInltlally, 0 is empty. For each variabley, we first applyé to

H ! R !

for minimizing the scope of quantifiers [17]. We apply it Producingt, , and then updaté := 0 U {zy, — t }.
after converting the formula to negation normal form. ThATEr all variablesa;, were processed, we apply the resulting
basic idea is to distribute universal (existential) quigTs over substitutiond to ple, - "'En’,y]' o ,
conjunctions (disjunctions). This transformation is jrafarly A arl:mal remlark, thehap;()jllca_bnny of DER can bel_lncreased
important in our context because it increases the appligabi USIN9 theory solvers. The idea is to rewrite me(I:]ua |'F|eb$|hef
of rules based on rewriting and macros. We may also linf@™ f1[%,7] # t2[x, 7], containing a universal variable,

the scope of a quantifier if a sub-formula does not contain o = # t'[] ' This rewriting ste_p is esseftiglly equivalent to
quantified variable. That is, a theory solving step, wherg|[z, 7| = t2[x, 7] is solved forz.

In the case of linear bit-vector equations, this can be a&ekiie
(Vz.FZ|VG) = (VT.F[T|) VG when the coefficient of is odd [12].

5) Rewriting: The idea of using rewriting for performing
equational reasoning is not new. It traces back to the work
developed in the context of Knuth-Bendix completion [21].
'The basic idea is to use unit clauses of the fofint[z] = r[z]
as rewrite ruleg[z] ~ r[z], whent[z] is “bigger than"r[z].

Any instancet[s] of ¢[z] is then replaced by[s]. For example,
in the formula

when G does not containe. We use a similar rule for
existential quantifiers over disjunctions.

2) Skolemization:Similarly to first-order theorem provers
in our solver, existentially quantified variables are efiated
usingSkolemizationA formulaVvz. Jy. —p(x)Vq(z,y) is con-
verted into the equisatisfiable formia. —p(x)Vvq(z, f,(z)),
where f, is a fresh function symbol.

3) A conjunction of universally quantified formulagfter (Vz. f(z,a) =x) A f(h(b),a) >0,

NNF conversion, miniscoping and skolemization. The QBV

formula is written as a conjunction of universally quantifiethe quantifier can be used as the rewrite rfile,a) ~ z.
formulas: (VZ. ¢1[Z]) A ... A (V. o, [Z]). This form is very Thus, the termf(h(b),a) > 0 can be simplified tau(b) > 0,
similar to that used in first-order theorem provers. Howgvd¥roducing the new formula

we do not require each;[z] to be a clause.

4) Destructive Equalit)[/ g?esolution (DERDRER allows us (Vz. f(z,0) =2) A h(b) 2 0.
to solve a negative equality literal by simply applying thve observed that rewriting is quite effective in many QBVF
following transformation: benchmarks, in particular, in hardware fixpoint check prob-

_ — — — lems. Our goal is to use rewriting as an incomplete simplifica
(V2,9. x #tV o[z, Y]) = (9. ¢[t, 7)) , tion technique. So, we are not interested in computingeatiti
wheret does not containc. For example, using DER, thepairs and generating a confluent rewrite system. Firstrorde
formula Vz,y. © # f(y) V g(z,y) < 0 is simplified to theorem provers use sophisticatedm orderingso orient the
Vy. g(f(y),y) < 0. DER is essentially an equality substitutiorequationg[z] = r[Z] (see, e.g., [17]). We found that any term
rule. This becomes clear when we write the clause on the lefirdering, where interpreted symbols (e.g., +, *) are carsid
hand-side using an implicatiovx,y. =t — ¢[x,7]. It is “small”, works for our purposes. This can be realised, for
straightforward to implement DER; a naive implementatioimstance, using a Knuth-Bendix Ordering where the weight
eliminates a single variable at a time. In our experimentsf interpreted symbols is set to zero. The basic idea of this



heuristic is to replace uninterpreted symbols with intetpd are actual arguments ¢gf Assume that variable; is thek;-th
ones. For example, usinf(z) ~ 2z + 1, we can simplify argument off. Then, the substitutiodl is of the form{z; —
f(a) —ato 2a+1—a, and then apply a bit-vector rewritingy,, . . ., zn — ys, }. For example, i n many benchmarks we
rule and reduce it ta + 1. found quasi-macros that are bigger versions of

6) Macros & Quasi-Macros:A macrois a unit clause of
the form Vz. f(z) = t[z], where f does not occur ir¥.
Macros can be eliminated from QBVF formulas by simply 7) Function Argument Discrimination (FAD)We have
replacing any term of the forrfi(7) with ¢[F]. Any model for observed that after applying DER tfi¢h argument of many
the resultant formula can be extended to a model that algmction applications is always a bit-vector value such(gs:
satisfiesvz. f(z) = t[z]. For example, consider the formula 1, 2, etc. For any function symbgi and QBV formulay, the

(Vo. fz) =z +a) A f(b)>b. follpvying_ macro can be conjoined witlp while preserving
satisfiability:

After macro expansion, this formula is reduced to the edquisa
isfiable formulab+a > b. The interpretatiom — 1, b — 0 is Va,y. f(x,7) = ite(z = v, f,(7), f'(,7)) ,
a model for this formula. This interpretation can be extehd(\eN
to

Vo, za. f(x1, 1+ 22, 2) = rlz1, 23] .

here f, and f’ are fresh function symbols, andis a bit-

vector value. Now, suppose that the first argument offall

applications are bit-vector values. The macro above willoe

which is a model for the original formula. This particularya f(v',7) to f,(¥) whenv = ¢/, and f’(v',¢) otherwise. The

to represent models is described in more detail in sectieB.|V transformation can be applied again to tffeapplications if
A quasi-macrais a unit clause of the form their first argument is again a bit-vector value.

