
To be presented at the National Security Agency’s third High Confidence Software and Systems
Conference, Baltimore MD, April 2003

Embedded Deduction With ICS?

Leonardo de Moura, Harald Rueß, John Rushby, and Natarajan Shankar

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

demoura|ruess|rushby|shankar@csl.sri.com

Abstract. Formal analyses can provide valuable assurance for high confidence
software and systems. The analyses can range from strong typechecking through
test case generation and static analysis to model checking and full verification. In
all cases, the tools that support the analyses use formal deduction in some way or
other. ICS is a fully automatic, high-performance decision procedure for a broad
combination of theories that can be embedded in all tools of this kind to provide
them with a core deductive capability of exceptional power and performance. We
describe the design choices underlying ICS and the capabilities it provides.

1 Introduction

Formal deduction—that is, automated theorem proving—lies at the heart of all tools
for formal analysis of software and system descriptions. In formal verification systems
such as PVS [10], the deductive capability is explicit and visible to the user, whereas in
tools such as test case generators it is hidden and often ad-hoc. We believe that all tools
for formal analysis would benefit—both in performance and ease of construction—if
they could draw on a powerful embedded service to perform common deductive tasks.

Examples of the tasks that can be required are those that ask whether one formula
is a consequence of others (e.g., is4 × x = 2 a consequence ofx ≤ y, x ≤ 1 − y,
and2 × x ≥ 1 when the variables range over the reals?), and those that ask whether
an assignment to variables can be found that satisfies a set of constraints (e.g., find an
a such thatcar(a) = cons(b, c)). The first task is a decision problem that might arise
in verification, the second is a constraint satisfaction problem that could arise in test
case generation. Notice that both examples involve interpreted theories: rational linear
arithmetic in the first, and lists in the second.

An embedded deductive service should be fully automatic, and this suggests that its
focus should be restricted to those theories whose decision and satisfiability problems
are decidable. However, there are some contexts that can tolerate incompleteness (e.g.,
in extended static checking, the failure to prove a true theorem results only in a spurious
warning message), and others where speed may be favored over completeness (e.g., in
? This research was supported by SRI internal investment funds, by NASA under contract

NAS1-00079, by the DARPA NEST program under AFRL contract F33615-01-C-1908, and
by NSA under contract MDA904-02-C-1196

1

construction of abstractions), so that undecidable theories (e.g., nonlinear integer arith-
metic) and those whose decision problems are often considered infeasible in practice
(e.g., real closed fields) should not be ruled out completely.

Most problems that arise in practice involvecombinationsof theories: the question
whether

f(cons(4× car(x)− 2× f(cdr(x)), y)) = f(cons(6× cdr(x), y))

follows from 2 × car(x) − 3 × cdr(x) = f(cdr(x)), for example, requires simulta-
neously the theories of uninterpreted functions, linear arithmetic, and lists. The ground
(i.e., quantifier-free) fragment of many combinations is decidable when the full (i.e.,
quantified) combination is not, and practical experience indicates that automation of
the ground case is adequate for most applications.

Practical experience also suggests several other desiderata for an effective deductive
service. Some applications (e.g., construction of abstractions) invoke their deductive
service a huge number of times in the course of a single calculation, so that perfor-
mance of the service must be very good (e.g., tens or hundreds of thousands of invoca-
tions per second). Other applications (e.g., proof search) explore many variations on a
formula (i.e., alternately asserting and denying various combinations of its premises),
so the deductive service should not examine individual formulas in isolation, but should
provide a rich API that supports incremental assertion, retraction, and querying of for-
mulas. Other applications (e.g., test case generation) generate propositionally complex
formulas (i.e., formulas with thousands or millions of propositional connectives applied
to terms over the decided theories), so that this type of proof search must be performed
efficiently inside the deductive service.

We have developed a system called ICS (the name stands forIntegrated Canon-
izer/Solver) that can be embedded in applications to provide deductive services satis-
fying the desiderata above. In the following sections, we outline the design choices
embodied in ICS, its capabilities and method of operation, and describe some of its
applications.

2 Core ICS

The core of ICS is a decision procedure for a combination of ground theories includ-
ing equality with function symbols, integer and rational linear arithmetic, fixed-length
bitvectors, arrays, tuples, and coproducts (the combination of the last two provides ab-
stract datatypes such as lists and binary trees). Apart from bitvectors, this capability is
similar to that of the decision procedures in PVS (e.g., theassert command), but ICS
can handle much larger formulas.

