Y Sty “v |\ =
) ' Microsoft*

Ll T\m L .L. Research
I e T v 0 ap

Engineering DPLL(T) + Saturation
CAR 2008

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research

Satisfiability Modulo Theories (SMT)

Theories |

e Arithmetic
e Bit-vectors
© Arrays

e L L

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

Satisfiability Modulo Theories

X+

x+2=y=|f(read(write(a, X,

Engineering DPLL (T) + Saturat ion

y—2) ‘imy X +1)

X+2=Y

DPLL

M| F
L R nﬁ &of clauses J

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL

® Guessing

pl pva —qvr

U

p,—q|pvag —qvr

Microsoft

Engineering DPLL(T) + Saturation Resea rc h

DPLL

e Deducing

p | pva —pvs

U

p,s|pva —pvs

Microsoft

Engineering DPLL(T) + Saturation Resea rc h

DPLL

e Backtracking
p,—s, | pva,svyg, —pv-—q

U

p,slpvag,sva, —pv—q

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

SMT = DPLL + Theories

e Efficient decision procedures for conjunctions of
ground atoms.

a=b, a<5 | —a=b v f(a)=f(b), a<5va>10

© Examples:
@ Congruence closure
e Dual Simplex
© Bellman-Ford

e [N N)
Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

SMT: many applications at MS...

Predicate
Abstraction

Test case Verifying
generation @ Compiler

Engineering DPLL(T) + Saturation Resea rc h

\erifying Compilers

A verifying compiler uses automated reasoning to check the
correctness of a program that is compiles.

Correctness is specified by types, assertions, . .. and other
redundant annotations that accompany the program.

Tony Hoare 2004

Verfication architecture
S SN

Spec# compller
VCC HAVOC

MSIL ”

Bytecode
translator

‘ </

Boogie

V.C. generator

V ondition

Z3
N

—~
Q
(@)
@)
O
m
—
=
D
(d—
o
(5
>
S
©
—
(@)
@)
=
o
&)
=
©
i}
7))

Verification conditions: Structure

AXioms
(non-ground)

Control & Data
Flow

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

© Modeling the runtime

Y h,o,f:
IsHeap(h) A o # null A read(h, o, alloc) =t
—
read(h,o, f) = null v read(h, read(h,o,f),alloc) =t

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

© Frame axioms

Y o, f:
o # null A read(h,, o, alloc) =t =
read(h,,0,f) = read(h,,0,f) v (0,f) e M

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

Main Challenge

®

®

e

Quantifiers, quantifiers, quantifiers, ...

Modeling the runtime
Frame axioms
User provided assertions

Vi,j:i<j=read(a,i) <read(b,j)

Engineering DPLL(T) + Saturation

Microso ft-

Research

Main Challenge

®

®

e

®

Quantifiers, quantifiers, quantifiers, ...
Modeling the runtime

Frame axioms

User provided assertions

Theories

vV x: p(x,x)

v xy,2: p(x,y), p(y,z) = p(x,z)

vV xy:p(xy), ply,x) = x=y

Engineering DPLL(T) + Saturation

Microso ft-

Research

Main Challenge

®

e®

e

e®

Quantifiers, quantifiers, quantifiers, ...
Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!

Engineering DPLL(T) + Saturation

Microsoft

Research

E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).

° Example:
v x: f(g(x)) = x { f(g(x)) }
a =g(b),
b=c,
f(a) # c Pattern }

Microso ft

Engineering DPLL(T) + Saturation Resea rc h

E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).
e Example:

v x: f(g(x)) = x { f(g(x)) ;

=g(b
e ab) flelb)-
f(a) # c Equalities and ground terms come

from the partial model M:
M | F

IIIII

Engineering DPLL(T) + Saturation Resea rc h

E-matching: why do we use it?

° |ntegrates smoothly with DPLL.
o Software verification problems are big & shallow.
e Decides useful theories:

e Arrays

e Partial orders

@ [N

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

e E-matching needs ground seeds.
Vx: p(x),
Vx: not p(x)

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

© E-matching needs ground seeds.
e Bad user provided patterns:

vx: f(g(x))=x { f(g(x)) }

g(a) =c,

g(b) =c,

1+b Pattern Is too
restrictive

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

© E-matching needs ground seeds.
e Bad user provided patterns:

Vx: f(g(x))=x{ g(x) }

g(a) =c,

g(b) =c,

3+b More “liberal”
pattern

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

e E-matching needs ground seeds.
e Bad user provided patterns:

Vx: f(g(x))=x{g(x) }

gla) = ¢,

g(b) =c,

a#b,

flgla)) = a,)
f(g(b)) = b 2

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

e E-matching needs ground seeds.
e Bad user provided patterns.
e Matching loops:

Vx: f(x) = g(f(x)) {f(x)}

Vx: g(x) = f(g(x)) 18(x)}
f(a)=c

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

e E-matching needs ground seeds.
e Bad user provided patterns.
e Matching loops:

Vx: f(x) = g(f(x)) {f(x)}

vx: g(x) = f(g(x)) {g(x)}

f(a)=c

f(a) = g(f(a))

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

@ E-matching needs ground seeds.
e Bad user provided patterns.
© Matching loops:

Vx: f(x) = g(f(x)) {f(x)}

Vx: g(x) = f(g(x)) 18(x)}

fla)=c

f(a) = g(f(a))

g(f(a)) = f(g(f(a)))

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

E-matching:

e

®

e

E-matching needs ground seeds.
Bad user provided patterns.
Matching loops.