Example 3 (FAD):Let ¢ be the formula

f@y—z+1, a—1, b—0,

L . . . V. f(1,2,0) > x) A
wh(iref _does not occur mr[:c],. f&[z, ... tnlT) contains £0,a,1) < £(1,6,0) A f(0,6,1) =0 A ¢=a.
all T variables, and the following system of equations can be
solved forzy, ..., z, Applying FAD twice (for the valued) and 1) on the first
argument off, we obtain
Y1 = tl[f]a sy Ym = tm[f] )

) ) ) (Vx. f1(x,0) > z) A
whereyy, . .., y, are new variables. A solution of this system fola,1) < f1(5,0) A fole,1) =0 A ¢ =a.
is a substitution ) ] ]
Applying FAD for the third argument of; and f; results in
_ o (Vz. fro(x) > ) A
We use the notatiorp | 6 to represent the application of the fo1(a) < fio(d) A for(c) =0 A c=a.
substitutiond to the formulap. Then, thequasi-macracan be
replaced with thenacro

0:x1— 5107, ..., Tn+— Su[7] -

Since FAD is based on macro definitions, the infrastructure

used for constructing interpretations for macros may bel use
Vy.f(§) = ite(/\ vi = ti[z], r[z), (@) | 6 to build an interpretation fof based on the interpretations of

i fi,0 and fo 1.

where f/ is a fresh function symbol. Intuitively, the new 8) Other simplifications:As many other SMT solvers for

formula is saying that when the arguments fofare of the Pit-vector theory ([6], [5], [2]), our QBVF solver implemen

form ¢;[], then the result should béz], otherwise the value Several bit-vector specific rewriting/simplification raleuch

is not specified. Now, the quasi-macro was transformed intd®&: @ — a = 0. These rules have been proved to be very

macro, the quantifier can be eliminated using macro expansigffective in solving quantifier-free bit-vector benchmarand

Example 2 (Quasi-Macro)z.f(z + 1,z — 1) = « is a this is also the case for the quantified case.

quasi-macro, because the systgm= z + 1, yo = = — 1 From now on, we assume there is a procediieplify

can be solved for. A possible solution is the substitutionthat given a QBV formulap, converts it into negation nor-

9 = {x — y1 — 1}. Thus, we can transform this quasi-macréal form, then applies miniscoping, skolemization, anchthe

into the macro: applies the other simplification described in this sectiprta
. saturation.
Vy1,92- f(y1,y2) =ite(pr =z + 1 Ay2 =2 — 1, uratl
z, f'(y1,y2)) L 0 B. Model Checking Quantifiers
After applying the substitutioi and simplifying the formula,  Given a structuré/, it is useful to have a procedur€ that
we obtain checks whethef\/ satisfies a universally quantified formula

iy L B . @ or not. We sayC is a model checking procedur®efore
Yy y2- fynye) =ite(y2 =y =2, 91 =1 F'41:12)) - (e gescribe howre can be constructed, let us take a look
In our experiments, we observed that the solvability caodit at how structures are encoded in our approach. WeRiBe
is trivially satisfied in many instances, because all vdeiald to denote the structure that assigns the usual interpoettdi



the (interpreted) symbols of the bit-vector theory (e-g,*, Example 5:For instance, in Example 4, the structuté,
concat, etc). In our approach, the structurdé are based on satisfiesvz. —(x > 0) V f(x) < = because
BV. We use|BV|,, to denote the interpretation of the sort .
of bit-vectors of sizen. With a small abuse of notation, the s > 0A(ite(s >0,s —1,s+3) <)
n—1 H
_elements OfB.V|” are{On_,ln,...,2n _}.Agam_, where th_ere is unsatisfiable. LetM;, be a structure identical td/, in
is no confusion, we omit the subscript. The interpretatibn xample 4, but where the interpretatiof, () of f is z 4 2
an arbitrary termt in a structureM is denoted byM [¢], and pie 4, : P on(f). T
. . . M, does not satisfyx. —(z > 0) V f(z) < z in ¢, because
is defined in the standard way. We us&{x — v} to denote a . >
. g the formulas > 0A—(s+2 < s) is satisfiable, e.g., by — 0.
structure where the variableis interpreted as the valug and : . .
. . . The assignment — 0 is a counter-exampldor M, being a
all other variables, function and predicate symbols haee th

same interpretation as if/. That is,M{x — v}(x) = v. For m(_)rc:]el forg(;a.l hecki duMe s t i
example,BV {z — 1}[2+ 2 + 1] — 3. As usual, M{Z — B} e model-checking proceduMe expects two arguments

a universally quantified formul&z. ¢[z] and a structure
denotesM {x1 +— vy }{zo — vo} ... {x, — v, }. . g
{1 . iHzz = v " "} .M. It returns T if the structure satisfies’z. ¢[z], and a
For each uninterpreted constanthat is a bit-vector of size . .
. ) . non-empty finite sel/ of counter-examples otherwise. Each
n, the interpretationV/(c) is an element of BV |,,. For each . : _
: . . : counter-example is a tuple of bit-vector valuessuch that
uninterpreted function (predicaté) ny, ..., ny — n, of arity

k, the interpretationM (f) is a termtsfx1,...,zx], which M{z — v}plz]] evaluates tdfalse.

contains only interpreted symbols and the free variables C. Template Based Model Finding

ni,..., T : ng. The interpretationV/(f) can be viewed as a
function definitionwhere for allw in |BV|,,, x ... x |BV|,,, In principle, the verification and synthesis problems de-
M(f)(@) = BV{Z — v}t s[7]]. scribed in section 1l can be attacked by any SMT solver that
Example 4 (Model representation)et o, be the follow- SuPports universally quantified formulas, and that is cépab
ing formula: of producing models. Unfortunately, to the best of our knowl
edge, no SMT solver supports complete treatment of univer-
(Vo. =(z > 0)V f(z) < x) A sally quantified formulas, even if the variables range over
(Vo. =(z < 0)V f(z) >z +1) A finite domains such as bit-vectors. On satisfiable instances
flay>b Ab>a+1. they will often not terminate or give up. On some unsatiséabl
instances, SMT solvers may terminate using techniquesibase
Then the interpretation on heuristic-quantifier instantiatiofi9].