It is crucial to its utility that ICS is able to decide acombinationof theories. It is
desirable to achieve this by combining decision procedures for its individual theories in
a modular fashion. However, there is a tradeoff between modularity and performance.
The combination method of Nelson and Oppen [9], for example, imposes few restric-
tions on its component theories and their decision procedures, but yields relatively low
performance. This is because the separate decision procedures do not share much state
and communicate only by propagating newly discovered equalities back and forth. The

2

combination method of Shostak [14], on the other hand, requires that its component
theories arecanonizableandsolvable, and achieves high performance by tightly inte-
grating these components through an efficient data structure for congruence closure.
Most theories of practical interest are canonizable and solvable, so ICS uses a corrected
version of Shostak’s method. Theories that do not satisfy the requirements for Shostak’s
method can be integrated using Nelson and Oppen’s method above the Shostak combi-
nation.

As mentioned, an efficient data structure and procedure for congruence closure lies
at the heart of ICS. This provides a decision procedure for the theory of equality with
uninterpreted function symbols, and is used to integrate decision procedures for other
canonizable and solvable theories. Early treatments of this integration were incorrect
and could yield incomplete or nonterminating procedures. The first correct treatment
for the integration of congruence closure with one other theory was developed by
Shankar and Rueß [12]; this construction has been formally verified in PVS by Ford and
Shankar [6]. The extension to multiple theories is not straightforward because, although
the combination of the canonizers for the constituent theories yields a canonizer for the
combined theory (which is an independently useful artifact), the combination of the
solvers may not (contrary to previous belief) be a solver for the combination. The first
correct extension to multiple theories also was developed by Shankar and Rueß [13].

A decision procedure (i.e., canonizer and solver) for rational linear arithmetic is
quite straightforward and efficient, but integer linear arithmetic is more challenging
because it can require case-splitting (i.e., search) to determine whether some property
is satisfied by an integer in a certain range (hence, the problem is NP-complete). There
are straightforward methods for this problem that are easily shown to be complete (e.g.,
the method of Fourier-Motzkin), but they are inefficient on cases that commonly arise
in practice (e.g., constraints of the formx − y ≤ c, wherex, y are variables andc
is an integer constant). ICS uses a new method that is efficient on the common cases,
complete, and smoothly extensible to richer fragments such as nonlinear arithmetic.

Verification and model checking for hardware generally involve reasoning over
bitvectors. It is, of course, possible to treat each bit as a Boolean variable and then
use an efficient decision procedure for the Booleans, but this immediately invites an
exponential case explosion. A better method is to split the bitvectors into chunks (not
individual bits) and to do so only when necessary. ICS uses a method of this kind for
fixed-length bitvectors [2,7] and integrates it with integer arithmetic for their numerical
(e.g., unsigned and twos-complement) interpretations.

In addition to the theories described above, ICS also decides the theories of ar-
rays, tuples, and coproducts; the combination of the latter two can represent abstract
datatypes such as lists and binary trees.

Core ICS operates as a decision procedure: it reports whether the formula under
consideration is valid—which is equivalent to its negation being unsatisfiable. In the
case that a formula is satisfiable, the ICS data structures contain sufficient information
to extract a satisfying assignment—although this is not yet implemented.

3

3 ICS with SAT

Core ICS operates on formulas that are conjunctions of terms in the combination of its
theories. However, many applications generate proof obligations or constraints that have
richer propositional structure. For example, a test case of length 2 for a shift register may
reduce to satisfiability of the following formula.

(x1 = x0[1 : n− 1] ++11) ∧ (x2 = x1[1 : n− 1] ++11) ∧
(x0 6= 0n ∨ x1 6= 0n ∨ x2 6= 0n) ∧ (x0 = x2 ∨ x1 = x2).

wherex[1 : r] denotes extraction of bits 1 throughr of the bitvectorx of lengthn,
++ denotes bitvector concatenation, and1r (resp.0r) denotes the bitvector of lengthr
whose bits are all 1 (resp. 0).

The disjunctions in formulas such as this necessitate search and the challenge is to
integrate this capability with core ICS. The PVSground command provides modest
functionality of this type with the assistance of an external BDD package. The problem
with this approach is that the BDD represents all possible satisfying assignments (and
is therefore expensive to construct), whereas we would be satisfied with just one (or
the knowledge that there are none). Propositional satisfiability solvers (SAT solvers)
provide this more targeted type of search and recent advances have made them extraor-
dinarily fast for many problems that arise in practice—often they are able to discharge
formulas with hundreds of thousands of variables and millions of terms in seconds or a
few minutes [8].

