
Bugs, Moles and Skeletons:
Symbolic Reasoning for Software Development

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98052, USA
{leonardo, nbjorner}@microsoft.com

Abstract. Symbolic reasoning is in the core of many software devel-
opment tools such as: bug-finders, test-case generators, and verifiers. Of
renewed interest is the use of symbolic reasoning for synthesing code, loop
invariants and ranking functions. Satisfiability Modulo Theories (SMT)
solvers have been the focus of increased recent attention thanks to tech-
nological advances and an increasing number of applications. In this pa-
per we review some of these applications that use software verifiers as
bug-finders “on steroids” and suggest that new model finding techniques
are needed to increase the set of applications supported by these solvers.

1 Introduction

Symbolic reasoning is present in many diverse areas including software and hard-
ware verification, type inference, static program analysis, test-case generation,
scheduling and planning. In the software industry, symbolic reasoning has been
successfully used in many test-case generation and bug-finding tools.

Symbolic reasoning is attractive for verifiation, but we have found it even
more compelling for finding bugs. Test-case generation tools produce moles
that are test inputs which exercise particular program paths and their main
goal is to increase code coverage. Of recent interest is the use of skeletons,
also known as templates or schemas, when using symbolic reasoning in domain
specific ways.

We claim these tools are successful in industry because their results, moles
and bugs, can be easily digested, and domain specific skeletons are simple to
formulate. For example, generated moles can be directly executed on the system
under test. So it is straightforward to check and re-use the result from test-case
generation tools. We here make a case for the importance of symbolic reasoners
supporting the hunt for bugs and moles and the creation of skeletons.

A long-running and natural use of symbolic reasoning tools has been in the
context of program verification, and indeed, a lot of our experience with symbolic
reasoning has been rooted in program verification systems. The ideal of verified
software has been a long-running quest since Floyd and Hoare introduced pro-
gram verification by assigning logical assertions to programs. Yet, the starting
point of this paper is making a case that using symbolic reasoning tools are
compelling in the context of even partial program exploration and design, and

this domain offers compelling challenges for symbolic reasoning systems. The
ideal of verified software amounts to a formidable task. It includes grasping with
problems that are often quite tangentical to the software being verified. Com-
mon pittfalls are that an axiomatization of the environment/runtime may be
incorrect and the properties being verified are not the right ones. Such pittfalls
are hard to avoid as verification is intimately tied to abstraction. Unfortunately
unsound abstractions are so much easier to come around than sound ones. Ex-
amples where unsound abstractions creep in include using arithmetic over the
integers (Z) instead of machine arithmetic, using memory model simplifications
(e.g., pointer arithmetic), and ignoring concurrency. In other cases the challenge
is not about simplifying the verification task, but it is about correctly encoding
the underlying environment and runtime. Finally, with a Floyd-Hoare proof in
house, and a trusted system model, the question is how can I trust the verifier?
One approach to answering this question is by using certificates generated by the
symbolic reasoning system. However, certificate generation can produce a sig-
nificant overhead on automatic theorem provers in terms of memory and time.
Another solution is the use of certified theorem provers. Verifying the verifier
has become the ultimate distraction.

Independently of all these hurdles, in our point of view, software verification
systems can be seen as bug-finding tools with much better coverage. Of course,
in this case, the tool must be capable of reporting why a proof attempt did
not succeeded. This view is used in almost every software verification project
at Microsoft. It is not uncommon for these projects to demonstrate value by
reporting the discovery of non-trivial bugs in software that was heavily tested
by standard techniques. Following this view, a certificate/proof should be seen
as a “the verifier cannot find more bugs for you” result.

Between these two extremes, bug-finding and verification, there is another
application that is undergoing a rennaisance: synthesis. The idea of synthesiz-
ing code is not new, it dates back to the late 60’s [12, 16]. Due to the recent
advances in first-order theorem proving, SMT and QBF solving, it is becom-
ing more feasible to synthesize non trivial glue code [15], small algorithms [17],
ranking functions [4] and procedures [14]. The outcome of a synthesis tool is
not as simple to check as the one produced by a bug-finding tool, but it is more
tangible than a proof of correctness. In principle, developers can inspect and test
the synthesized code independently of the symbolic reasoner.