It is not surprising that standard SMT solvers cannot handle
My = {f(z) — ite(x > 0,z — 1,7 +3), a— —1, b 1} these problems; the search space is simply too large. Ssisthe
tools based on automated reasoning try to constrain thetsear

is a model forp,. For instance, we hav&/[f(a)] = 2. space usingemplates For example, when searching for a
Usually, SMT solvers represent the interpretation of unimanking function, the synthesis tool may limit the search to
tepreted function symbols as finitRinction graphs(i.e., functions that are linear combinations of the input. Thisge
lookup tables). A function graph is an explicit representat idea immediately transfers to QBVF solvers. In the contést o
that shows the value of the function for a finite (and reldyive QBVF solver, a template is just an expressifif ¢ containing
small) number of points. For example, let the function grapfree variablesz, interpreted symbols, and fresh constants
{0 — 1, 2 — 3, else — 4} be the interpretation of the Given a tuple of bit-vector values, we sayt[z,v] is an
function symbolg. It states that the value of the functioninstanceof the templatet[z,c]. A template can also viewed
g at0is 1, at 2 it is 3, and for all other values it is as aparametricfunction definition. For example, the template
4. Any function graph can be encoded usi@ terms. az+b, wherea andb are fresh constants, may be used to guide
For example, the function graph above can be encodedths search for an interpretation for unary function symbols
g(x) — idte(x = 0,1,ite(x = 2,3,4)). Our approach for The expressions +1 (a — 1,b— 1) and2z (a — 2,b+— 0)
enconding interpretations isymbolicand potentially allows are instances of this template.
for an exponentially more succinct representation. Fomexa We say atemplate bindingfor a formulay is a mapping
ple, assumingf is a function from bit-vectors of size 32,from uninterpreted function (predicate) symbgls occurring
the interpretationf(z) — ite(x > 0,z — 1,z + 3) would in ¢, to templatest;[Z,¢]. Conceptually, one template per
correspond to a very large function graph. uninterpreted symbol is enough. If we want to consider two

When models are encoded in this fashion, it is straightifferent templates; [z, 1] andt.[z, c3] for an uninterpreted
forward to check whether a universally quantified formulaymbol f, we can just combine them in a single template
VZ. [T is satisfied by a structurd/ [13]. Let oM [7] be [z, (c1,T,c)] = ite(c = 1,t1[T, 1), t2[T, &2]), wherec is a
the formula obtained fronp[z| by replacing any terny(¥) new fresh constant. This approach can be extended to constru
with M[f(7)], for every uninterpreted function symbgl. templates that are combinations of smaller “instructiotisit
A structure M satisfiesvz. o[z if and only if ™ [5] is can be combined to construct a template for the desired class
unsatisfiable, wherg is a tuple of fresh constant symbols. of functions.



Without loss of generality, let us assume thatcontains SOVer(v, TB)
only one uninterpreted function symbgl. So, a template ¥ = Simplify(p)
based model finder is a procedursF that given a ground ~ W-l-0-9. assume is of the formvz. ¢[z]
formulag and a template bindings = {f — ¢[7,7]}, returns P := HeuristicInst(¢[7])

a structureM for ¢ s.t. the interpretation of is t[z,] for loop
some bit-vector tupl@ if such a structure existSMF returns.L if SMT(p) = unsatreturn unsat
otherwise. Since we assumpeis a ground formula, a standard M = TMF(p, TB)
SMT solver can be used to implemerF. We just need to if M = 1 return unsat modulars
check whether V= MC(p, M)
if V=T return (sat M)
on N\ F@=tr7d p = p A Ngey 0]
f@ee

. - . Fig. 1. BVF solving algorithm.
is satisfiable. If this is the case, the model produced by the 9 © 949

SMT solver will assign values to the fresh constantin
the templatet[z, c]. WhenTMF(¢, TB) succeeds we say IS grgument and it is a bit-vector of siz&. Then, using the

satisfiablemoduloTB. template
Example 6 (Template Based Model Findindget ¢ be the
formula ite(x = c1,a1,...,ite(xr = can_1,a20_1,a20)...)
fla1) > 10 A f(az) > 100 A f(as) > 1000 A guarantees thatF will never fail, wherecy, ...con 1, a1, ...,
a1 =0Naxs=1Aa3 =2 agn are the template parameters. Of course, it is impractical to

use this template in practice. Therefore, in our implemtgma
we consider templates of increasing complexity. We esaiinti
use an outer-loop that automatically increases the sizbeof t

and the template bindingB be {f — ciz + ¢2}. Then, the
corresponding satisfiability query is:

fla1) > 10 A f(az) > 100 A f(az) > 1000 A templates whenever t.he inner-loop retucmsat moduldTB. .
ar=0Aaz=1ANaz3=2A In many cases, using actual tuples of bit-vector values is
flar) = crar + o A flag) = cras + o A not the bgst strategy for instantiating quqn'ufers. Fo_rmpda,
f(as) = cras + ¢z assumef is a function from bit-vectors of size 32 to bit-vectors

of the same size in
The formula above is satisfiable, e.g., by the assignment
1 and ¢, — 1000. Therefore,p is satisfiable modulaB. (Vz. f(z) 2 0), fla)<O.

