
The Design and Implementation of the Model
Constructing Satisfiability Calculus

Dejan Jovanović
New York University

Clark Barrett
New York University

Leonardo de Moura
Microsoft Research

Abstract—We present the design and implementation of the
Model Constructing Satisfiability (MCSat) calculus. The MCSat
calculus generalizes ideas found in CDCL-style propositional SAT
solvers to SMT solvers, and provides a common framework
where recent model-based procedures and techniques can be
justified and combined. We describe how to incorporate support
for linear real arithmetic and uninterpreted function symbols
in the calculus. We report encouraging experimental results,
where MCSat performs competitive with the state-of-the art
SMT solvers without using pre-processing techniques and ad-hoc
optimizations. The implementation is flexible, additional plugins
can be easily added, and the code is freely available.

I. INTRODUCTION

Considering the theoretical hardness of SAT, the astonishing
adeptness of SAT solvers when attacking practical problems
has changed the way we perceive the limits of algorithmic
reasoning. Modern SAT solvers are based on the idea of
conflict-driven clause learning (CDCL) [1]–[3]. The CDCL
algorithm is a combination of an explicit backtracking search
for a satisfying assignment complemented with a deduction
system based on Boolean resolution. In this combination, the
worst-case complexity of both components is often circum-
vented by the components guiding and focusing each other.

Generalization of the SAT problem to the first-order do-
main is called satisfiability modulo theories (SMT). On the
shoulders of efficient SAT solvers, and numerous successful
applications, SMT has gained momentum as a more expressive
and equally performant framework. The common approach to
solving SMT problems is to employ a SAT solver to enu-
merate assignments of the Boolean abstraction of the formula.
The candidate (partial) Boolean assignments are then either
confirmed or refuted by a decision procedure dedicated to
reasoning about conjunctions of theory-specific constraints. If
multiple theories are involved, satisfiability in the combination
of such theories can be ensured by relying on high level
combination frameworks in the spirit of Nelson and Oppen
[4]–[6]. This style of reasoning is commonly called DPLL(T)
[7], [8] and is employed by most of the SMT solvers today.

The Model-Constructing Satisfiability (MCSat) calculus [9]
provides a more general alternative to DPLL(T), lifting the
idea of the CDCL-style model construction with conflict
resolution to the first-order domain. MCSat encompasses many
recent model-based decision procedures for theories such as
linear real arithmetic [10]–[12], linear integer arithmetic [13],
nonlinear arithmetic [14], and floating-point [15] arithmetic.

Although the model-based decision procedures have proved
effective for theories of high complexity, it was unclear
whether the approach could be used with combinations of
theories, and whether the approach could be competitive
for “simple” theories where incumbent solutions seem to be
satisfactory. In this paper we describe an implementation of
the MCSat framework that can reason effectively in the com-
bination of linear real arithmetic and uninterpreted functions,
providing positive answers to both concerns. The procedure
for linear arithmetic is a careful but conceptually simple im-
plementation of a model-driven Fourier-Motzkin elimination,
while the combination with uninterpreted functions is provided
through model-driven Ackermanization [5], [16].

II. PRELIMINARIES

We assume that the reader is familiar with the usual notions
and terminology of propositional and first-order logic (see e.g.
[17]).

As usual, we will denote the set of rational numbers as Q
and use a, b, c to denote constants from Q. We assume a finite
set of Boolean and real variables, denoting them with letters
x, y, z, and a finite set of uninterpreted function symbols
which we denote with letters f , g. Each such function symbol
f is associated with a fixed arity k > 0. We define a UF
pure term inductively, with variables and constants being UF
pure terms, and a function term f(t1, . . . , tk) being UF pure
if each ti is a UF pure term. For example, f(1) and f(f(x))
are UF pure, but x + y and f(x + y) are not. We will refer
to non-constant UF pure terms as generalized variables and,
with abuse of notation, we will also refer to them with letters
x, y, z. Intuitively, generalized variables are terms seeking an
interpretation.

We use p, q to denote linear polynomials over generalized
variables with coefficients in Q. All polynomials are assumed
to be in sum-of-monomials normal form a1x1+· · ·+anxn+c,
with ai and c being constants, and xi denoting generalized
variables. For linear polynomials p and q, a linear constraint
is a constraint of the form p O q, where O ∈ {<,≤,=}.

An atom is either a Boolean variable or a linear constraint,
and we consider atoms to be generalized variables of Boolean
type. A literal L is an atom or a negation of an atom. A clause
C is a disjunction of literals (L1 ∨ · · · ∨ Ln), and we denote
the empty clause with ⊥.



Example II.1. Consider the constraints

f(x+ 1) < y, x = y .

The term f(x + 1) is not pure, but we can purify the
constraints by introducing a new variable s1 obtaining

f(s1) < y, s1 = x+ 1, x = y .

The constraints above are satisfiable, for example, by the
interpretation x 7→ 1, y 7→ 1, s1 7→ 2, f(s1) 7→ 0.