2 Symbolic Reasoning at Microsoft

Z3 [5] is an SMT solver and the main symbolic reasoning engine used at Mi-
crosoft. SMT solvers combine the problem of Boolean Satisfiability with domains,
such as, those studied in convex optimization and term-manipulating symbolic
systems. They involve the decision problem, completeness and incompleteness
of logical theories, and finally complexity theory.

2.1 Dynamic Symbolic Execution

SMT solvers play a central role in the context of dynamic symbolic execution,
also called smart white-box fuzzing. There are today several industry applied tools
based on dynamic symbolic execution, including CUTE, Exe, DART, SAGE,
Pex, and Yogi [11]. These tools collect explored program paths as formulas and
use solvers for identifying new test input (moles) that can steer execution into
new branches.

SMT solvers are a good fit for symbolic execution because they rely on a
solver that can find feasible solutions to logical constraints. They also use com-
binations of theories that are already supported by the solvers. To illustrate the
basic idea of dynamic symbolic execution consider the greatest common divisor
program 2.1. It takes the inputs x and y and produces the greatest common
divisor of x and y.

int GCD(int x , int y) {
while (true) {

int m = x % y ;
i f (m == 0) return y ;
x = y ;
y = m;

}
}

Program 2.1: GCD Program

Program 2.2 represents the
static single assignment unfold-
ing corresponding to the case
where the loop is exited in the
second iteration. We use asser-
tions to enforce that the con-
dition of the if-statement is
not satisfied in the first itera-
tion, and it is in the second.
The sequence of instructions is
equivalently represented as a
formula where the assignment

statements have been turned into equations.

int GCD(int x0 , int y0) {
int m0 = x0 % y0 ;
a s s e r t (m0 != 0) ;
int x1 = y0 ;
int y1 = m0 ;
int m1 = x1 % y1 ;
a s s e r t (m1 == 0) ;

}

(m0 = x0 % y0) ∧
¬(m0 = 0) ∧
(x1 = y0) ∧
(y1 = m0) ∧
(m1 = x1 % y1) ∧
(m1 = 0)

Program 2.2: GCD Path Formula

The resulting path formula is satisfiable. One satisfying assignment that can
be found using an SMT solver is of the form:

x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0

It can be used as input to the original program. In the case of this example, the
call GCD(2,4) causes the loop to be entered twice, as expected. Smart white-

box fuzzing is actively used at Microsoft. It complements traditional black-box
fuzzing, where the program being fuzzed is opaque, and fuzzing is performed
by pertubing input vectors using random walks. It has been instrumental in
uncovering several subtle security critical bugs that black-box methods have
been unable to find.

2.2 Static Program Analysis

Static program analysis tools work in a similar way as dynamic symbolic exe-
cution tools. They also check feasibility of program paths. On the other hand
they can analyze software libraries and utilities independently of how they are
used. One advantage of using modern SMT solvers in static program analysis
is that SMT solvers nowadays accurately capture the semantics of most basic
operations used by commonly used programming languages. We use the program
in Figure 1 to illustrate the need for static program analysis to use bit-precise
reasoning. The program searches for an index in a sorted array arr that contains
a key.

int b ina ry s ea r ch (
int [] arr , int low , int high , int key) {

a s s e r t (low > high | | 0 <= low < high) ;
while (low <= high) {

// Find middle va lue
int mid = (low + high) / 2 ;
a s s e r t (0 <= mid < high) ;
int va l = ar r [mid] ;
// Ref ine range
i f (key == val) return mid ;
i f (va l > key) low = mid+1;
else high = mid−1;

}
return −1;

}

Fig. 1. Binary search

The assert statement is a pre-condition, for the procedure. It restricts the
input to fall within the bounds of the array arr. The program performs sev-
eral operations involving arithmetic, so a theory and corresponding solver that
understands arithmetic appears to be a good match. It is however important
to take into account that languages, such as Java, C# and C/C++ all use 32-
bit integers as the representation for values of type int. This means that the
accurate theory for int is two-complements modular arithmetic. The maximal
positive 32-bit integer is 231−1 and the smallest negative 32-bit integer is −231.