To prove this formula to be unsatisfiable, we should instaeti
the quantifier witha instead of the23? possible bit-vector
The techniques described in this section can be conalues. Therefore, we use an approach similar to the one used
bined to produce a simple and effective solver for nonm [13]. Given a tuple(vy,...,v,) in V, if there is a terny
trivial benchmarks. Figure 1 shows the algorithm used in p s.t. M[t¢] = v;, we uset instead ofv; to instantiate the
our prototype. The solver implements a form obunter- quantifier. Of course, in practice, we may have severalwiffe
example guided refinementhere a failedmodel-checking ¢'s to chose from. In this case we select the syntactically
step suggests new instances for the universally quantifiethallest one, and break ties non-deterministically.
formula. This method is also a variation @fodel-based - ) )
quantifier instantiatior13] based on templates. The procedurE: Additional Techniques for Solving QBVF
SMT is an SMT solver for the quantifier-free bit-vector and Templates may be used to eliminate uninterpreted function
uninterpreted function theory (QEFBV in SMT-LIB [1]). (predicate) symbols from any QBVF formula. The idea is
The proceduréleuristicInst(¢[z]) creates an initial set of to replace any function applicatiofi(7) (ground or not) in
ground instantes ofp[z] using heuristic instantiation. Notea QBV formulay with the template definitiort;[7,¢]. The
that the formulap is monotonically increasing in size, soresultant formulay’ contains only uninterpreted constants
the proceduresSMT and TMF can exploit incremental solving and interpreted bit-vector operators. Therefdoé;blasting

D. Solver Architecture

features available in state-of-the-art SMT solvers. can be used to encodg into QBF. This observation also
Theorem 2:The algorithm in Figure 1 is complete modulosuggests that template model finding is essentially approxi
the given templat@B.? mating a NEXPTIME-complete problem (QBVF satisfiability)

The algorithm in Figure 1 is complete for QBVF iMF as a PSPACE-complete one (QBF satisfiability). Of course,
never fails, that is)M is never L. This can be accomplishedthe reduction is effective iff the size of the templates are
using a template that simply coveel relevant functions: polynomially bounded by the input formula size.

Let us assume w.l.o.g that every functiongnhas only one  If the QBV formula is a conjunction of many universally
quantified formulas, a more attractive approach is quantifie

2For a proof of this theorem, see Appendix B. elimination using BDDs [3] or resolution and expansion [4].



fsec] [seq] produce fixpoint checks in QBVF and QBF form. In total,

® | ® this benchmark set contains 131 files.
100 - 100 = Our second set of benchmarks cannot be directly encoded
10 - o 10 - in QBF because they contain uninterpreted function symbols
tr }%ﬁ tr i f% So, we decided to consider only ranking functions that are
oL A oL 4%33&++Id+¢ linear polynomials. By applying this template we can cohver
oot e 001 YL the problem to QBF as described in section IV-E. Thus,

0.01 01 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

the problem here is to synthesise the coefficients for the
polynomial. Further details, especially on the size of the
Fig. 2. Hardware fixpoint checks: QUBE & sKizzo vs. Z3 coefficients, were described previously [8].

All our benchmarks were extracted in two forms: in QBVF
form (using SMT-LIB format) and in QBF form (using the

QuBE sKizzo

[ jk - [ jk - i QDIMACS format) and they were executed on a Windows

0 L T 100 L T HPC cluster of AMD Athlon 2 GHz machines with a time

2 10 2 10 . limit of 3600 seconds and a memory limit of 2 GB.
1 . N As indicated by Figure 2 our approach outperforms the QBF
01 |- + 01 |- L solvers on all instances, sometimes by up to five orders of
oo L1 1 1 | oo 11 1 | magnitude and it solves almost all instances in the bendhmar
00101 1 10 100 Lk [sed 00101 1 10 100 Lk [sed set (110 out of 131). Most of the benchmarks solved in this
QuBE sKizzo

category (87 out of 110) are solved by our simplifications
and rewriting rules only. In the remaining cases, the model
refinement algorithm takes less then 10 iterations.

Figure 3 show the results for the ranking function bench-

Each universally quantified clause can be independently pf8ark set. Again, our algorithm outperforms the QBF solvers
cessed and the resultant formulas/clauses are combined. & Up o five orders of magnitude. The number of iterations
other possibility is to apply this approach only to a Se|écté_eqwred to find a mo_del or prove non-existence of a model
subset of the universally quantified sub-formulas, and oely N these benchmarks is again very small: almost all ins&nce
the approach described in section IV-D for the remainingsoné€duire only one or two iterations and the maximum number
Finally, first-order resolution and subsumption can also I3 iterations is 9. Even though our algorithm exhibits samil

used to derive new implied QBV universally quantified claus€P€edups on both benchmark sets, the behaviour on the second
and to delete redundant ones. set is quite different: None of the instances in this set is

completely solved by the simplifications or rewriting rules
The model finding algorithm is required on each of them.