A. Deduction Rules
MCSat as a proof system is a clausal deduction system

based on clausal inference rules. Given a set of input clauses,
MCsat either finds an assignment of variables that satisfies
the clauses, or derives a proof of the unsatisfiability using the
rules below.

The core of MCSat is driven by the Boolean resolution rule.
Given two clauses C ∨ L and ¬L ∨D, we can eliminate the
literal L using the Boolean resolution rule

C ∨ L ¬L ∨D
C ∨D

We denote the result of applying the resolution rule with
resolveB(C,D,L).

For reasoning in linear arithmetic we use the Fourier-
Motzkin rule. Given two inequalities (pL < x) and (x < pU ),
we can eliminate the variable x using the Fourier-Motzkin
rule, obtaining a new inequality (pL < pU ). In clausal form,
this rule can be stated as

¬(pL < x) ∨ ¬(x < pU ) ∨ (pL < pU )

We denote this rule with resolveFM. The rule above is applied
to strict inequalities and, as expected, we overload resolveFM
to cover non-strict inequalities and equalities.

In addition to the Fourier-Motzkin rule, in order to reason
about dis-equalities we also use the equality split rule, which
states that the relation between polynomials p and q can only
be one of the three.

(p = q) ∨ (q < p) ∨ (p < q)

We denote the split rule with splitEq.
For reasoning about uninterpreted functions we use the Ack-

ermann expansion rule which states that, for any uninterpreted
function symbol f of arity k, if xi = yi for i = 1, . . . , k, then
also f(x1, . . . , xk) = f(y1, . . . , yk), or, in clausal form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ f(x1, . . . , xk) = f(y1, . . . , yk)

We denote the Ackermann rule with resolveCC.
We also assume a general “normalization” rule that per-

forms simple semantics-preserving transformations on clauses,
denoted with a dashed line, such as

¬(p < q) ∨ (x < 0) ∨ (x < 0)

(q ≤ p) ∨ (x < 0)

The four rules above, together with the normalization rule,
comprise the whole of our proof system, which speaks to the
simplicity of the MCSat approach.

BCP FM

UF

Trail

Clause and Variable
Database

Fig. 1. Main solver components

III. CORE ARCHITECTURE

The MCSat architecture consists of a core solver that
manages the solver components depicted in Figure 1. The main
components are the clause and variable database, the solver
trail, and the reasoning plugins. The core solver drives the
solving process, and is responsible for dispatching notifications
and handling requests from the plugins, while the plugins
reason about the content of the trail. The most important duty
of the core is to perform conflict analysis when the reasoning
plugins detect a conflicting state.

The clause database contains a compact representation of
all the clauses in the system (including unit clauses). The
clause database contains both the input clauses and the clauses
learned during the search. The variable database maintains the
information about all the generalized variables in the system in
an efficient index-based form. Both databases are occasionally
compacted, by heuristically marking the clauses to keep, and
then garbage-collecting unmarked clauses and variables using
a mark-and-sweep approach. Maintaining a balanced amount
of clauses and variables is crucial in the MCSat setting as,
in contrast to the DPLL(T) framework, model-based decision
procedures can generate many new literals that would, if not
removed, eventually overwhelm the system.

Plugins are the standard way of extending MCSat, and we
currently have implementations of dedicated plugins that can
reason about the Boolean structure, linear real arithmetic, and
uninterpreted function symbols, described in Section IV.

A. The Trail

The central data-structure in the framework is the solver
trail. It is a generalized version of the trail found in modern
SAT solvers. In our design of the interface to the trail, we make
sure that the trail is used not only as the container of reasoning
history, but also as the object ensuring formal progress towards
termination of the search process.

The trail is a sequence of trail elements, where each element
can be either a Boolean decision, a semantic decision, a clausal
propagation, or a semantic propagation.

A Boolean decision is a literal L that we assume to be true,
and is emphasized in the trail as L. These elements are the
equivalent of decided literals found in modern SAT solvers. A
semantic decision is a decision on the value of a non-Boolean
generalized variable. We write semantic decisions as x 7→α,
where α represents a value from the type of the variable x.
For example, we may decide that the value of a real variable



x is 1.1 A clausal propagation is a literal L derived to be
true through clause C using Boolean constraint propagation
(BCP), which is marked as L↓C . If the clause C = L, i.e. it is
a unit clause, we mark the propagation just as L↓. The level
of a decision element, or a clausal propagation, is the number
of decisions in the trail up to and including the element itself.

We say that a literal L (term t) can be evaluated if the
generalized variables that appear in the literal L (term t) are
all assigned values in the trail through semantic decisions. A
semantic propagation marks a literal L that can be evaluated
to true. We denote semantic propagation as L↓k, where the
value k represents the level of the highest semantic decision
used in evaluating L. The level of a semantic propagation L↓k

is k. If a literal L (¬L) appears on the trail M as an element
of level k, we say that L is true (false) in M , and the level
of L is k.