If both low and high are 230, low + high evaluates to 231, which is treated as
the negative number −231. The presumed assertion 0 ≤ mid < high therefore
does not hold. Fortunately, several modern SMT solvers support the theory of
bit-vectors, which accurately captures the semantics of modular arithmetic. The
bug does not escape an analysis based on the theory of bit-vectors. Such an
analysis would check that the array read arr[mid] is within bounds during the
first iteration by checking the formula:

low > high ∨ 0 ≤ low < high < arr .length
∧ low ≤ high
→ 0 ≤ (low + high)/2 < arr .length

As we saw, the formula is not valid. The values low = high = 230, arr.length =
230 + 1 provide a counter-example. An integration with the solver Z3 and the
static analysis tool PREfix led to the automatic discovery of several overflow-
related bugs in Microsoft’s rather large code-base.

2.3 Software Verification

Extended static checking uses the methods developed for program verification,
but in the more limited context of checking absence of run-time errors. The
SMT solver Simplify [7] was developed in the context of the extended static
checking systems ESC/Modula 3 and ESC/Java [10]. This work has been the
inspiration for several subsequent extended static program checkers, including
Why [9] and Boogie [1]. These systems are actively used as bridges from several
different front-ends to SMT solver backends. Boogie, for instance, is used as
a backend for systems that verify code from languages, such as an extended
version of C# (called Spec#), as well as low level systems code written in C.
Current practice indicates that one person can drive these tools to verify selected
extended static properties of large code bases with several hundreds of thousands
of lines. This effort relies heavily on some of the automated methods used in
software model-checking. A more ambitious project is the Verifying C-Compiler
system [8], which targets functional correctness properties of Microsoft’s Viridian
Hyper-Visor. The Hyper-Visor is a relatively small (100K lines) operating system
layer, yet correctness properties are challenging to formulate and establish. The
entire verification effort is estimated to be around 60 man-years.

2.4 Synthesis

Finally, there is recent and active interest in using modern SMT solvers in the
context of synthesis of inductive loop invariants [18] and synthesis of program
fragments [14], such as sorting, matrix multiplication, de-compression, graph,
and bit-manipulating algorithms. Take for instance the Strassen’s matrix multi-
plication algorithm in the special case of 2×2 matrices. Synthesizing it amounts
to arranging a set of (7) multipliers and adders to obtain equivalent results as
the standard matrix multiplication algorithm that uses 8 multipliers. The search

process can be carried out on a multipliers that manipulate words of length 2-
3 bits. The synthesized code can then be checked on full bit-widths (32 or 64
bits). These applications share a common trait in the way they use their under-
lying symbolic solver. They search a template vocabulary of instructions, that
are composed as a model in a satisfying assignment. Section 3.3 goes into more
detail.

3 Symbolic Reasoning Support for Models

3.1 Streams of Candidate Models

Most SMT solvers are capable of producing models for satisfiable quantifier-free
formulas. A model is an interpretation that makes the formula true. For example,
the interpretation {a 7→ 2, b 7→ 5} is a model for the formula a ≥ 0 ∧ b ≥ a + 3.
This capability is essential in many industrial applications, because moles and
bugs are extracted from models.