Fig. 3. Ranking function synthesis: QUBE & sKizzo vs. Z3

V. EXPERIMENTAL RESULTS

To assess the efficacy of our method we present an evalua- VI. RELATED WORK
tion of the performance of a preliminary QBVF solver based
on the code-base of the Z3 SMT solver [10]. Our prototype In practice it is often the case that uninterpreted funation
first applies the simplifications described in section IVIA. are not strictly required. In this case, QBVFs can be flatlene
then iterates model checking and model finding as describstp either a propositional formula or a quantified Boolean
in sections IV-B and IV-C. The benchmarks that we use féermula (QBF). This is possible because bit-vector vagabl
our performance comparison are derived from two sourceBay be treated as a vector of Boolean variables. Operations o
a) hardware fixpoint checks and b) software ranking functidrit-vectors may be bit-blasted, but this approach incredse
synthesis [8]. It is not trivial to compare our QBVF solvesize of the formula considerably (e.g., quadratically fartin
with other systems, since most SMT solvers do not perforpliers), and structural information is lost. In case of dfifeed
well in benchmarks containing bit-vectors and quantifiéms. formulas, universal quantifiers can be expanded since each i
the past, QBF solvers have been used to attack these probleimguantification over a finite domain of values. This usually
We therefore compare to the state-of-the-art QBF solvesults in an exponential increase of the formula size and is
sKizzo [3] and QuBE [14]. therefore infeasible in practice. An alternative methodois

Formulas in the first set exhibit the structure of fixpointiatten the QBV formula without expanding the quantifiers.
formulas described in section Ill. The circuits that we usghis results in a QBF and off-the-shelf decision procedures
as benchmarks are derived from a previous evaluation (6BF solvers) like sKizzo [3], Quantor [4] or QUBE [14]
VCEGAR [18F and were extracted using a customized versidRay be employed to decide the formula. In practice, the
of the EBMC bounded Model ChecKerwhich is able to Eerformance of QBF solvers has proven to be problematic,

owever.

3These benchmarks are available at http://www.cproveéhargware/
4EBMC is available at http://www.cprover.org/ebmc/ 5More experimental data is provided in Appendix C.
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APPENDIX is equivalent tofalse. This problem can be avoided by using
A Proof of Theorem 1 an approach found in several EPR solvers that do not have
o . ) _support for=. These solvers use the fact that any EPR formula
The proof consists in showing that there is a polynomial containing= is equisatisfiable to another EPR formuta
reduction from EPR to QBVF and vice-versa. that does not contaig. The basic idea is to replace with a

1) QBVF = EPR: Given a QBV formulay, w.l.0.9. we new binary predicatésEq, and include the axioms of equality
assumey is in CNF. The first step is to flat every clause ifor jt.

. The idea is to avoid nested terms by introducing auxiliarym
variables. Given a clauséz. C[t], wheret is a nested term. '
We convert it intoVz,y. y # t V C[y]. Flattening is applied
until all literals in a clause arghallow For example, the clause
V1, z2. f(z1,9(x2)) < g(z1) is reduced to

isEq(z, )

Va,y. —isEq(x,y)VisEq(y,x)

V,y,z. nisEq(z,y) V —isEq(y, z) V isEq(x, 2)

VE, 5. —isEq(z1,y1) V...V -isEq(zn, yn) V —p(T) V p(7)

In fact the last axiom is an axiom scheme, we need one of
Vo1, 22, Y1, Y2, Y3- Y1 # 9(02) Vy2 # f(z1,51) V them for each predicate in the formulagp.

ys # g(x1) Vy2 < ys
B. Proof of Theorem 2

Next, for each uninterpreted functioh where the range is The f lap i icallv. Th . dded
a bit-vector of sizen, we createn predicatespy,, ..., py,. . € formulap Increases _monotonlca y. 'he conjgncta €
iR every iteration is an instance af with all universals

Each bit-vector variable and constant is broken into bits. A
disequality of the formz # f(y) is encoded as replaced by values from the counter-exampfe thereby
adding new quantifier instances poin every iteration. Since

(1 =T) zor pp,(Y1,---,yn)) V the number of possible instantiations is finite, the processt
terminate. In case it terminates witmsat moduldrB, there
((zm =T) zor py,, (Y1,---,Yn)) is no instance of the templa®B that satisfiep. Sincep is a

. - conjunction of instances af, there is no model fop modulo
Other atoms are encoded in a similar way. We add two spe IrlJ of ’

constantsl. and T, add the axiomL # T, and for each new

bit constant;, we add the clause= 1 V¢ = T. For example, C. Experimental results in detail

in the following QBV formula, assume all sorts are bit-vasto Figures 4, 5, 6 and 7 are bigger versions of the Figures 2

of size 2. and 3. Tables | and Il provide all the runtimes (in seconds)
(Vo f(f(2)) =0)A fla) =2 and results of our experiments. They also include the riegim

After flattening, we have: for the QBF solver Quantor.

(Var,y. y # f(2) V f(y) = 0) A fla) =2 fsec)

Then, after bit-blasting, we have:
1k
(Va1, 22,41, 92- ((y1 = T) zor py, (z1,22)) V
((y2 =T) zor pg,(z1,22)) V
(_'pfl (yla y2) A D, (yh yQ))) A 100
—pp (a1, a2) A pylar,az) A
(ap=TVar=1)A z3 10 =
(CLQ:T\/QQZJ_)/\ N _?_
T#L . e ol T
2) EPR= QBVF: Any satisfiable EPR formula has a finite n Tr THooL] 1
Herbrand model. Moreover, a formula containingonstants M + 1
has a model with a universe of size at mastTherefore, in 0.1 g R |t T 4+
principle, it should be straightforward to reduce a EPR falan kS T
to QBVF. In principle, we just need to use a bit-vector sort 0.01 | F A
of size [logyn]. The main problem in this approach is that 001 01 1 10 100 1k  [sec]
the EPR formula may contain cardinality constraints such as QuBE