Example III.1. Consider the clause

C ≡ (0 < x) ∨ (0 < y) ∨ (1 < x+ y)

and the trail

M = J
1

x 7→0,
2

¬(0 < y),
1

¬(0 < x)↓1,
2

(1 < x+ y)↓C , K .

The level of each element is marked above it in the trail. The
first two elements of M are a semantic decision assigning the
variable x to the value 0, and a Boolean decision of the literal
¬(0 < y). The next element of M is a semantic propagation
of ¬(0 < x). Note that the semantic propagation is marked
at level 1, as this is the level at which x is assigned. The last
element of M is a clausal propagation of the literal (1 < x+y)
due to clause C.

Adding new elements to the end of the trail, by performing
a decision, or propagating a literal, is restricted as follows.
• No literal L can be added to the trail (either by decision

or propagation), if the literal L or ¬L already appears on
the trail.

• No semantic decisions x 7→α can be added to the trail if
it invalidates a literal L that is already on the trail, i.e. if
¬L would be a semantic propagation after the decision.

• No Boolean decision L can be added to the trail if it
invalidates a clause C in the system, i.e. if the literal ¬L
appears in C, and all other literals of C are already false.

• A clausal propagation L↓C can only be added to the trail
if the literal L appears in C, and all other literals of C
are already false.

Besides adding elements to the trail, a trail can also be
backtracked. Backtracking amounts to retracting some deci-
sions and their consequences from the trail. We require that
any backtracking of the trail be accompanied with a clausal
backtracking reason that is used to maintain the invariance of
progress. The reason for backtracking is always a clause C
that evaluates to false in the trail, thus a signal that the search
must be revised. In addition to being false, the clause C should

1A Boolean decision is in fact just a special case of a semantic decision, but
we consider them separately for presentation and implementation purposes.

also be either a unique implication point [2] (UIP) clause or a
semantic split clause, as explained below, and we denote this
with the predicate canBacktrackWith(M,C).

Let topLevel(M,C) denote the highest level (in M ) of a
literal from C, and let topLiterals(M,C) denote the set of
literals from C at this highest level. Clause C is a UIP clause if
there is only one literal L in topLiterals(M,C). A UIP clause
C can thus be used to propagate L at the second highest level
of literals in C, or level 0 if C is unit, and we denote this
level as uipLevel(M,C). Clause C is a semantic split if each
L ∈ topLiterals(M,C) is a semantic propagation L↓k in M .

Algorithm 1: MCSAT::BACKTRACKWITH(M , C)
Data: trail M , clause C evaluates to false in M

1 if C is a UIP clause in M then
2 level ← uipLevel(M,C)
3 else C is a semantic split clause in M
4 level ← topLevel(M,C) - 1

5 remove from M all elements of level > level
6 if C was a UIP clause then
7 for the unassigned L ∈ C, add L↓C to M
8 else C was a semantic split clause
9 for an unassigned L ∈ C, add decision L to M

The backtracking procedure backtrackWith is presented
in Algorithm 1. We call propagations, decisions, and back-
tracking valid if they conform to the restrictions outlined
above.

Example III.2. Consider again the clause C and trail M
from Example III.1. Using the Fourier-Motzkin rule, we can
deduce the following valid clause

¬(1− x < y) ∨ ¬(y ≤ 0) ∨ (1− x < 0)

R1 ≡ ¬(1 < x+ y) ∨ (0 < y) ∨ (1 < x)

The first two of the literals from R1 are already false in
the trail M , and the last literal (1 < x) is a new literal. The
new literal can be evaluated in M , and we can propagate it
semantically, obtaining a new trail

J
1

x 7→0,
2

¬(0 < y),
1

¬(0 < x)↓1,
2

(1 < x+ y)↓C ,
1

¬(1 < x)↓1K .

The clause R1 is valid and evaluates to false at M , i.e.
the search needs to be revised. But, R1 is not suitable for
backtracking since it contains two literals of level 2, and none
of them is a semantic propagation. Fortunately, we can use
the Boolean resolution rule to remove the literal propagated
by C and deduce

C R1

R2 ≡ (1 < x) ∨ (0 < x) ∨ (0 < y)

The clause R2 only contains one literal at the highest level,
so it is an UIP clause suitable for backtracking. The effect of
backtracking the trail with backtrackWith(R) is a new



trail

J
1

x 7→0,
1

¬(0 < x)↓1,
1

¬(1 < x)↓1,
1

(0 < y)↓R2
K .

Note that, in addition to the propagated UIP literal, the back-
tracking procedure also kept the late semantic propagations.

It is important to note that we diverge slightly from the
original MCSat presentation [9], in that the trail as presented
here contains explicit semantic propagation elements. In [9],
all semantic propagation was implicit in the trail and available
through evaluation. This change was guided by implemen-
tation reasons since it allows, for example, a more efficient
implementation of Boolean constraint propagation. The change
is a minor one, and the main theoretical results from [9] hold in
this setting and we restate the most important ones as lemmas.

It was shown in [9] (Theorem 1) that using valid trail
operations is enough to ensure termination, if we assume that
all literals that the system will ever see come from a finite set
of literals B, that we call the finite basis.