To connect core ICS to a SAT solver, we usevariable abstraction: each interpreted
term (e.g.,x1 = x0[1 : n − 1] ++11) is replaced by a distinct propositional variable
(e.g.,p) and the SAT solver is asked to solve the resulting propositional system. The
truth values assigned to the propositional variables by the SAT solver are then extended
to their original interpretations and the core ICS decision procedure checks them for
consistency. If the interpretations are consistent, then we are done; if not, the root of the
inconsistency can be generated and passed to the SAT solver as an additional constraint
(we call this the generation of “lemmas on demand” [3]). For example, ifp represents
the termx = y, q representsf(x) = f(y), and the SAT solver returnsp,¬q, then core
ICS will detect the inconsistency in the interpretationx = y ∧ f(x) 6= f(y) and can
generate the lemma¬p∨ q as a new constraint for the SAT solver. Proceeding back and
forth in this way, the SAT solver generates new candidate assignments and the deci-
sion procedure generates new additional constraints until either we find an assignment
whose interpretation is satisfiable, or the set of constraints becomes unsatisfiable. The
effectiveness of this approach depends on how rapidly the search space is cut down at
each stage by the new constraints generated by the decision procedure. The most potent
constraints would be the true “root causes” of the inconsistencies detected at each stage
but it can take a long time to calculate such precise constraints and this negates the sav-
ings due to the smaller search space. Good overall performance is obtained using fast
heuristics that generate an approximate “explanation” for the root cause of each incon-
sistency [3]. We are still tuning our heuristics in search of the best overall performance.

Full ICS integrates the combined decision procedure of core ICS with a SAT solver
in the manner described. We do not use an off-the-shelf SAT solver because the back-
and-forth interaction with the decision procedure imposes novel requirements (e.g., we

4

want to process new constraints incrementally from the current state, not restart from
the beginning, and we also use “don’t care” assignments), but we do employ many
of the techniques that make such solvers fast [15]. Our experiments indicate that the
integrated SAT solver in ICS yields several orders of magnitude improvement over a
looser combination using an off-the-shelf SAT solver. Used purely as a SAT solver, the
performance of full ICS is comparable to Chaff [8].

Like core ICS, full ICS operates as a decision procedure, but we plan to extend it to
a satisfiability procedure in the near future.

4 Using ICS

Core ICS is implemented in Objective Caml, and its SAT solver in C++; the full sys-
tem functions as a C library and can be called from virtually any language. We have
experience using it from C, C++, Lisp, Scheme, and Objective Caml. The system was
developed under Linux but has been ported to MAC OS X and to Windows XP (under
cygwin), and we anticipate little difficulty in porting it to other systems.

In addition to its C interface, ICS is provided with a simple text-based interactor
that can be used for experimenting with its capabilities. ICS maintains a state that can
be manipulated and queried by a series of commands. Most importantly, theassert
command extends the current state with a new fact. The following command, for exam-
ple, adds an equality over terms built from the the variablex , the uninterpreted function
symbol f , the operators of linear arithmetic, and S-expressions built from the pairing
functioncons(.,.) and its first and second projectionscar(.) andcdr(.) .

ics> reset.
:ok
ics> assert 2 * car(x) - 3 * cdr(x) = f(cdr(x)).
:ok

We can now assert a second equality, and the responsevalid indicates that this is
deduced to be a consequence of the previously asserted facts.

ics> assert f(cons(4 * car(x) - 2 * f(cdr(x)), y))
= f(cons(6 * cdr(x), y)).

:valid

The commandsat invokes the SAT solver (here| denotes disjunction and& is
conjunction).

ics> sat (x = 1 | x = 2 | x = 3) & x > 1.
:sat(s5) [-1 + x > 0; x = 3]

The response from ICS indicates that all assignments tox satisfying both-1 + x
> 0 and x = 3 , describe models for the input formula (the annotations5 simply

5

names this logical state). There is obviously only one possible assignment here, so the
description is not minimal. Construction of concrete satisfying assignments is planned
for the near future.

5 Applications of ICS

ICS can be used to provide embedded deductive support for existing applications, but
its speed and power also make new applications possible. We describe representatives
applications of each kind.

5.1 Discharging Proof Obligations

ICS can be used to augment or replace existing deductive capabilities in systems that
generate and discharge proof obligations.

