
Leonardo de Moura and Nikolaj Bjørner

Microsoft Research

Engineering DPLL(T) + Saturation

SAT Theories SMT

Arithmetic

Bit-vectors

Arrays

…

)1()2),3,,(((2  xyfyxawritereadfyx

Arithmetic Arrays Free Functions

Engineering DPLL(T) + Saturation

M | F

Engineering DPLL(T) + Saturation

Partial model
Set of clauses

Guessing

Engineering DPLL(T) + Saturation

p, q | p  q, q  r

p | p  q, q  r

Deducing

Engineering DPLL(T) + Saturation

p, s| p  q, p  s

p | p  q, p  s

Backtracking

Engineering DPLL(T) + Saturation

p, s| p  q, s  q, p q

p, s, q | p  q, s  q, p q

Efficient decision procedures for conjunctions of
ground atoms.

Engineering DPLL(T) + Saturation

a=b, a<5 | a=b  f(a)=f(b), a < 5  a > 10

Examples:

Congruence closure

Dual Simplex

Bellman-Ford

…

Z3

Test case
generation

BMC
Predicate

Abstraction

Verifying
Compiler

Engineering DPLL(T) + Saturation

Z3

Test case
generation

BMC
Predicate

Abstraction

Verifying
Compiler

A verifying compiler uses automated reasoning to check the

correctness of a program that is compiles.

Correctness is specified by types, assertions, . . . and other

redundant annotations that accompany the program.

Tony Hoare 2004

S
ta

ti
c
 p

ro
g
ra

m
 v

e
ri
fi
e
r

(B
o
o
g
ie

)

MSIL

Z3

V.C. generator

Verification condition

“correct” or list of errors

Spec# compiler

Spec# C

Bytecode

translator

C

Boogie

VCC HAVOC

BIG

and-or

tree

(ground)

Axioms

(non-ground)

Control & Data

Flow

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t

Engineering DPLL(T) + Saturation

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f)  M

Engineering DPLL(T) + Saturation

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Engineering DPLL(T) + Saturation

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Engineering DPLL(T) + Saturation

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

Engineering DPLL(T) + Saturation

We want to find bugs!

Engineering DPLL(T) + Saturation

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c Pattern

Engineering DPLL(T) + Saturation

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come

from the partial model M:
M | F

Engineering DPLL(T) + Saturation

Integrates smoothly with DPLL.

Software verification problems are big & shallow.

Decides useful theories:

Arrays

Partial orders

…

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

x: p(x),

x: not p(x)

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b Pattern is too

restrictive

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b More “liberal”

pattern

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b
a=b

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns.

Matching loops:

x: f(x) = g(f(x)) {f(x)}

x: g(x) = f(g(x)) {g(x)}

f(a) = c

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns.

Matching loops:

x: f(x) = g(f(x)) {f(x)}

x: g(x) = f(g(x)) {g(x)}

f(a) = c

f(a) = g(f(a))

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns.

Matching loops:

x: f(x) = g(f(x)) {f(x)}

x: g(x) = f(g(x)) {g(x)}

f(a) = c

f(a) = g(f(a))

g(f(a)) = f(g(f(a)))

Limitations

Engineering DPLL(T) + Saturation

E-matching needs ground seeds.

Bad user provided patterns.

Matching loops.

It is not refutationally complete.

Engineering DPLL(T) + Saturation

Decidable fragments:

EPR (this morning)

Array property fragment

More coming soon

DPLL(): DPLL + Saturation (this talk)

Engineering DPLL(T) + Saturation

Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)



Engineering DPLL(T) + Saturation

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…

Engineering DPLL(T) + Saturation

M | F

Partial model
Set of clauses

Engineering DPLL(T) + Saturation

p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x)

Engineering DPLL(T) + Saturation

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

Engineering DPLL(T) + Saturation

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x)

Resolution

Using ground atoms from M:
M | F

Main issue: backtracking.

Hypothetical clauses:

H  C

Engineering DPLL(T) + Saturation

(regular) Clause(hypothesis)

Ground literals

Track literals

from M used to

derive C

Engineering DPLL(T) + Saturation

p(a) | p(a)q(a), p(x)r(x)

p(a) | p(a)q(a), p(x)r(x), p(a)r(a)

p(a), p(x)r(x)

r(a)

Engineering DPLL(T) + Saturation

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

Engineering DPLL(T) + Saturation

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a) is removed from M

p(a) | p(a)q(a), p(a)r(a), …

Engineering DPLL(T) + Saturation

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

Engineering DPLL(T) + Saturation

Saturation solver ignores non-unit ground
clauses.

p(a) | p(a)q(a), p(x)r(x)

Engineering DPLL(T) + Saturation

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

BIG

and-or tree

(ground)

Axioms

(non-ground)

DPLL

+

Theories

Saturation

Solver

Engineering DPLL(T) + Saturation

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

Ground literals

Ground clauses

Engineering DPLL(T) + Saturation

Contraction rules are very important.

Examples:

Subsumption

Demodulation

…

Contraction rules with a single premise are easy.

Engineering DPLL(T) + Saturation

Contraction rules with several premises.

Example:

p(a) r(x), r(x)s(x)

r(x) subsumes r(x)s(x)

Problem: p(a) r(x) can be deleted during
backtracking.

Engineering DPLL(T) + Saturation

Contraction rules with several premises.

Example:

p(a) r(x), r(x)s(x)

Naïve solution: use hypothesis elimination.

p(a)r(x), r(x)s(x)

Engineering DPLL(T) + Saturation

Contraction rules with several premises.

Example:

p(a) r(x), r(x)s(x)

Solution: disable r(x)s(x) until p(a) is removed
from the partial model M.

Engineering DPLL(T) + Saturation

Interpreted symtbols

(f(a) > 2), f(x) > 5

Solution: use E-matching for non-ground clauses
containing interpreted symbols.

Disclaimer:

Doesn’t occur very

often

Engineering DPLL(T) + Saturation

Transitivity + monotonicity

p(x,y)  p(y,z)  p(x,z)

p(x,y)  p(f(x), f(y))

No satisfactory solution yet.

Saturation

engine diverges

Engineering DPLL(T) + Saturation

Ground equations (duplication of work)

Superposition

Congruence closure

Partial solution: E-graph (congruence closure) →
canonical set of rewriting rules [17].

Our problems have a

huge number of

ground equalities

Engineering DPLL(T) + Saturation

Harvey

SPASS + T

SMELS

LASCA

Engineering DPLL(T) + Saturation

Better superposition calculus engine

Variable inactivity (Bonacina)

Assumption: saturated set of non-ground
clauses is variable inactive and doesn’t contain
interpreted functions.

DPLL

+

Theories

Saturation

Solver

Ground literals

Ground clauses

Engineering DPLL(T) + Saturation

Tight integration: DPLL + Saturation.

Non-unit ground clauses are delegated to DPLL.

Good for software verification.

Detecting unsound set of axioms.

Implemented in Z3.2.

Z3.2 won all -divisions in SMT-COMP’08.