Lemma III.1. Starting from an empty trail JK, any procedure
that only uses valid trail operations, while using only literals
from the finite basis B, can only make a finite number of such
trail operations.

In Section IV we will show how the finite basis assumption
can be ensured for problems combining linear arithmetic and
uninterpreted functions.

B. Conflict Analysis

As in CDCL SAT solvers, conflict analysis is used to learn
from the conflicting clauses encountered during the search –
clauses with all literals false in the trail. As seen in Example
III.2, it is possible to identify clausal conflicts that can not
directly be used for backtracking. Conflict analysis takes a
conflicting clause and transforms it into a new clause that is
suitable for backtracking. This newly learned clause is used
in the main solver loop to revise the search.

A conflicting clause is not suitable for backtracking if it
contains more than one literal at the top level, and these
literals are not semantic propagations. It is easy to show that
the problematic literals are clausal propagations, and conflict
analysis can eliminate them by performing Boolean resolution
with the clauses that propagated them. Since the analysis uses
existing valid clauses and the resolution rule, the result of
such conflict analysis will be a valid deduction. Therefore,
if conflict analysis learns an empty clause ⊥, this will be a
signal to the main solver that the problem is unsatisfiable. The
conflict analysis procedure is presented in Algorithm 2.

Note that the analysis procedure only uses the resolveB rule.
Other deduction rules are “axiom” rules used to create new
clauses which can be used to identify conflicting situations
or for propagation purposes. Also, as the analysis procedure
concludes as soon it finds a clause suitable for backtracking,
if this is the case due to a UIP clause, the analysis style
corresponds to the 1st UIP SAT strategy [18].

Algorithm 2: MCSAT::ANALYZECONFLICT(M , C)
Data: solver trail M , clause C inconsistent with M

1 k ← M .size()
2 while C 6= ⊥ and ¬ canBacktrackWith(M,C) do
3 k ← k − 1
4 if M [k] = L↓D and ¬L ∈ C then
5 C ← resolveB(C,D,L)

6 return C

Lemma III.2. Given a valid trail M and a clause C that
is false in M , the analyzeConflict(M , C) procedure
always terminates with a clause R that is a valid deduction
and is either the empty clause or is suitable for backtracking.

C. Main Search Loop

The algorithm behind MCSat is based on the search-and-
resolve loop common in modern SAT solvers (e.g. [19]).
The main loop of the solver performs a “smart” search for
a satisfying assignment and terminates either by finding the
assignment that satisfies the original problem, or deduces that
the problem is unsatisfiable. The main check() method of
the solver is presented in Algorithm 3.

Algorithm 3: MCSAT::CHECK()
Data: solver trail M , variables to assign in queue

1 while true do
2 propagate()
3 if detected conflict with clause C then
4 R ← analyzeConflict(M , C)
5 if R = ⊥ then return unsat
6 backtrackWith (M , R)
7 else
8 if queue.empty() then return sat
9 x ← queue.pop()

10 decideValue(x)

The search process goes forward, making continuous
progress, either through propagation, conflict analysis, or by
making a decision. The propagate() procedure invokes
the propagation procedures provided by the enabled plugins.
Each plugin is allowed to propagate new information to the
top of the trail. If a plugin detects an inconsistency this is
communicated to the solver by producing a conflicting clause.
This is recorded by the solver and allows the solver to analyze
the conflict using the analyzeConflict() procedure. If
conflict analysis learns the empty clause ⊥, the problem is
proved unsatisfiable, otherwise the learned clause is used to
backtrack the search.

On the other hand, if the plugins have performed propaga-
tion to exhaustion, and no conflict was detected, the procedure
makes progress by deciding a value for an unassigned variable.
The solver picks an unassigned variable x to be assigned, and



relegates the choice of the value to the plugin responsible for
assigning x. A choice of value for the selected unassigned
variable should exist, as otherwise a plugin should have
detected the inconsistency. MCSat uses a uniform heuristic to
select the next variable, regardless of their type. The heuristic
is based on how often a variable is used in conflict resolution,
and is popularly used in CDCL-style SAT solvers [3]. Note
that, as explained in the preliminaries, every atom (e.g., x < 2)
is treated as a generalized Boolean variable. If all the variables
are assigned to a value, this is a satisfying assignment for the
original problem.

IV. PLUGINS

The reasoning engines in MCSat are organized in modules
that we call plugins. The plugins can register listeners for
notification about important events in the system, such as new
assertion formulae, creation of new clauses and generalized
variables, and garbage-collection events. Plugins participate in
the solving process by performing propagation and detecting
conflicts, with dedicated plugins also taking part in selecting
values for variables.