For example, ICS can be used in place of the standard decision procedures in PVS.
Because the standard decision procedures have different capabilities than ICS, a PVS
proof script developed using the former will generally require adjustment to work with
the latter. For testing and benchmarking purposes, we have run PVS in a mode where
proof scripts are guided by the standard decision procedures, but ICS is run in parallel
and its behavior compared with the standard procedures. Differences were examined
to ensure they were intended. We used proofs of the 750 theorems in the PVS pre-
lude (built-in library) as our test bench. Despite its more costly interface (PVS and its
standard decision procedures are implemented in Lisp, from which ICS is invoked as a
foreign-function through its C interface) and the fact that PVS uses only its core capabil-
ities, ICS is substantially faster on examples that really exercise the decision procedures
(for small examples, any differences are swamped by the overhead of other processing
in the PVS prover). Future versions of PVS will make fuller use of ICS capabilities. We
anticipate that this will be beneficial both to users of PVS and to those who intend to use
ICS directly but wish to use PVS to explore and prototype the deductive “glue” needed
to reduce their application to the capabilities provided by ICS. Such glue is likely to
involve Skolemization (and possibly quantifier instantiation), and definition expansion
(and possibly rewriting).

We are currently optimizing the capabilities of ICS to support the deductive require-
ments of the Destiny verification system under development at NSA.

5.2 Bounded Model Checking and Test Case Generation

Bounded model checking (BMC) has become a popular debugging and assurance method
for hardware designs [1]. Bounded model checking asks whether there is a counterex-
ample of lengthk or less to a given propertyP (typically an invariant, but the method
works for full linear temporal logic) of a design represented as an initiality predicate
I and transition relationT . For hardware designs at the register transfer level,P , I,
andT are represented directly in propositional calculus and the BMC problem then
reduces to a (typically, huge) SAT problem. The performance of modern SAT solvers
allows BMC to find deeper bugs on bigger designs than a standard BDD-based symbolic

6

model checker. More importantly, BMC requires less tinkering (e.g., variable ordering,
downscaling) by the user than standard model checking. Typically, the process is to try
k = 1, thenk = 2, 3, . . . until either a counterexample is found, or the resources of the
computer—or the patience of the user—are exhausted.

Full ICS immediately allows BMC to be extended from hardware designs consisting
of purely Boolean circuits to software and system designs (and hardware designs at
higher levels of description) whose state is defined over integers, arrays, bitvectors, and
datatypes, and their corresponding operations—in short, over any combination of the
theories decided by ICS. We call this “Infinite BMC” since the state space is potentially
infinite [5].

Given a system specified by initiality predicateI and transition relationT , there is
a counterexample of lengthk to invariantP if there is a sequence of statess0, . . . , sk
such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk).

The Infinite BMC problem is simply to find a satisfying assignment fors0, . . . , sk in
this formula—which is exactly the capability of ICS.1

Using correct designs supplied for evaluation purposes by an industrial collaborator
(they are hardware designs, but we do not know their origins or purpose), we performed
Infinite BMC for increasingk until the time taken by ICS approached 30 minutes (on a
2GHz Pentium IV with 1GB of memory). At this point, one of the BMC formulas had
227,108 terms and its representation as a text file occupied 5Mb, another had 105,844
terms and a 3Mb text file, while a third had 72,291 terms and a 2Mb text file. In all cases,
ICS required less than 80 Mb of memory. Observe that these are worst-case examples:
the designs are correct (for the invariants concerned) and hence the BMC formulas have
no satisfying assignments and the full search space must be explored. Other invariants
do manifest bugs in the second of the designs mentioned above, and ICS found a coun-
terexample to one of them of length 4, and a counterexample to another of length 6,
both in under a minute.

Structural test coverage criteria, including the MC/DC criterion required for flight
control software, can be specified as formulas in temporal logic [11]. Counterexam-
ples to the negation of these formulas then constitute suitable test cases. Experiments
with symbolic model checkers have shown that they can be used within this framework
as very effective test case generators. Bounded model checkers should be even more
effective (since they are specialized to the efficient construction of counterexamples).
However, these strictly Boolean and propositional methods apply only to Boolean ab-
stractions of software designs specified over arithmetic variables and data structures
and can therefore generate infeasible test cases. Infinite BMC using ICS can be applied
directly to software designs, thereby eliminating infeasible test cases and achieving ac-
curate coverage.