Quantifiers are usually used to axiomatize the environment/runtime, state
properties, specify frame axioms, etc. For example, the formula ∀i, j. i ≤ j →
f(i) ≤ f(j) is used to say that f is a non-decreasing function. Quantifier rea-
soning in SMT is a long-standing challenge. The practical method employed in
modern SMT solvers is to instantiate quantified formulas based on heuristics,
which is not refutationally complete even for pure first-order logic. Moreover,
refutationally complete procedures are not sufficient, since they will only guar-
antee that a proof of unsatisfiability will be found eventually for unsatisfiable
formulas. However, in industry, we are mainly interested in the satisfiable in-
stances, where a refutationally complete procedure may not even terminate.
Some SMT solvers support decidable fragments [2, 6, 20], unfortunately they are
not expressive enough to encode all symbolic reasoning problems found in prac-
tice.

A pragmatic approach for dealing with the problem above is to produce
candidate models. Given a formula of the form F ∧G, where G is quantifier-free,
a candidate model is an interpretation that satisfies G and many instances of the
universally quantified formulas in F . For example, consider the following simple
satisfiable formula

F︷ ︸︸ ︷
∀i, j. i ≤ j → f(i) ≤ f(j)∧

w ≥ v + 2 ∧ f(v) ≤ 1 ∧ f(w) ≤ 3︸ ︷︷ ︸
G

Standard SMT solvers will produce a candidate model such as:

v 7→ 0, w 7→ 2, f 7→ [0 7→ 1, 2 7→ 3, else 7→ 4]

The interpretation for f is a function graph, it states that the value of the
function f at 0 is 1, at 2 is 3, and for all other values is 4. This interpretation

satisfies G, and satisfies the instance v ≤ w → f(v) ≤ f(w) of F , but it clearly
does not satisfy F .

Candidate models are relevant because they may contain enough information
to help the developer to understand why some property does not hold, or some
program location is reachable. Moles and bugs may still be extracted from them,
and the actual program (i.e., the definitive oracle) can be executed to confirm
they are indeed correct. This observation suggests a particular tool flow not very
often explored. The basic idea is to use the actual program as an oracle, to check
whether the candidate model really induces a valid mole/bug or not. If it does,
then the tool terminates. Otherwise, it informs the solver that the candidate
model is a not valid, and the search continues. In this approach, the solver is
forced to generate a stream of more and more refined candidate models until a
valid mole/bug can be successfully extracted.

3.2 Model Checking Quantifiers

Given a candidate model I, it is useful to have a procedure P that checks whether
the interpretation I satisfies a universally quantified formula F or not. We say
P is a model checking procedure. To describe how P can be constructed, let us
describe how interpretations are particularly encoded in Z3. In Z3, we assume
there is an intended interpretation T for the supported set of theories T . In the
case of Z3, T is the union of the following theories: linear arithmetic, bit-vectors,
arrays, inductive data-types, and uninterpreted functions. Given a satisfiable
formula F , a model I is a function that maps the structure T that satisfies
T , into an expanded structure M that satisfies F ∪ T . Our models also come
equipped with a set of formulas R that restricts the class of structures that satisfy
T . For example, if T is the empty theory, then R is just a cardinality constraint
on the size of the universe. When needed, we use fresh constant symbols k1,
. . . , kn (ur-elements) to name the elements in |M | (i.e., the universe of M).
In Z3, the interpretation of an uninterpreted symbol s is an expression Is[x̄],
which contains only interpreted symbols and the fresh constants k1, . . . , kn.
For uninterpreted constants c, Ic[x̄] is just a ground term Ic. For uninterpreted
function and predicate symbols, the term Is[x̄] should be viewed as a lambda
expression. For example, the candidate model described in the previous section
is encoded as:

v 7→ 0, w 7→ 2, f(x) 7→ ite(x = 0, 1, ite(x = 2, 3, 4))

Where ite(c, t, e) is the if-the-else term.
When models are encoded this way, it is straightforward to check whether

a universally quantified formula ∀x̄. F [x̄] is satisfied by a candidate model or
not [20]. Let F I [x̄] be the formula obtained from F [x̄] by replacing any term f(t̄)
with If [t̄], when f is uninterpreted. We claim a candidate model satisfies ∀x̄. F [x̄]
if and only if R ∧ ¬F I [s̄] is unsatisfiable, where s̄ is a tuple of fresh constant
symbols. In the previous example, the formula ∀i, j. i ≤ j → f(i) ≤ f(j) is not
satisfied by the candidate model, because the following formula is satisfiable.