In order to ensure completeness in the system, if a plugin is
dedicated to selecting values for a particular type T (such as
Boolean or real), it must be unit-constraint complete. We call
a plugin unit-constraint complete for type T if, after a call to
propagate(), either the plugin has identified a conflicting
clause C, or, for each unassigned variable x of type T there
exists a valid decision x 7→α (or a Boolean decision if T
is Boolean). Note that unit-constraint completeness does not
require that the plugin ensures consistency of all assertions,
only that the assertions with a single unassigned variable are
satisfiable – a much easier property to check.2

Example IV.1. Consider the clauses

C1 ≡ ((x+ y ≤ 0) ∨ (0 ≤ y) ∨ z)
C2 ≡ ((x+ y ≤ 0) ∨ (0 ≤ y) ∨ ¬z) ,

where variables x and y are of real type, and the variable z
is a Boolean, with the corresponding trail

M = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y) K .

In the trail M , the clauses C1 and C2 have all but one
literal false, i.e. they are unit constraints that can propagate
a literal. M does not allow a value for variable z, since
assigning z to true invalidates clause C1, and assigning z to
false invalidates C2. This kind of unit constraint conflict can
be detected with exhaustive Boolean constraint propagation.
For example, using C1, we can propagate z obtaining

M ′ = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y),
3

z↓C1
K .

In the trail M ′ the clause C2 is false and is a conflicting
clause.

2This is a variant of local consistency closely related to forward checking
[20].

In addition to the Boolean conflict above, the original trail
M does not allow a selection of value for the real variable
y. With respect to y there are two unit constraints in M – the
constraint ¬(x + y ≤ 0) ≡ (0 < x + y) (that evaluates to
0 < y) and the constraint ¬(y ≥ 0) ≡ y < 0 – and they are
in conflict.

The conflicting unit constraints can be resolved using the
resolveFM rule obtaining the clause

¬(−x < y) ∨ ¬(y < 0) ∨ (−x < 0)

R ≡ (x+ y ≤ 0) ∨ (0 ≤ y) ∨ (0 < x)

We can semantically propagate that the new literal (0 < x) is
false, obtaining a trail

M ′′ = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y),
1

¬(0 < x)↓1 K .

In the trail M ′′ the clause R is false and is a conflicting
clause.

A. BCP And Watchlists

As hinted in Example IV.1, in order to ensure unit-
completeness for the Boolean variables in a clausal setting, it
is enough to perform Boolean constraint propagation (BCP) to
exhaustion. We’ve implemented the customary efficient BCP
loop in a dedicated BCP plugin, with the basic mechanics built
upon the important concept of watchlists.

In the SAT literature, the two-literal watchlist was first
introduced in [3] as an efficient mechanism to detect when
a clause becomes unit. In the MCSat approach, the concept
of watchlists is more generally applicable and we use it in
other plugins too. The key insight is the following. If we are
interested in detecting when, of a set V of variables, exactly
k variables are left unassigned, it is enough to “watch” a set
W ⊆ V of (k + 1) variables by maintaining the invariant
that all variables in W are unassigned. If a variable x ∈ W
becomes assigned, then we try to replace x with another
unassigned variable y ∈ V \W . If we can’t find an unassigned
variable y to replace x, this means that in V there are now
exactly k variables unassigned.

B. Linear Real Arithmetic

The plugin for reasoning about linear arithmetic (FM plu-
gin) is responsible for reasoning about linear constraints and
deciding values for variables of real type. In order to maintain
unit completeness for variables of the real type, we should
ensure that for each real variable x, the set of all linear
constraints from the trail M , that are unit in variable x, is
consistent.

We call a literal L ∈M a linear constraint unit in x, if the
atom of L is a linear constraint, and all variables of L different
from x are assigned in M . Any linear constraint L ∈M , unit
in x, can be equivalently written as one of

x 6= p, p O x, x O p ,

with O ∈ {<,≤,=}. Since the constraint is unit, the polyno-
mial p can be evaluated in M and takes some value v ∈ Q.



Example IV.2. Consider the trail

M = J¬(x+ y < 0), x 7→0,¬(x+ z = 1), (0 < y + z)K .

The trail M contains two unit linear constraints. The literal
¬(x+ y < 0) is unit in variable y, is equivalent to (−x ≤ y),
and evaluates to 0 ≤ y. The literal ¬(x+ z = 1) is unit in z,
is equivalent to z 6= 1−x, and evaluates to z 6= 1. The linear
constraint (0 < y + z) is not unit in M .

Using the watchlist mechanism, we can efficiently maintain
an up-to-date set of linear constraints that are unit. The unit
constraints in the trail impose constraints on the unit variables,
and for each variable x, the FM plugin tracks the following
• the strongest lower bound of x implied by a unit linear

constraint L ∈M ;
• the strongest upper bound of x implied by a unit linear

constraint L ∈M ;
• a set of values vD such that x is implied to be different

from vD by a unit linear constraint L ∈M .
Having the information above, for each variable x, we can

now effectively reason about its unit feasibility by inspecting
if there is a value within its upper and lower bound that is not
disallowed by a disequality constraint. If, for some variable x,
there is no such value, it must be due to a bound conflict or
a disequality conflict.