1 As noted earlier, ICS currently operates as a decision procedure: it can indicate whether a
formula is valid or, equivalently, whether its negation is unsatisfiable. In the case that the
negation to a formula is satisfiable, ICS does not yet produce a satisfying assignment (i.e., a
concrete counterexample to the original formula). However, the Infinite BMC procedure does
extract “symbolic counterexamples” from information in the ICS data structures.

7

5.3 k-Induction

If BMC finds a counterexample of lengthk, then we have found a bug, and are done.
But if we fail to find a counterexample for anyk up to some limit on our resources or
patience, we cannot conclude that we have verified the design—for there could always
be a counterexample of length longer than any that we tried.2 To verify the design (for
safety propertyP), we must perform some kind of inductive argument that applies to
traces of all lengths. The usual way to do this by theorem proving is to establish that
the property concerned isinductive: that is, it is true of all initial states (i.e.,I(s) ⊃
P (s)) and if it is true of some state, then it is true of all its successors (i.e.,P (s) ∧
T (s, t) ⊃ P (t)). The weakness of this method is that the second condition may be
violated by a states that is unreachable from an initial state. We must then replaceP
by a stronger property that excludes the troublesome states and repeat the process. It is
not uncommon to have to iterate this process many tens of times. Strengthening often
requires human insight, though a good heuristic is often to conjoin toP a formula that
asserts thats is unreachable.

A stronger form of induction requires that only when we have a sequence ofk states
satisfyingP must all the successors also satisfyP . This is calledk-induction, and it
combines well with BMC: we first perform BMC of depthk and if that fails to refute the
formula, we tryk-induction (the formulas generated are very similar to those for BMC),
and if that fails, we repeat the process fork + 1 (k + 1-induction is stronger—proves
more formulas—thank-induction). Subject to certain side conditions (for example, the
initial k-sequence should be acyclic),k-induction is acompletemethod for finite-state
systems. These results generalize from the finite- to infinite-state case when ICS is
substituted for a SAT solver, and the method becomes complete for important classes
of infinite-state systems, such as timed automata [4].

Our Infinite BMC procedure built on ICS has been extended to performk-induction
(with additional optimizations–e.g., requiring that only the first state in a sequence may
be an initial state) and to strengthen invariants (using the heuristic described earlier).
Standard examples such as the abstracted Futurebus and Illinois cache coherence pro-
tocols are verified in seconds by this method, and standard timed automata examples
such as the Fischer protocol and train gate controller are verified in fractions of a second.
These results suggest that ICS can be competitive with specialized systems operating in
their own domains.

6 Conclusion

ICS packages a powerful and efficient set of deductive capabilities in the form of a C
library that can easily be accessed by other applications. This makes deduction available
as anembeddedcapability, whereas previously it was available only through theorem
provers intended for standalone operation.

2 For some examples, it is possible to compute acompleteness threshold, such that failure to
find a counterexample shorter than the threshold is sufficient for verification. However, for
most examples in practice, it is either too expensive to compute the threshold, or its value is
beyond the reach of BMC.

8

Powerful embedded deduction will allow many conventional tools to provide new
capabilities, or more potent forms of existing capabilities, at little cost. For example, a
compiler can perform truly accurate common subexpression detection by asserting the
path predicates to ICS, then using its canonizer to compare subexpressions.

Simple formal analysis tools (e.g., completeness and consistency checkers for tabu-
lar specifications, test case generators, and bounded model checkers) can obtain most of
their deductive support from ICS, with little deductive “glue” needed in the application.

We plan to enlarge the services provided by ICS so that even less deductive glue
will be required in future. In particular, we intend to add quantifier elimination, rewrit-
ing (which will also perform definition expansion), and forward chaining (which is
very effective for transitive relations). The quantified form of the combination of theo-
ries used in ICS is not decidable (e.g., quantified integer linear arithmetic—Presburger
Arithmetic—becomes undecidable when uninterpreted function symbols are added),
but the circumstances that trigger undecidability are sharply defined (and rare in prac-
tice) so that it is possible to decide a very large and useful fragment of the full theory.
We expect that our methods will be heuristically effective on the undecidable fragment
also, and on other undecidable extensions (e.g., nonlinear integer arithmetic).

Other planned enhancements include generation of concrete solutions to satisfiabil-
ity problems (and hence concrete counterexamples to BMC problems), and generation
of proof objects (independently checkable explanations for the decisions made by ICS).
We expect that the latter will also improve the interaction between core ICS and its SAT
solver, and thereby further increase the performance of full ICS.