s1 ≤ s2 ∧ ¬(ite(s1 = 0, 1, ite(s1 = 2, 3, 4)) ≤ ite(s2 = 0, 1, ite(s2 = 2, 3, 4)))

For instance, this formula is satisfied by {s1 7→ 1, s2 7→ 2}.
Similarly to the oracle-approach based on the actual program, new instances

of universally quantified formulas can be extracted from failed model checking
attempts. The new instance has the property that it will “block” the current
candidate model from being produced again by the solver.

This particular way of encoding models allows Z3 to represent interpreta-
tions for function symbols that are not expressible by finite function graphs. For
example, the following candidate model

v 7→ 0, w 7→ 2, f(x) 7→ ite(x ≤ 0, 1, ite(x ≤ 2, 3, 4))

is a model for our working example, because the following ground formula is
unsatisfiable.

s1 ≤ s2 ∧ ¬(ite(s1 ≤ 0, 1, ite(s1 ≤ 2, 3, 4)) ≤ ite(s2 ≤ 0, 1, ite(s2 ≤ 2, 3, 4)))

Candidate models with this particular shape can be automatically computed
because our example is in the array property decidable fragment [2].

3.3 Skeleton Based Model Finding & Synthesis

Satisfiability solvers have been used to synthesize loop invariants [3, 13], code [19],
and ranking functions [4]. To illustrate these ideas, consider the following ab-
stract program:

pre
while (c) {

T
}
post

In the loop invariant synthesis problem, we want to synthesize a predicate I that
can be used to show that post holds in the end of the while-loop. Let, pre[s] be
a formula encoding the set of states reachable before the beginning of the loop,
c[s] be the encoding of the entering condition, T [s, s′] be the transition relation,
and post[s] be the encoding of the property we want to prove. Then, the loop
invariant exists if the following formula is satisfiable, and any model can be used
to extract the loop invariant.

∀s. pre[s] → I(s) ∧
∀s, s′. I(s) ∧ c[s] ∧ T [s, s′] → I(s′) ∧
∀s. I(s) ∧ ¬c[s] → post[s]

Similarly, in the ranking function synthesis problem, we want to synthesize a
function rank that decreases after each loop iteration. The idea is to use this
function to show a particular loop always terminate in the program. This problem
can be encoded as the following satisfiability problem.

∀s. rank(s) ≥ 0 ∧
∀s, s′. c[s] ∧ T [s, s′] → rank(s′) < rank(s)

a s s e r t (n >= 0) ;
x = 0 ; y = 0 ;
while (x < n) {

x = x + 1 ;
y = y + 1 ;

}
a s s e r t (y == n) ;

Let us now illustrate these general schemas using
the following simple example program. The program
increments x and y in lock-step in a loop and we wish
to check that the loop terminates and that y = n at
the end of the loop.

For this simple program, the formulas associated
with invariant and ranking synthesis problems are:

∀x, y, n. n ≥ 0 ∧ x = 0 ∧ y = 0 → I(x, y, n) ∧
∀x, y, n, x′, y′, n′. I(x, y, n) ∧ x < n ∧ x′ = x + 1 ∧ y′ = y + 1 ∧ n′ = n →

I(x′, y′, n′) ∧
∀x, y, n. I(x, y, n) ∧ ¬(x < n) → y = n

and

∀x, y, n. rank(x, y, n) ≥ 0 ∧
∀x, y, n, x′, y′, n′. x < n ∧ x′ = x + 1 ∧ y′ = y + 1 ∧ n′ = n →

rank(x′, y′, n′) < rank(x, y, n)

Both formulas are satisfiable, the following interpretations are models for them:

I(x, y) 7→ x = y ∧ x ≤ n

and

rank(x, y, n) 7→ ite(x ≤ n, n− x, 0)