Variable x is in a bound conflict if the trail contains two unit
linear constraints LL ≡ (pL OL x) and LU ≡ (x OU pU ),
with pL and pU evaluating to vL and vU , where either vL >
vU , or vL = vU but at least one of the bounds OL or OU is
strict (<). This conflict can be resolved using the resolveFM
rule

¬(pL OL x) ∨ ¬(x OU pU ) ∨ (pL O pU )

where O is the result of combining OL and OU . This clause
can be used as an explanation of the conflict since the first two
literals evaluate to false, and the last literal doesn’t contain x
and can be semantically propagated as false.

Variable x is in a disequality conflict if the trail contains
a unit disequality constraint (x 6= pD), and two unit linear
constraints (pL ≤ x) and (x ≤ pU ), with pD, pL and
pU all evaluating to the same value v. This conflict can be
resolved using a derived rule we call resolveDiseq with the
derivation presented in Figure 2. This rule produces a clause
that can be used as an explanation of the conflict since the
first three literals evaluate to false and the last two literals
can be semantically propagated as false. The resolveDiseq
rule is applicable for disequality conflicts with unit equality
constraints too, and although a more precise rule exists, we
use this one for simplicity.

In addition to detecting conflicts, the FM plugin also eagerly
performs semantic propagation. Using the same watch-list
mechanism, the FM plugin tracks all linear constraints in the
system, and can detect when a linear constraint becomes fully
assigned. Such constraints are evaluated using the assignment
in the trail and added to the trail as semantic propagations.

Computing bounds implied by unit constraints and perform-
ing semantic propagation of fully assigned linear constraints
can be very expensive. The propagation loop of the FM plugin
spends 90% or more of its time evaluating these constraints. In
order to improve performance we use the value time-stamping
feature of the main solver. The main solver maintains a global
ever-increasing time-stamp for decision values. Each variable
x is associated with its own time-stamp, and the time-stamp
of x gets assigned to the global time-stamp every time x is
assigned to a value different from the value that x was assigned
to in the previous attempt. This allows us to detect when a set
of variables (say variables of a linear constraints) are assigned
to the same values as the previous time we considered the set,
by keeping the maximal time-stamp of those variables. This
in turn allows us to cache bound computations and semantic
evaluations of linear constraints, in cases when the same values
were chosen.

If no conflicts were detected, the FM plugin is dedicated to
picking the values of the real variables. In order to improve
performance of arithmetic operations, when deciding on a
value for a variable, if possible, we always choose the values
to be dyadic rationals.3 Additionally, if allowed by the bounds,
when picking a value for a variable x, we try to use the
value that was used for x previously (value-caching). This is
a strategy similar to phase-caching in SAT solvers [21], and
allows for better evaluation cache performance when using
value time-stamping described above.

C. Uninterpreted Functions
Most decision procedures for uninterpreted functions are

based on fast union-find algorithms complemented with
congruence-closure reasoning [22], [23]. Instead, we adopt
a very simple approach to reasoning about uninterpreted
functions that detects direct conflicts in term assignments.

We say that a function term f(x1, . . . , xn) has an evaluation
representative f(α1, . . . , αn) in a trail M , if each xi is
either the constant αi, or is assigned by M to value αi.
For each uninterpreted function term that appears in the input
formula (generalized variables), we maintain a single-variable
watchlist of its non-constant arguments. This allows us to
detect when all of the arguments of the function application
have been assigned, and the term therefore has an evaluation
representative. The UF plugin can then detect a conflict if
two terms with the same evaluation representative are ever
assigned to different values, and then explain the conflict using
the resolveCC rule.

Example IV.3. Consider the unit constraint f(x) < f(y) and
assume that the trail is in the state

M = J
0

(f(x) < f(y))↓,
1

f(x) 7→0,
2

f(y) 7→1,
3

x 7→0K .

In this state, the UF plugin knows that the arguments of f(x)
are fully assigned, with the evaluation representative f(0), and
is assigned to 0.

3Dyadic rationals D = { p
2k
| p ∈ Z, k ∈ N} are a convenient dense

sub-ring of Q, allowing more efficient ring operations (+, ×) due to less gcd
computation.



splitEq
(x = pD) ∨ (pD < x) ∨ (x < pD)

resolveFM
¬(pL ≤ x) ∨ ¬(x < pD) ∨ (pL < pD)

resolveB
(x = pD) ∨ (pD < x) ∨ ¬(pL ≤ x) ∨ (pL < pD)

resolveFM
¬(pD < x) ∨ ¬(x ≤ pU ) ∨ (pD < pU )

resolveB
(x = pD) ∨ ¬(pL ≤ x) ∨ ¬(x ≤ pU ) ∨ (pL < pD) ∨ (pD < pU )

Fig. 2. Derivation of the disequality lemma.

We continue from this state to assign the next unassigned
variable y, and the responsible plugin (FM) can assign it to
any value, including

JM,
4

y 7→0K .