ICS focuses on providing full automation for the cases where that is effective; we
do not intend to extend ICS to a general theorem prover. However, just as our origi-
nal decision procedures made it possible for PVS (and its NSA-sponsored predecessor
EHDM) to have a different architecture and style of interaction than previous interac-
tive theorem provers [10], so the increased capability of ICS will allow future systems
to support new and more productive styles of human interaction. We intend to explore
these opportunities in our research with future versions of PVS, and to assist NSA to do
the same with its own systems.

ICS is freely available for noncommercial research purposes under license to SRI.
Please visit its home page atics.csl.sri.com .

Acknowledgments

We are grateful for the support and guidance provided by Bill Legato and Frank Rim-
linger in tailoring ICS to applications of interest to NSA.

References

Papers on formal methods and automated verification by SRI authors can generally
be located by visiting home pages or doing a search fromhttp://www.csl.sri.
com/programs/formalmethods .

9

ics.csl.sri.com
http://www.csl.sri.com/programs/formalmethods
http://www.csl.sri.com/programs/formalmethods

[1] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In W. Rance Cleaveland, editor,Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’99), Volume 1579 of Springer-VerlagLecture
Notes in Computer Science, pages 193–207, Amsterdam, The Netherlands, March 1999.6

[2] David Cyrluk, Harald Rueß, and Oliver M̈oller. An efficient decision procedure for the
theory of fixed-sized bit-vectors. In Orna Grumberg, editor,Computer-Aided Verification,
CAV ’97, Volume 1254 of Springer-VerlagLecture Notes in Computer Science, pages 60–
71, Haifa, Israel, June 1997.3

[3] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers. Pre-
sented at SAT 2002, accepted for journal publication, May 2002. Available athttp:
//www.csl.sri.com/users/demoura/sat02_journal.pdf . 4

[4] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and induc-
tion: From refutation to verification. Submitted for publication.8

[5] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In A. Voronkov, editor,International Conference
on Automated Deduction (CADE’02), Volume 2392 of Springer-VerlagLecture Notes in
Computer Science, pages 438–455, Copenhagen, Denmark, July 2002.7

[6] Jonathan Ford and Natarajan Shankar. Verifying Shostak. In A. Voronkov, editor,Automated
Deduction - CADE-18, 18th International Conference on Automated Deduction, Volume
2392 of Springer-VerlagLecture Notes in Computer Science, pages 347–362, Copenhagen,
Denmark, July 2002.3

[7] Oliver Möller and Harald Rueß. Solving bit-vector equations. In Ganesh Gopalakrishnan
and Phillip Windley, editors,Formal Methods in Computer-Aided Design (FMCAD ’98),
Volume 1522 of Springer-VerlagLecture Notes in Computer Science, pages 36–48, Palo
Alto, CA, November 1998.3

[8] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. InProceedings of the 38th Design Automation Con-
ference, pages 530–535, Las Vegas, NV, June 2001.4, 5

[9] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.ACM
Transactions on Programming Languages and Systems, 1(2):245–257, 1979.2

[10] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS.IEEE Transactions on
Software Engineering, 21(2):107–125, February 1995.1, 9

[11] Sanjai Rayadurgam and Mats Heimdahl. Test-sequence generation from formal requirement
models. InHigh-Assurance Systems Engineering Symposium, pages 23–31, IEEE Computer
Society, Boca Raton, FL, October 2001.7

[12] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In16th Annual IEEE Sym-
posium on Logic in Computer Science, pages 19–28, IEEE Computer Society, Boston, MA,
July 2001. 3

[13] Natarajan Shankar and Harald Rueß. Combining Shostak theories. In Sophie Tison, editor,
International Conference on Rewriting Techniques and Applications (RTA ‘02), Volume
2378 of Springer-VerlagLecture Notes in Computer Science, pages 1–18, Copenhagen,
Denmark, July 2002.3

[14] Robert E. Shostak. Deciding combinations of theories.Journal of the ACM, 31(1):1–12,
January 1984.3

[15] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers. In
A. Voronkov, editor,Automated Deduction - CADE-18, 18th International Conference on
Automated Deduction, Volume 2392 of Springer-VerlagLecture Notes in Computer Science,
pages 295—313, Copenhagen, Denmark, July 2002.5

10

http://www.csl.sri.com/users/demoura/sat02_journal.pdf
http://www.csl.sri.com/users/demoura/sat02_journal.pdf

	Embedded Deduction With ICS

