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Quantifiers in Satisfiability Modulo Theories

Logic is “The Calculus of Computer 
Science” (Z. Manna).

High computational complexity



Quantifiers in Satisfiability Modulo Theories

Is formula F satisfiable
modulo theory T ? 

SMT solvers have 

specialized algorithms for T



Quantifiers in Satisfiability Modulo Theories

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)



Quantifiers in Satisfiability Modulo Theories

Arithmetic

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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ArithmeticArray Theory

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)



A Theory is a set of sentences

Alternative definition:

A Theory is a class of structures

Th(M) is the set of sentences that are true in the 
structure M

Quantifiers in Satisfiability Modulo Theories



Quantifiers in Satisfiability Modulo Theories

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer
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Z3 is a new solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for academic research.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml

http://research.microsoft.com/projects/z3
http://research.microsoft.com/projects/z3


Quantifiers in Satisfiability Modulo Theories

F  T
First-order 

Theorem Prover

T may not have a finite 

axiomatization
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For some theories, SMT can be reduced to SAT

bvmul32(a,b) = bvmul32 (b,a)

Higher level of abstraction



For most SMT solvers: F is a set of ground formulas

Quantifiers in Satisfiability Modulo Theories

Many Applications

Bounded Model Checking

Test-Case Generation



M | F

Quantifiers in Satisfiability Modulo Theories

Partial model
Set of clauses



Guessing

Quantifiers in Satisfiability Modulo Theories

p, q | p  q, q  r

p  |  p  q, q  r



Deducing

Quantifiers in Satisfiability Modulo Theories

p, s| p  q, p  s

p |  p  q, p  s



Backtracking

Quantifiers in Satisfiability Modulo Theories

p, s| p  q, s  q, p q

p, s, q |  p  q, s  q, p q



Efficient decision procedures for conjunctions of 
ground atoms.

Quantifiers in Satisfiability Modulo Theories

a=b, a<5 | a=b  f(a)=f(b),   a < 5  a > 10

Difference Logic Belmann-Ford

Uninterpreted functions Congruence closure

Linear arithmetic Simplex

Efficient algorithms



How to represent the model of satisfiable formulae?

Functor: 

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F:    f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:



How to represent the model of satisfiable formulae?

Functor: 

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F:    f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

Interpretation is given 

using T-symbols

M’:



How to represent the model of satisfiable formulae?

Functor: 

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F:    f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

Non ground term

(lambda expression)

M’:
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Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) > 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) > 0) is unsatisfiable



Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) > 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) > 0) is unsatisfiable

• Negated quantifier
• Replaced f by its interpretation
• Replaced x by fresh constant k



Quantifiers in Satisfiability Modulo Theories

Annotated 
Program

Verification 
Condition F

pre/post conditions

invariants

and other annotations



BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data 

Flow



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t

Quantifiers in Satisfiability Modulo Theories



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f)  M 

Quantifiers in Satisfiability Modulo Theories



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Quantifiers in Satisfiability Modulo Theories



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Quantifiers in Satisfiability Modulo Theories



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

Quantifiers in Satisfiability Modulo Theories

We want to find bugs!



Grand challenge: Microsoft Hypervisor

70k lines of dense C code

VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Quantifiers in Satisfiability Modulo Theories



Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifiers in Satisfiability Modulo Theories



Quantifiers in Satisfiability Modulo Theories

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b), 

b = c,

f(a)  c Trigger
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SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b), 

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come 

from the partial model M



Quantifiers in Satisfiability Modulo Theories

Integrates smoothly with DPLL.

Software verification problems are big & shallow.

Decides useful theories: 

Arrays

Partial orders

…
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E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval E-matching code trees

Incremental E-Matching Inverted path index
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Trigger:  

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several 
instructions.

Combine code sequences 
in a code tree



Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

x: p(x),

x: not p(x)



Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b Trigger is too 

restrictive



Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b More “liberal”

trigger



Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b
a=b



Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers.

It is not refutationally complete.

False positives
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Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)





Quantifiers in Satisfiability Modulo Theories

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…
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M | F

Partial model
Set of clauses
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p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x)



Quantifiers in Satisfiability Modulo Theories

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)
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p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x) 

Resolution



Using ground atoms from M:
M | F

Main issue: backtracking.