V. z = a1 V...V x = a,. For example, this clause is
only satisfiable in a model with a universe with size at most
m. Now, suppose we have a formulawith n constants and
containing a cardinality constraint limiting the universize

to m. If m < [logyn], then the QBVF formula

Fig. 4. Hardware fixpoint checks: QuUBE vs. Z3

Vo : [logon]. x=a1 V...V =an
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sKizzo QuBE Quantor Z3 Result sKizzo QuBE Quantor Z3 Result
AR-fixpoint-1.qdimacs TIME MEM MEM 0.077 unsat small-equiv-fixpoint-1.qdimacs MEM TIME MEM 0.015 sat
AR-fixpoint-10.qdimacs MEM MEM TIME 0.124 unsat small-equiv-fixpoint-10.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-2.qdimacs TIME MEM MEM 0.078 unsat small-equiv-fixpoint-2.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-3.qdimacs TIME MEM TIME 0.078 unsat small-equiv-fixpoint-3.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-4.qdimacs MEM MEM TIME 0.078 unsat small-equiv-fixpoint-4.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-5.qdimacs MEM MEM TIME 0.094 unsat small-equiv-fixpoint-5.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-6.qdimacs MEM MEM TIME 0.109 unsat small-equiv-fixpoint-6.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-7.qdimacs MEM MEM TIME 0.094 unsat small-equiv-fixpoint-7.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-8.qdimacs MEM MEM TIME 0.109 unsat small-equiv-fixpoint-8.qdimacs MEM TIME MEM TIME ?
AR-fixpoint-9.qdimacs MEM MEM TIME 0.109 unsat small-equiv-fixpoint-9.qdimacs MEM TIME MEM TIME ?
cache-coherence-2-fixpoint-1.qdimacs | 3298.794 193.22 MEM 0.218 unsat small-pipeline-fixpoint-1.qdimacs TIME TIME MEM 0.016 unsat
cache-coherence-2-fixpoint-2.qdimacs TIME TIME MEM 1.217 unsat small-pipeline-fixpoint-10.qdimacs| MEM TIME MEM TIME ?
cache-coherence-2-fixpoint-3.qdimacs TIME TIME MEM 2.417 unsat small-pipeline-fixpoint-2.qdimacs TIME TIME MEM 0.031 unsat
cache-coherence-2-fixpoint-4.qdimacs TIME TIME MEM 3.946 unsat small-pipeline-fixpoint-3.qdimacs TIME TIME MEM 0.093 unsat
cache-coherence-2-fixpoint-5.qdimacs MEM TIME MEM 7.098 unsat small-pipeline-fixpoint-4.qdimacs TIME TIME MEM TIME ?
cache-coherence-2-fixpoint-6.qdimacs TIME TIME MEM 10.748 unsat small-pipeline-fixpoint-5.qdimacs TIME TIME MEM TIME ?
cache-coherence-3-fixpoint-1.qdimacs TIME 630.714 MEM 0.343 unsat small-pipeline-fixpoint-6.qdimacs TIME TIME MEM TIME ?
cache-coherence-3-fixpoint-2.qdimacs TIME TIME MEM 2.09 unsat small-pipeline-fixpoint-7.qdimacs TIME TIME MEM TIME ?
cache-coherence-3-fixpoint-3.qdimacs TIME TIME MEM 4.461 unsat small-pipeline-fixpoint-8.qdimacs TIME TIME MEM TIME ?
ethernet-fixpoint-1.qdimacs 1036.26 63.214 MEM 0.748 unsat small-pipeline-fixpoint-9.qdimacs MEM TIME MEM TIME ?
ethernet-fixpoint-2.qdimacs MEM 3266.96 MEM 2.793 unsat small-seg-fixpoint-1.qdimacs 976.613 3.84 MEM 0.015 unsat
ethernet-fixpoint-3.qdimacs MEM TIME MEM 4.696 unsat small-seq-fixpoint-10.qdimacs TIME TIME MEM 0.031 unsat
ethernet-fixpoint-4.qdimacs TIME TIME MEM 9.999 unsat small-seg-fixpoint-2.qdimacs MEM TIME MEM 0.015 unsat
itc-b13-fixpoint-1.qdimacs 2.277 1.643 MEM 0.031 unsat small-seg-fixpoint-3.qdimacs MEM TIME MEM 0.016 unsat
itc-b13-fixpoint-10.qdimacs 704.89 105.746 MEM 1.357 sat small-seq-fixpoint-4.qdimacs TIME TIME MEM 0.015 unsat
itc-b13-fixpoint-2.qdimacs 5.94 2.483 MEM 0.171 unsat small-seg-fixpoint-5.qdimacs TIME TIME MEM 0.031 unsat
itc-b13-fixpoint-3.qdimacs 23.183 11.654 MEM 0.203 sat small-seq-fixpoint-6.qdimacs TIME TIME MEM 0.031 unsat
itc-b13-fixpoint-4.qdimacs 29.02 14.42 MEM 0.328 sat small-seg-fixpoint-7.qdimacs TIME TIME MEM 0.031 unsat
itc-b13-fixpoint-5.qdimacs 850.897 130.657 MEM 0.484 sat small-seq-fixpoint-8.qdimacs TIME TIME MEM 0.046 unsat
itc-b13-fixpoint-6.qdimacs 1755.936 59.454 MEM 0.577 sat small-seg-fixpoint-9.qdimacs TIME TIME MEM 0.046 unsat