It is not refutationally complete.

Engineering DPLL(T) + Saturation

Microsoft

Research

/3: Beyond E-matching

e Decidable fragments:
e EPR (this morning)
e Array property fragment
© More coming soon
e DPLL(I'): DPLL + Saturation (this talk)

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

@ Tight integration: DPLL + Saturation solver.

Microso ft

Engineering DPLL(T) + Saturation Resea rc h

DPLL()

e Inference rule:
cy ... C,

C
e DPLL(I') is parametric.

e Examples:
e Resolution
e Superposition calculus

e LN

Microsoft

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I")
M| F
LPartiaI nﬁ &of clauses J

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Deduce |

p(a) | p(a)va(a), Vx: —=p(x)vr(x), Vx: p(x)vs(x)

OOOOOOOO

Mi f
Engineering DPLL(T) + Saturat ion Resea rCh

DPLL(I): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

Microsoft:
Engineering DPLL (T) + Saturat ion Resea rc h

DPLL(I): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

A 4

Resolution

p(a) | p(a)val(a), =p(x)vr(x), p(x)vs(x), r(x)vs(x)

Engineering DPLL (T) + Satura

Microsoft
Research

DPLL(I): Deduce |I

@ Using ground atoms from M:
M| F
© Main issue: backtracking. | Track literals

® Hypothetical clauses: from M used to
HD> C derive C

g PN

——
(hypothesis)
Ground literals

(regular) Clause

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I'): Deduce Il

p(a) | p(a)va(a), =p(x)vr(x)

p(a), —p(x)vr(x)

r(a)
A 4 Q

p(a) | p(a)va(a), —p(x)vr(x), p(a)>r(a)

Microsoft:
Engineering DPLL (T) + Saturation Resea rCh

DPLL(I): Backtracking

p(a), r(a) | p(a)va(a), —p(a)v—r(a), p(a)>r(a), ..

Microsoft:
Engineering DPLL (T) + Saturat ion Resea rc h

DPLL(I): Backtracking

pla), (@) | plalvala), —pla)v—r(a), o) a), .

p(a) is removed from M

A 4

—p(a) | p(a)va(a), —p(a)v—r(a), ...

Microsoft:
Engineering DPLL (T) + Saturation Resea rCh

DPLL(I"): Hypothesis Elimination

p(a), r(a) | p(a)va(a), —p(a)v—r(a), p(a)>r(a), ..

A 4

p(a), r(a) | p(a)va(a), —pl(a)v—r(a), =p(a)vr(a), ...

Microsoft:
Engineering DPLL (T) + Saturation Resea rCh

DPLL(I): Improvement

e Saturation solver ignores non-unit ground
clauses.

p(a) | p(@a), —p(x)vr(x)

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Improvement

e Saturation solver ignores non-unit ground
clauses.

e |t is still refutanionally complete if:
e [has the reduction property.

and-or tree
(ground)

Microsoft

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Improvement

» Saturation solver ignores non-unit ground
clauses.

e |t is still refutanionally complete if:
e [has the reduction property.

|
.. Ground literals

Saturation MERE
Solver :
Theories

Ground clauses

.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Contraction rules

e Contraction rules are very important.
© Examples:

e Subsumption

 Demodulation

e o000

@ Contraction rules with a single premise are easy.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Contraction rules

e Contraction rules with several premises.
° Example:

p(a) Pr(x), r(x)vs(x)
e

r(x) subsumes r(x)vs(x)

e Problem: p(a) P>r(x) can be deleted during
backtracking.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I"): Contraction rules

e Contraction rules with several premises.
° Example:

p(a) B>rix), r(x)vs(x)

e Naive solution: use hypothesis elimination.
—p(a)vr(x), r(x)vs(x)

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I"): Contraction rules

e Contraction rules with several premises.
° Example:

p(a) B>rix), r(x)vs(x)

e Solution: disable r(x)vs(x) until p(a) is removed
from the partial model M.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I'): Problems

® Interpreted symtbols
—(f(a)>2), f(x)>5

Disclaimer:
Doesn’t occur very
often

e Solution: use E-matching for non-ground clauses
containing interpreted symbols.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I'): Problems

e Transitivity + monotonicity
—p(x,y) v =p(y,z) v p(x,2)

—p(x,y) v p(f(x), f(y))
Saturation
engine diverges

e No satisfactory solution yet.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

DPLL(I): Problems

e Ground equations (duplication of work)

@ Superposition

= Congruence closure Our problems have a
huge number of
ground equalities

e Partial solution: E-graph (congruence closure) -
canonical set of rewriting rules [17].

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

Related Work

© Harvey
o SPASS + T
o SMELS
e LASCA

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

o Better superposition calculus engine
e Variable inactivity (Bonacina)

e Assumption: saturated set of non-ground
clauses is variable inactive and doesn’t contain
interpreted functions.

|
Ground literals

Saturation | PR
Solver T
Theories

Ground clauses
: ’

Engineering DPLL(T) + Saturation Resea rc h

Conclusion

© Tight integration: DPLL + Saturation.

e Non-unit ground clauses are delegated to DPLL.
@ Good for software verification.

e Detecting unsound set of axioms.

° Implemented in Z3.2.

e Z3.2 won all V-divisions in SMT-COMP’08.

Microso ft-

Engineering DPLL(T) + Saturation Resea rc h