Hypothetical clauses:

H  C

Quantifiers in Satisfiability Modulo Theories

(regular) Clause(hypothesis)

Ground literals

Track literals 

from M used to

derive C
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p(a) | p(a)q(a), p(x)r(x)

p(a) | p(a)q(a), p(x)r(x), p(a)r(a)

p(a),  p(x)r(x)

r(a)
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p(a), r(a) | p(a)q(a), p(a)r(a),  p(a)r(a), …



Quantifiers in Satisfiability Modulo Theories

p(a), r(a) | p(a)q(a), p(a)r(a),  p(a)r(a), …

p(a) is removed from M

p(a) | p(a)q(a), p(a)r(a), …



Quantifiers in Satisfiability Modulo Theories

Saturation solver ignores non-unit ground 
clauses.

p(a) | p(a)q(a), p(x)r(x)
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Saturation solver ignores non-unit ground 
clauses.

It is still refutanionally complete if:
 has the reduction property.

BIG

and-or tree

(ground)

Axioms

(non-ground)



DPLL 

+

Theories

Saturation

Solver

Quantifiers in Satisfiability Modulo Theories

Saturation solver ignores non-unit ground 
clauses.

It is still refutanionally complete if:
 has the reduction property.

Ground literals

Ground clauses



Problem

Quantifiers in Satisfiability Modulo Theories

Interpreted symtbols

(f(a) > 2),     f(x) > 5

It is refutationally complete if

Interpreted symbols only occur in ground 
clauses

Non ground clauses are variable inactive

“Good” ordering is used



Quantifiers in Satisfiability Modulo Theories

There is no sound and refutationally complete

procedure for 

linear arithmetic + unintepreted function symbols
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Universal variables only occur as arguments of 
uninterpreted symbols.

x: f(x) + 1 > g(f(x))

x,y: f(x+y) = f(x) + f(y)
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Relax restriction on the occurrence of universal 
variables.

not (x  y)

not (x  t)

f(x + c)

x =c t

…
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If F is in the almost uninterpreted fragment

Convert F into an equisatisfiable (modulo T) set of 
ground clauses F*

F* may be infinite 

It is a decision procedure if F* is finite

Subsumes EPR, Array Property Fragment, 
Stratified Vocabularies for Many Sorted Logic
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F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }
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F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }

We assume the 

least solution is 

not empty
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g(x1, x2) = 0  h(x2) = 0,

g(f(x1),b) + 1 < f(x1),

h(b) = 1,    f(a) = 0

S1,1= Ag,1 = { f(a) } 

S1,2= Ag,2 = Ah,1 = {b}

S2,1= Af,1= {a}

S1,1= Ag,1, S1,2= Ag,2, S1,2= Ah,1

S2,1= Af,1,  f(S2,1)  Ag,1,  b  Ag,2

b  Ah,1,  a  Af,1

Least solution

F F

g(f(a), b) = 0  h(b) = 0,

g(f(a),b) + 1 < f(a),

h(b) = 1,    f(a) = 0

F*
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Compactness

A set F of first order sentences is unsatisifiable
iff it contains an unsatisfiable finite subset

If we view T as a set of sentences

Apply compactness to T  F*
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x: f(f(x)) > f(x)

x: f(x) < a

f(0) = 0

f(f(0)) > f(0), f(f(f(0))) > f(f(0)), …

f(0) < a, f(f(0)) < a, …

f(0) = 0

Satisfiable if T is Th(Z), but 

unsatisfiable T is the the class of 

structures Exp(Z)
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Generate 
candidate 

model

Model 
check

Instantiate 
quantifiers
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There is no winner

Portfolio of algorithms/techniques



Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

Multi-core & Multi-node (HPC)

Different strategies in parallel

Collaborate exchanging lemmas

Quantifiers in Satisfiability Modulo Theories

Strategy 
1

Strategy 
2

Strategy 
3

Strategy 
4

Strategy 
5
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Some VCs produced by verifying compilers are 
very challenging

Most VCs contain many non ground formulas

Z3 2.0 won all -divisions in SMT-COMP’08

Many challenges

Many approaches/algorithms

Thank You!