Thus, in principle, these problems can be attacked by any SMT solver with
support for universally quantified formulas, and capable of producing models.
Unfortunately, to the best of our knowledge, no SMT solver can handle this kind
of problem, even when n, x and y range over finite domains, such as machine
integers. They will not terminate or give-up in both problems. For these reasons,
many synthesis tools only use SMT solvers to decide quantifier-free formulas. In
these applications, the SMT solver is usually used to check whether a candidate
interpretation for I and rank is valid or not. The synthesis tool search for candi-
date interpretations using templates. Abstractly, a template is a skeleton that
can be instantiated. For example, when searching for a ranking function, the
synthesis tool may limit the search to functions that are linear combinations of
the input.

This approach can be easily incorporated to SMT solvers that support the
techniques described in the previous section. Given a collection of skeletons,
the basic idea is to search for models where the intepretation of function and
predicate symbols are instances of the given skeletons. We say an SMT solver
based on this approach is a skeleton based model finder. In this context, an
SMT solver may even report a formula to be unsatisfiable modulo a collection of
skeletons.

Similarly to the approach used to represent models in Z3 (Section 3.2), skele-
tons are expressions containing free variables, and should be also viewed as

lambda expressions. However, skeletons may also contain fresh constants that
must be instantiated. For example, the skeleton ax + b, where a and b are fresh
constants, may be used as a template for the interpretation of unary function
symbols. The expressions x + 1 ({a 7→ 1, b 7→ 1}) and 2x ({a 7→ 2, b 7→ 0}) are
instances of this skeleton.

As usual, we assume the input formula is of the form F ∧ G, where G is
quantifier free. We also assume a collection of skeletons S is provided by the
user. First, we use an SMT solver to check whether F ∧G is satisfiable or not. If
it returns unsat or sat, then we terminate. In practice, for satisfiable instances,
the SMT solver will most likely return just a candidate model. Then, for each
function symbol f in G, we select a skeleton sf [x̄] from S. Next, we check whether
the following formula is satisfiable or not.

F ∧G ∧
∧

f(t̄)∈G

f(t̄) = sf [t̄]

If this formula is unsatisfiable, we conclude that the selected skeletons cannot
be used to satisfy the formula. Let C be the set of fresh constants used in the
skeletons. So, if the SMT solver returns a candidate model, it must assign values
for each constant in C, and these values are used to instantiate the skeletons.
After the skeletons are instantiated, the new interpretation for the uninterpreted
function symbols can be checked using the model checking technique described
in Section 3.2. If the model checking step fails, then new quantifier instances are
generated and added to G, and the process continues.

For example, consider the following very simple formula

F︷ ︸︸ ︷
∀x. g(x) ≥ 2x ∧ ∀x. f(x) ≤ g(x) + 1∧

g(0) ≤ 0 ∧ f(0) ≥ 0︸ ︷︷ ︸
G

Assume our collection of skeletons S is {ax + b}. That is, we are looking for
models where the interpretation of every function symbol is a linear function.
Assume the SMT solver terminates producing a candidate model, then we select
afx + bf and agx + bg as the skeletons for f and g respectively. Note that we
use a different set of fresh constants for f and g. Then, we check whether the
following formula is satisfiable or not.

F ∧G ∧ g(0) = ag0 + bg ∧ f(0) = af0 + bf︸ ︷︷ ︸
E1

Assume the SMT solver returns a candidate model for the formula above
assigning {ag 7→ 0, bg 7→ 0, af 7→ 0, bf 7→ 0}. So, using this assignment, our
interpretation for g and f is the constant function 0. This interpretation satisfies
the quantifier ∀x. f(x) ≤ g(x) + 1, but fails to satisfy ∀x. g(x) ≥ 2x, because
the induced model checking formula ¬(0 ≥ 2s1) is satisfiable. A possible model

is s1 7→ 1. Then, instantiating the quantifier with x = 1, we obtain a new set
of ground formulas G1 = G ∧ g(1) ≥ 2. Assume the SMT solver terminates
producing a candidate model for F ∧G1. Then, we check whether the following
formula is satisfiable or not.