The UF Plugin now has enough information to detect a
conflicting state: the term f(y) has all arguments assigned,
with the representative f(0) that is already assigned to the
value 0 6= 1. We can explain the conflict using the resolveCC
rule to obtain the explanation clause

R ≡ ¬(x = y) ∨ (f(x) = f(y))

We can propagate the new literals semantically, adding
(x = y)↓4 and ¬(f(x) = f(y))↓2 to the trail and marking a
conflict with the clause R. The single top literal of R being
false makes this clause an UIP clause and the solver can then
backtrack to resolve the conflict, obtaining

JM,
2

¬(f(x) = f(y))↓2,
3

¬(x = y)↓RK .

With the new trail, the FM plugin can now make a more
informed decision on the value of y, which will satisfy the
constraints.

D. Finite Basis

In order to guarantee termination through Lemma III.1, we
need to guarantee that starting from the initial problem, the
literals that the procedure operates on can be bound to a finite
set. New literals are only created by the plugins, particularly
the FM and UF plugins, as part of clauses that explain
conflicting situations. The UF plugin only creates new literals
using the resolveCC rule, introducing new equalities over
function terms and their arguments. Given that the number
of function terms in the input problem is finite, and no new
function terms are ever introduced, the number of new literals
that the UF plugin can introduce is finite. As already shown in
[10]–[12], fixing the decision order on variables of real type
ensures that the number of new literals introduced by the FM
plugin is also finite. The argument follows from the fact that
the FM rule always introduces linear constraints from existing
ones, with the top variable eliminated. In practice, however,
we do not enforce a fixed variable order, as the flexibility in
deciding variables is crucial for performance.

V. EXPERIMENTAL RESULTS

We implemented the MCSat framework as an independent
engine in the CVC4 [24] solver (reusing the basic infrastruc-

ture and the parser) with the code freely available, and we
refer to this implementation as mcsat.4

In order to evaluate the new approach, we compared our
implementation with several SMT solvers that support linear
arithmetic and uninterpreted functions, namely cvc4 1.2 [24],
z3 4.3.1 [25], mathsat 5.1.12 [26], and yices 1.0.38 [27]. All
of these solvers are DPLL(T) based and implement a variant
of the simplex algorithm described in [28]. All experiments
were preformed on AMD Opteron 250 2.4GHz machines with
a timelimit of 30 minutes and memory limited to 2GB.

We first compared the solvers on a set of pure arithmetic
benchmarks from the QF LRA category of the SMTLIB
library.5 The results are presented in Table I and show that
the new mcsat implementation is competitive with the other
solvers, and even excels on some problems that are hard for
the DPLL(T)-based simplex solvers (such as the clocksynchro
examples).

We then evaluated the solvers on the benchmarks that
combine linear arithmetic and uninterpreted functions. For this
we combined the benchmarks from the QF UFLRA and the
QF UFLIA categories of the STMLIB library, while changing
all the integer problems into their real-relaxation counterpart.6

The results are presented in Table II. The results on this
set show a very robust performance of mcsat, with our
implementation solving all problems, in the least amount of
total time. Again, there is a category of problems (wisas) hard
for the DPLL(T)-based solvers where mcsat excels.

VI. CONCLUSION

We presented the design and implementation of the model-
based satisfiability calculus. The new solver can effectively
reason in linear real arithmetic and uninterpreted functions,
and is competitive with existing solvers. We proposed a simple
combination mechanism for uninterpreted functions, based on
model filtering, that has proven to be competitive with more
sophisticated theory-combination frameworks.

We see many exciting directions for future work. In addition
to integrating and developing further the existing model-based
decision procedures for integer and non-linear real arithmetic,
we plan to develop a decision procedure for the theory of
arrays based on [29]. We also plan to work on implementing
theory propagation algorithms that have proved effective in
the DPLL(T) framework, and to work on integration of ex-
isting decision procedures (such as simplex) into the MCSat
framework.

4Source code of the revision used in experiments is available at
https://github.com/dddejan/CVC4/tree/mcsat-fmcad2013
in the src/mcsat directory. Use with cvc4 --enable-mcsat.

5Available at http://www.smt-lib.org/.
6sed -e s/Int/Real/g -e s/QF_UFLIA/QF_UFLRA/g



TABLE I
COMPARISON OF MCSAT WITH OTHER SOLVERS ON QF LRA BENCHMARKS.

mcsat cvc4 z3 mathsat5 yices
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

clocksynchro (36) 36 123.11 36 1166.55 36 1828.74 36 1732.59 36 1093.80
DTPScheduling (91) 91 31.33 91 72.92 91 100.55 89 1980.96 91 926.22
miplib (42) 8 97.16 27 3359.40 23 3307.92 19 5447.46 23 466.44
sal (107) 107 12.68 107 13.46 107 6.37 107 7.99 107 2.45
sc (144) 144 1655.06 144 1389.72 144 954.42 144 880.27 144 401.64
spiderbenchmarks (42) 42 2.38 42 2.47 42 1.66 42 1.22 42 0.44
TM (25) 25 1125.21 25 82.12 25 51.64 25 1142.98 25 55.32
ttastartup (72) 70 4443.72 72 1305.93 72 1647.94 72 2607.49 72 1218.68
uart (73) 73 5244.70 73 1439.89 73 1379.90 73 1481.86 73 679.54