itc-b13-fixpoint-7.qdimacs 277.154 41.524 MEM 0.764 sat small-swap1-fixpoint-1.qdimacs 8.813 0.223 MEM 0.015 unsat
itc-b13-fixpoint-8.qdimacs 515.197 109.94 MEM 0.967 sat small-swap1-fixpoint-10.qdimacs TIME 2.02 MEM 0.063 sat
itc-b13-fixpoint-9.qdimacs TIME 417.43 MEM 1.123 sat small-swap1-fixpoint-2.qdimacs 24.506 0.36 MEM 0.031 sat
pi-bus-fixpoint-1.qdimacs TIME TIME MEM 0.437 unsat small-swap1-fixpoint-3.qdimacs 37.483 0.427 MEM 0.016 sat
pi-bus-fixpoint-2.qdimacs TIME TIME MEM 3.089 unsat small-swap1-fixpoint-4.qdimacs TIME 0.6 MEM 0.016 sat
pi-bus-fixpoint-3.qdimacs TIME TIME MEM 5.132 unsat small-swap1-fixpoint-5.qdimacs TIME 0.79 MEM 0.031 sat
sdlIx-fixpoint-1.qdimacs 3.487 1.61 MEM 0.124 unsat small-swap1-fixpoint-6.qdimacs MEM 0.947 MEM 0.031 sat
sdIx-fixpoint-10.qdimacs TIME TIME MEM TIME ? small-swap1-fixpoint-7.qdimacs TIME 1.157 MEM 0.047 sat
sdIx-fixpoint-2.qdimacs 10.17 2.32 MEM 0.281 unsat small-swap1-fixpoint-8.qdimacs TIME 1.383 MEM 0.062 sat
sdlIx-fixpoint-3.qdimacs 298.317 12.854 MEM 0.608 unsat small-swap1-fixpoint-9.qdimacs TIME 1.626 MEM 0.062 sat
sdIx-fixpoint-4.qdimacs 2096.083 101.177 MEM 1.232 unsat small-swap2-fixpoint-1.qdimacs 0.55 0.163 MEM 0 unsat
sdlx-fixpoint-5.qdimacs 490.48 202.53 MEM 2.121 unsat small-swap2-fixpoint-10.qdimacs 319.853 1.787 MEM 0.047 sat
sdIx-fixpoint-6.qdimacs MEM TIME MEM TIME ? small-swap2-fixpoint-2.qdimacs 7.007 0.31 MEM 0.016 unsat
sdlIx-fixpoint-7.qdimacs TIME TIME MEM TIME ? small-swap2-fixpoint-3.qdimacs 38.127 0.45 MEM 0.016 sat
sdIx-fixpoint-8.qdimacs TIME TIME MEM TIME ? small-swap2-fixpoint-4.qdimacs 40.767 0.543 MEM 0.016 sat
sdIx-fixpoint-9.qdimacs TIME TIME MEM TIME ? small-swap2-fixpoint-5.qdimacs 101.52 0.746 MEM 0.031 sat
small-bug1-fixpoint-1.qdimacs 0.507 0.957 0.17 0 sat small-swap2-fixpoint-6.qdimacs 81.994 0.836 MEM 0.031 sat
small-bug1-fixpoint-10.qdimacs 1.074 0.124 0.357 0.094 sat small-swap2-fixpoint-7.qdimacs 152.68 1.11 MEM 0.046 sat
small-bug1-fixpoint-2.qdimacs 0.48 0.08 0.147 0.031 sat small-swap2-fixpoint-8.qdimacs 188.513 1.267 MEM 0.046 sat
small-bug1-fixpoint-3.qdimacs 0.5 0.083 0.16 0.031 sat small-swap2-fixpoint-9.qdimacs 318.016 1.576 MEM 0.031 sat
small-bug1-fixpoint-4.qdimacs 0.787 0.087 0.163 0.046 sat small-synabs-fixpoint-1.qdimacs 2.2 0.197 0.523 0.016 unsat
small-bug1-fixpoint-5.qdimacs 0.873 0.097 0.19 0.031 sat small-synabs-fixpoint-10.qdimacs 7.203 329.67 MEM 0.093 unsat
small-bug1-fixpoint-6.qdimacs 0.924 0.097 0.184 0.047 sat small-synabs-fixpoint-2.qdimacs 1.843 0.563 MEM 0.016 unsat
small-bug1-fixpoint-7.qdimacs 0.797 0.103 0.233 0.062 sat small-synabs-fixpoint-3.qdimacs 2.273 1.806 MEM 0.016 unsat
small-bug1-fixpoint-8.qdimacs 0.96 0.107 0.21 0.062 sat small-synabs-fixpoint-4.qdimacs 2.83 2.117 MEM 0.031 unsat
small-bug1-fixpoint-9.qdimacs 0.826 0.113 0.226 0.077 sat small-synabs-fixpoint-5.qdimacs 3.693 4.03 MEM 0.046 unsat
small-dyn-partition-fixpoint-1.qdimacs 0.61 0.127 0.186 0.015 unsat small-synabs-fixpoint-6.qdimacs 3.887 17.686 MEM 0.047 unsat
small-dyn-partition-fixpoint-10.qdimacs| 2.206 TIME MEM 0.093 unsat small-synabs-fixpoint-7.qdimacs 5.437 26.947 MEM 0.062 unsat
small-dyn-partition-fixpoint-2.qdimacs 0.963 0.513 242 0.031 unsat small-synabs-fixpoint-8.qdimacs 7.447 61.907 MEM 0.062 unsat
small-dyn-partition-fixpoint-3.qdimacs 0.97 4.383 4.25 0.016 unsat small-synabs-fixpoint-9.qdimacs 6.907 76.893 MEM 0.078 unsat
small-dyn-partition-fixpoint-4.qdimacs 1.064 6.043 33.11 0.031 unsat usb-phy-fixpoint-1.qdimacs 229.333 2.163 MEM 0.187 unsat
small-dyn-partition-fixpoint-5.qdimacs 0.983 125.81 MEM 0.063 unsat usb-phy-fixpoint-2.qdimacs TIME 50.123 MEM 1.388 unsat
small-dyn-partition-fixpoint-6.qdimacs 1.41 776.993 MEM 0.046 unsat usbh-phy-fixpoint-3.qdimacs TIME 14.86 MEM 2.496 unsat