F ∧G1 ∧ E1 ∧ g(1) = ag + bg︸ ︷︷ ︸
E2

In this case, we obtain the new assignment {ag 7→ 2, bg 7→ 0, af 7→ 0, bf 7→ 0},
which corresponds to the interpretations g(x) 7→ 2x and f(x) 7→ 0. Now, the first
quantifier is satisfied, but ∀x. f(x) ≤ g(x) + 1 fails because the model checking
formula ¬(0 ≤ 2s1 + 1) is satisfiable. A possible model is s1 7→ −1. Then, we
obtain G2 = G1 ∧ f(−1) ≤ g(−1) + 1. Similarly to the previous steps, we check
the satisfiability of

F ∧G2 ∧ E2 ∧ g(−1) = −ag + bg ∧ f(−1) = −af + bf

We obtain the assignment {ag 7→ 2, bg 7→ 0, af 7→ 2, bf 7→ 0}, which corre-
sponds to the interpretations g(x) 7→ 2x and f(x) 7→ 2x. Now, both quantifiers
are satisfied by this interpretation and the SMT solver can report F ∧ G as
satisfiable.

4 Conclusion

A long-running and natural use of symbolic reasoning tools has been in the
context of program verification. However, given the many software verification
and analysis tools used at Microsoft, we have found that the most attractive are
the ones for finding bugs and producing moles. Skeletons enable a new set of
promising applications based on synthesis. They are currently applied as layers
on top of SMT solvers. We believe that supporting these techniques natively as
part of quantifier instantiation engines is a useful and promising technique for
searching models of quantified satisfiable formulas.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In CASSIS 2004, volume 3362 of LNCS, pages 49–69. Springer,
2005.

2. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
E. Allen Emerson and Kedar S. Namjoshi, editors, VMCAI, volume 3855 of LNCS,
pages 427–442. Springer, 2006.

3. M. Colón. Schema-guided synthesis of imperative programs by constraint solving.
In Sandro Etalle, editor, LOPSTR, volume 3573 of LNCS, pages 166–181. Springer,
2004.

4. B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking function
synthesis for bit-vector relations. In TACAS, volume 6015 of LNCS, pages 236–250.
Springer, 2010.

5. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of LNCS. Springer, 2008.

6. L. de Moura and N. Bjørner. Deciding Effectively Propositional Logic using DPLL
and substitution sets. In Allesandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR, 2008.

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

8. E. Cohen and M. Dahlweid and M. Hillebrand and D. Leinenbach and M. Moskal
and T. Santen and W. Schulte and S. Tobies. VCC: A Practical System for Veri-
fying Concurrent C. In TPHOL, 2009.

9. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Technical
Report 1366, LRI, Université Paris Sud, 2003.

10. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended Static Checking for Java. In PLDI, pages 234–245, 2002.

11. P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann,
and M. Y. Levin. Automating Software Testing Using Program Analysis. IEEE
Software, 25(5):30–37, 2008.

12. C. Cordell Green. Application of theorem proving to problem solving. In IJCAI,
pages 219–240, 1969.

13. S. Gulwani, S. Srivastava, and R. Venkatesan. Constraint-based invariant inference
over predicate abstraction. In VMCAI, 2009.

14. S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In ICSE, 2010 (to-appear).

15. M. R. Lowry, A. Philpot, T. Pressburger, and I. Underwood. Amphion: Automatic
programming for scientific subroutine libraries. In ISMIS, pages 326–335, 1994.

16. Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun.
ACM, 14(3):151–165, 1971.

17. A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. A. Seshia. Combina-
torial sketching for finite programs. In ASPLOS, 2006.

18. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate
Abstraction. In PDLI, 2009.

19. S. Srivastava, S. Gulwani, and J. Foster. From program verification to program
synthesis. In POPL, 2010.

20. Y. Ge and L. de Moura. Complete instantiation for quantified SMT formulas. In
CAV, 2009.