596 12735.35 617 8832.46 613 9279.14 607 15282.82 613 4844.53

TABLE II
COMPARISON OF MCSAT WITH OTHER SOLVERS ON QF UFLRA BENCHMARKS.

mcsat cvc4 z3 mathsat5 yices
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

EufLaArithmetic (33) 33 39.57 33 49.11 33 2.53 33 20.18 33 4.61
Hash (198) 198 34.81 198 10.60 198 7.18 198 1330.88 198 2.64
RandomCoupled (400) 400 68.04 400 35.90 400 31.44 400 18.56 384 39903.78
RandomDecoupled (500) 500 34.95 500 40.63 500 30.98 500 21.86 500 3863.79
Wisa (223) 223 9.18 223 87.35 223 10.80 223 65.27 223 2.80
wisas (108) 108 40.17 108 5221.37 108 443.36 106 1737.41 108 736.98

1462 226.72 1462 5444.96 1462 526.29 1460 3194.16 1446 44514.60

REFERENCES

[1] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness
to practical success,” Communications of the ACM, vol. 52, no. 8, pp.
76–82, 2009.

[2] J. P. M. Silva and K. A. Sakallah, “GRASP – a new search algorithm
for satisfiability,” in ICCAD, 1997.

[3] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver,” in Design Automation
Conference, 2001, pp. 530–535.

[4] G. Nelson and D. C. Oppen, “Simplification by cooperating decision
procedures,” ACM Transactions on Programming Languages and Sys-
tems, vol. 1, no. 2, pp. 245–257, 1979.

[5] L. de Moura and N. Bjørner, “Model-based Theory Combination,” in
Satisfiability Modulo Theories, ser. ENTCS, vol. 198, 2008, pp. 37–49.

[6] D. Jovanović and C. Barrett, “Being careful about theory combination,”
Formal Methods in System Design, pp. 1–24, 2012.

[7] S. Krstić and A. Goel, “Architecting solvers for SAT modulo theories:
Nelson-Oppen with DPLL,” Frontiers of Combining Systems, pp. 1–27,
2007.

[8] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T ),” Journal of the ACM, vol. 53, no. 6, pp. 937–
977, 2006.

[9] L. de Moura and D. Jovanović, “A Model-Constructing Satisfiability
Calculus,” in Verification, Model Checking, and Abstract Interpretation,
vol. 7737, 2013, pp. 1–12.

[10] S. Cotton, “Natural domain SMT: A preliminary assessment,” in FOR-
MATS, 2010.

[11] K. L. McMillan, A. Kuehlmann, and M. Sagiv, “Generalizing DPLL to
richer logics,” in Computer Aided Verification, 2009, pp. 462–476.

[12] K. Korovin, N. Tsiskaridze, and A. Voronkov, “Conflict resolution,”
Principles and Practice of Constraint Programming, pp. 509–523, 2009.

[13] D. Jovanović and L. de Moura, “Cutting to the chase: Solving linear
integer arithmetic,” in Automated Deduction, 2011, pp. 338–353.

[14] ——, “Solving non-linear arithmetic,” Automated Reasoning, pp. 339–
354, 2012.

[15] L. Haller, A. Griggio, M. Brain, and D. Kroening, “Deciding floating-
point logic with systematic abstraction,” in Formal Methods in
Computer-Aided Design, 2012, pp. 131–140.

[16] W. Ackermann, Solvable cases of the decision problem, 1954, vol. 12.
[17] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability

modulo theories,” in Handbook of Satisfiability, 2009.
[18] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient

conflict driven learning in a Boolean satisfiability solver,” in Computer-
aided Design, 2001, pp. 279–285.

[19] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
applications of satisfiability testing, 2004, pp. 502–518.

[20] C. Bessiere, “Constraint propagation,” in Handbook of Constraint Pro-
gramming, 2006, pp. 29–83.

[21] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Theory and Applications of Satisfi-
ability Testing, 2007, pp. 294–299.

[22] G. Nelson and D. C. Oppen, “Fast decision procedures based on
congruence closure,” Journal of the ACM, vol. 27, no. 2, pp. 356–364,
1980.

[23] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover for
program checking,” Journal of the ACM, vol. 52, no. 3, pp. 365–473,
2005.

[24] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification,
2011, pp. 171–177.

[25] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” TACAS,
pp. 337–340, 2008.

[26] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
MathSAT5 SMT Solver,” in TACAS, 2013, pp. 93–107.

[27] B. Dutertre and L. D. Moura, “The yices SMT solver,” Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2006.

[28] ——, “A fast linear-arithmetic solver for DPLL(T),” in Computer Aided
Verification, 2006, pp. 81–94.

[29] R. Brummayer and A. Biere, “Lemmas on Demand for the Extensional
Theory of Arrays,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 6, pp. 165–201, 2009.