small-dyn-partition-fixpoint-7.qdimacs 1.123 2347.22 MEM 0.062 unsat usb-phy-fixpoint-4.qdimacs TIME TIME MEM 5.491 unsat
small-dyn-partition-fixpoint-8.qdimacs 1.454 2538.42 MEM 0.046 unsat usb-phy-fixpoint-5.qdimacs TIME TIME MEM 7.753 unsat
small-dyn-partition-fixpoint-9.qdimacs 2.14 TIME MEM 0.078 unsat
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1394diagioctl.c.qdimacs TIME TIME MEM TIME ?
1394diagisochapi.c.qdimacs MEM TIME MEM 40.591 sat
audig.ac97 common.cpp.qdimacs MEM TIME MEM 0.468 sat
audio_ac97_rtstream.cpp.qdimacs MEM TIME MEM 0.202 sat
audiqac97 wavepcistream.cpp.qdimacs TIME TIME MEM 416.757 unsat
audio_ac97 wavepcistream?2.cpp.qdimacs MEM TIME MEM 0.483 unsat
audiqac97 wavepcistream3.cpp.gdimacs MEM TIME MEM 0.219 unsat
audio_ddksynth csynth.cpp.qdimacs MEM TIME MEM 0.358 unsat
audio_ ddksynth csynth2.cpp.qdimacs MEM TIME MEM 0.094 sat
audiqddksynthvoice.cpp.qdimacs TIME TIME MEM 28.08 unsat
audio dmusuartmpu.cpp.qdimacs TIME TIME MEM 34.179 sat
audiq_fmsynth_miniport.cpp.qdimacs MEM TIME MEM 0.156 sat
audio_fmsynth miniport2.cpp.qdimacs MEM 626.356 MEM 0.109 sat
audiqgfxswap.xpfilter.cpp.qdimacs MEM TIME MEM 0.592 unsat
audio_sysfx_swap.cpp.qdimacs MEM TIME MEM TIME ?
AVStream hwsim.cpp.qdimacs TIME TIME MEM TIME ?
AVStream image.cpp.qdimacs MEM TIME MEM 22.401 sat
filesys cdfs allocsup.c.qdimacs MEM TIME TIME TIME ?
filesys cdfs_cddata.c.qdimacs MEM TIME MEM TIME ?
filesys cdfs namesup.c.qdimacs MEM TIME MEM TIME ?
filesys cdfs_namesup?2.c.qdimacs MEM TIME MEM 0.14 sat
filesys fastfat allocsup.c.qdimacs MEM TIME MEM 0.187 sat
filesys fastfat cachesup.c.qdimacs MEM TIME MEM 0.202 sat
filesys fastfat easup.c.qdimacs MEM TIME MEM 6.676 sat
filesys fastfat write.c.qdimacs MEM TIME MEM TIME ?
filesys filter_namelookup.c.qdimacs MEM TIME MEM TIME ?
filesys smbmrx cvsndrcv.c.qdimacs 523.737 TIME MEM 0.156 unsat
filesys smbmrx midatlas.c.qdimacs 40.877 TIME MEM 0.047 unsat
filesys smbmrx smbxchng.c.qdimacs MEM TIME MEM 55.816 unsat
generalpcidrv_sys hw_eeprom.c.qdimacs MEM TIME MEM 0.843 unsat
generalpcidry_sys hw_eeprom2.c.qdimacs MEM TIME MEM 0.499 sat
generaltoasterexe notify_notify.c.qdimacs MEM TIME MEM TIME ?
hid_firefly_app_firefly.cpp.qdimacs TIME TIME MEM TIME ?
hid_hclient ecdisp.c.qdimacs MEM TIME MEM 40.108 sat
input_mousercseries.c.qdimacs MEM TIME MEM 0.421 sat
input_mouser detect.c.qdimacs MEM 1796.263 MEM 0.031 sat
input_pnpi8042moudep.c.qdimacs MEM TIME MEM 51.377 sat
ir_smscir io.c.qdimacs MEM TIME MEM TIME ?
kernel agplib_init.c.qdimacs MEM TIME MEM 0.109 sat
kernel agplib_intrface.c.qdimacs MEM TIME MEM 0.187 sat
kernel uagp35gart.c.qdimacs MEM TIME MEM 40.107 sat
kmdf_AMCC5933 sys S5933DK1.c.qdimacs MEM TIME MEM 0.141 sat
kmdf_osrusbfx2exe_dump.c.qdimacs MEM TIME MEM 47.411 unsat
kmdf_osrusbfx2exe_testapp.c.qdimacs MEM TIME MEM TIME ?
kmdf_pcidrv_sys hw_nic_init.c.qdimacs MEM TIME MEM 38.016 sat
kmdf_pcidrv_sys hw_physet.c.qdimacs MEM TIME MEM 0.031 sat
kmdf_usbsampsys queue.c.qdimacs MEM TIME MEM TIME ?
mmediagsm610gsm610.c.qdimacs MEM TIME MEM 0.187 sat
mmediagsm61Q0gsm6102.c.qdimacs 284.807 TIME MEM 0.109 unsat
mmediagsm610gsm6103.c.qdimacs 371.61 TIME MEM 0.577 unsat
mmediaimaadpcmimaadpcm.c.qdimacs MEM TIME MEM TIME ?
network irda_miniport_nscirdacomm.c.qdimacs MEM TIME MEM 408.901 unsat
network irda_miniport_nscirda settings.c.qdimacs MEM TIME MEM 515.143 unsat
network ndis_coisdn TpiParam.c.qdimacs MEM TIME MEM 8.158 sat
network ndis e100bex5x_kd_mp_dbg.c.qdimacs MEM TIME MEM TIME ?
network ndis_rtinwifi_extsta st_aplst.c.qdimacs MEM TIME MEM 42.028 sat
network ndis rtinwifi_extsta st misc.c.qdimacs TIME TIME MEM TIME ?
network ndis_rtinwifi_hw_hw_ccmp.c.qdimacs MEM TIME MEM 1.279 sat
network trans sys notify.c.qdimacs 209.523 TIME MEM 6.224 unsat
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