
Leonardo de Moura
Microsoft Research

Quantifiers in Satisfiability Modulo Theories

Logic is “The Calculus of Computer
Science” (Z. Manna).

High computational complexity

Quantifiers in Satisfiability Modulo Theories

Is formula F satisfiable
modulo theory T ?

SMT solvers have

specialized algorithms for T

Quantifiers in Satisfiability Modulo Theories

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Quantifiers in Satisfiability Modulo Theories

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Quantifiers in Satisfiability Modulo Theories

ArithmeticArray Theory

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Quantifiers in Satisfiability Modulo Theories

ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

A Theory is a set of sentences

Alternative definition:

A Theory is a class of structures

Th(M) is the set of sentences that are true in the
structure M

Quantifiers in Satisfiability Modulo Theories

Quantifiers in Satisfiability Modulo Theories

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer

Quantifiers in Satisfiability Modulo Theories

Z3 is a new solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for academic research.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml

http://research.microsoft.com/projects/z3
http://research.microsoft.com/projects/z3

Quantifiers in Satisfiability Modulo Theories

F  T
First-order

Theorem Prover

T may not have a finite

axiomatization

Quantifiers in Satisfiability Modulo Theories

For some theories, SMT can be reduced to SAT

bvmul32(a,b) = bvmul32 (b,a)

Higher level of abstraction

For most SMT solvers: F is a set of ground formulas

Quantifiers in Satisfiability Modulo Theories

Many Applications

Bounded Model Checking

Test-Case Generation

M | F

Quantifiers in Satisfiability Modulo Theories

Partial model
Set of clauses

Guessing

Quantifiers in Satisfiability Modulo Theories

p, q | p  q, q  r

p | p  q, q  r

Deducing

Quantifiers in Satisfiability Modulo Theories

p, s| p  q, p  s

p | p  q, p  s

Backtracking

Quantifiers in Satisfiability Modulo Theories

p, s| p  q, s  q, p q

p, s, q | p  q, s  q, p q

Efficient decision procedures for conjunctions of
ground atoms.

Quantifiers in Satisfiability Modulo Theories

a=b, a<5 | a=b  f(a)=f(b), a < 5  a > 10

Difference Logic Belmann-Ford

Uninterpreted functions Congruence closure

Linear arithmetic Simplex

Efficient algorithms

How to represent the model of satisfiable formulae?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

How to represent the model of satisfiable formulae?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

Interpretation is given

using T-symbols

M’:

How to represent the model of satisfiable formulae?

Functor:

Given a model M for T

Generate a model M’ for F (modulo T)

Example:
F: f(a) = 0 and a > b and f(b) > f(a) + 1

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

Non ground term

(lambda expression)

M’:

Quantifiers in Satisfiability Modulo Theories

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) > 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) > 0) is unsatisfiable

Symbol Interpretation

a 1

b 0

f ite(x=1, 0, 2)

M’:

Is x: f(x) > 0 satisfied by M’?

Yes,
not (ite(k=1,0,2) > 0) is unsatisfiable

• Negated quantifier
• Replaced f by its interpretation
• Replaced x by fresh constant k

Quantifiers in Satisfiability Modulo Theories

Annotated
Program

Verification
Condition F

pre/post conditions

invariants

and other annotations

BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data

Flow

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t

Quantifiers in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f)  M

Quantifiers in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Quantifiers in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Quantifiers in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

Quantifiers in Satisfiability Modulo Theories

We want to find bugs!

Grand challenge: Microsoft Hypervisor

70k lines of dense C code

VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Quantifiers in Satisfiability Modulo Theories

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifiers in Satisfiability Modulo Theories

Quantifiers in Satisfiability Modulo Theories

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c Trigger

Quantifiers in Satisfiability Modulo Theories

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come

from the partial model M

Quantifiers in Satisfiability Modulo Theories

Integrates smoothly with DPLL.

Software verification problems are big & shallow.

Decides useful theories:

Arrays

Partial orders

…

Quantifiers in Satisfiability Modulo Theories

E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval E-matching code trees

Incremental E-Matching Inverted path index

Quantifiers in Satisfiability Modulo Theories

Trigger:

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several
instructions.

Combine code sequences
in a code tree

Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

x: p(x),

x: not p(x)

Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b Trigger is too

restrictive

Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b More “liberal”

trigger

Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b
a=b

Limitations

Quantifiers in Satisfiability Modulo Theories

E-matching needs ground seeds.

Bad user provided triggers.

It is not refutationally complete.

False positives

Quantifiers in Satisfiability Modulo Theories

Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)



Quantifiers in Satisfiability Modulo Theories

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…

Quantifiers in Satisfiability Modulo Theories

M | F

Partial model
Set of clauses

Quantifiers in Satisfiability Modulo Theories

p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x)

Quantifiers in Satisfiability Modulo Theories

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

Quantifiers in Satisfiability Modulo Theories

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x)

Resolution

Using ground atoms from M:
M | F

Main issue: backtracking.

Hypothetical clauses:

H  C

Quantifiers in Satisfiability Modulo Theories

(regular) Clause(hypothesis)

Ground literals

Track literals

from M used to

derive C

Quantifiers in Satisfiability Modulo Theories

p(a) | p(a)q(a), p(x)r(x)

p(a) | p(a)q(a), p(x)r(x), p(a)r(a)

p(a), p(x)r(x)

r(a)

Quantifiers in Satisfiability Modulo Theories

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

Quantifiers in Satisfiability Modulo Theories

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a) is removed from M

p(a) | p(a)q(a), p(a)r(a), …

Quantifiers in Satisfiability Modulo Theories

Saturation solver ignores non-unit ground
clauses.

p(a) | p(a)q(a), p(x)r(x)

Quantifiers in Satisfiability Modulo Theories

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

BIG

and-or tree

(ground)

Axioms

(non-ground)

DPLL

+

Theories

Saturation

Solver

Quantifiers in Satisfiability Modulo Theories

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

Ground literals

Ground clauses

Problem

Quantifiers in Satisfiability Modulo Theories

Interpreted symtbols

(f(a) > 2), f(x) > 5

It is refutationally complete if

Interpreted symbols only occur in ground
clauses

Non ground clauses are variable inactive

“Good” ordering is used

Quantifiers in Satisfiability Modulo Theories

There is no sound and refutationally complete

procedure for

linear arithmetic + unintepreted function symbols

Quantifiers in Satisfiability Modulo Theories

Universal variables only occur as arguments of
uninterpreted symbols.

x: f(x) + 1 > g(f(x))

x,y: f(x+y) = f(x) + f(y)

Quantifiers in Satisfiability Modulo Theories

Relax restriction on the occurrence of universal
variables.

not (x  y)

not (x  t)

f(x + c)

x =c t

…

Quantifiers in Satisfiability Modulo Theories

If F is in the almost uninterpreted fragment

Convert F into an equisatisfiable (modulo T) set of
ground clauses F*

F* may be infinite

It is a decision procedure if F* is finite

Subsumes EPR, Array Property Fragment,
Stratified Vocabularies for Many Sorted Logic

Quantifiers in Satisfiability Modulo Theories

F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }

Quantifiers in Satisfiability Modulo Theories

F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }

We assume the

least solution is

not empty

Quantifiers in Satisfiability Modulo Theories

g(x1, x2) = 0  h(x2) = 0,

g(f(x1),b) + 1 < f(x1),

h(b) = 1, f(a) = 0

S1,1= Ag,1 = { f(a) }

S1,2= Ag,2 = Ah,1 = {b}

S2,1= Af,1= {a}

S1,1= Ag,1, S1,2= Ag,2, S1,2= Ah,1

S2,1= Af,1, f(S2,1)  Ag,1, b  Ag,2

b  Ah,1, a  Af,1

Least solution

F F

g(f(a), b) = 0  h(b) = 0,

g(f(a),b) + 1 < f(a),

h(b) = 1, f(a) = 0

F*

Quantifiers in Satisfiability Modulo Theories

Compactness

A set F of first order sentences is unsatisifiable
iff it contains an unsatisfiable finite subset

If we view T as a set of sentences

Apply compactness to T  F*

Quantifiers in Satisfiability Modulo Theories

x: f(f(x)) > f(x)

x: f(x) < a

f(0) = 0

f(f(0)) > f(0), f(f(f(0))) > f(f(0)), …

f(0) < a, f(f(0)) < a, …

f(0) = 0

Satisfiable if T is Th(Z), but

unsatisfiable T is the the class of

structures Exp(Z)

Quantifiers in Satisfiability Modulo Theories

Generate
candidate

model

Model
check

Instantiate
quantifiers

Quantifiers in Satisfiability Modulo Theories

There is no winner

Portfolio of algorithms/techniques

Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

Multi-core & Multi-node (HPC)

Different strategies in parallel

Collaborate exchanging lemmas

Quantifiers in Satisfiability Modulo Theories

Strategy
1

Strategy
2

Strategy
3

Strategy
4

Strategy
5

Quantifiers in Satisfiability Modulo Theories

Some VCs produced by verifying compilers are
very challenging

Most VCs contain many non ground formulas

Z3 2.0 won all -divisions in SMT-COMP’08

Many challenges

Many approaches/algorithms

Thank You!

