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Software development crisis

Software malfunction is a common problem.

Software complexity is increasing.

We need new methods and tools.
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Program correctness

| proved my program to be correct.

What does it mean?

OOOOOOOO



Software models

We need models and tools to
reason about them?

Does my model/software has
property X?
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Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning

Microsoft:
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Symbolic Reasoning

e Logicis “The Calculus of Computer Undecidable
Science” (Z. Manna).

© High computational complexity senfi¥ecidable

W—Order loglc)
NEXPTime complete
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Applications

Test case generation

Predicate Abstraction

Invariant Generation

-
-
C
€
€

Type Checking

Model Based Testing
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Some Applications @ Microsoft

Spect ~ HAVOC | L

Programming System

[ Terminator T-2 J

VCC o2
s ‘\./OJ

S Vigilante |

SpecExplorer Pex E7
 SAGE | I—IS
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Test case generation

unsigned GCD(X, v) { (y, > 0) and

requires(y > 0); (M, =%, % Y,) and

while (true SS/
(true) { M\> ot (m

, = 0)and
unsigned m = x % vy;
| (x, =y,) and
if (m == 0) return y;
=y (y, =m,) and

(m, =x, %y,) and

} We want a trace where the loopiis
executed twice.

Xy = 2

Yo =
SOIVEN >

m, =

X, =4

y, =2

m,=0
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Type checking

Signhature:
div:int, {x:int|x# 0} —>int

Call site: Subtype

ifa<1anda= b then
return div(a, b)

Verification condition
a <1anda < bimpliesb# 0

Microsoft

Research



What is logic?

e Logic is the art and science of effective reasoning.

e How can we draw general and reliable conclusions
from a collection of facts?

@ Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

e Formal logic makes it possible to calculate
consequences at the symbolic level.

e Computers can be used to automate such symbolic
calculations.

Microsoft
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What is logic?

e Logic studies the relationship between language,
meaning, and (proof) method.

e A logic consists of a language in which (well-formed)
sentences are expressed.

e A semantic that distinguishes the valid sentences from
the refutable ones.

@ A proof system for constructing arguments justifying
valid sentences.

e Examples of logics include propositional logic,
equational logic, first-order logic, higher-order logic,
and modal logics.

Microsoft

Research



What is logical language?

= Alanguage consists of logical symbols whose

interpretations are fixed, and non-logical ones whose
Interpretations vary.

© These symbols are combined together to form well-
formed formulas.

@ In propositional logic PL, the connectives A, v, and —
have a fixed interpretation, whereas the constants p, g,
r may be interpreted at will.

Microsoft
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Propositional Logic

Formulas: o:=p | o,ve, | o, r@, | =@, | o, = @,

Examples:
pvg=qgvp
pA—g A(=pVQ)

We say p and g are propositional variables.

Exercise: Using a programming language, define a
representation for formulas and a checker for well-
formed formulas.

Microso ft-
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Interpretation

An interpretation M assigns truth values {7, L} to
propositional variables.

Let A and B range over PL formulas.

M| is the meaning of ¢ in M and is computed using truth
tables:

¢ |A|B|-A|AVB|AA-A|A=DB|A= (BVA

)

o) | LT T | T 1 T T
)
)




Satisfiability & Validity

o A formula is satisfiable if it has an interpretation that
makes it logically true.

@ |n this case, we say the interpretation is a model.
e A formula is unsatisfiable if it does not have any model.

e A formulais valid if it is logically true in any
interpretation.

@ A propositional formula is valid if and only if its
negation is unsatisfiable.



Satisfiability & Validity: examples

pvVag=qvp

pvaqg=q

pA—q A(—pVQq)

o |A|B|-A|AVB|AN-A|A=B|A= (BVA)
Mu(@d) | L L] T | L 1 T T
Mo(@d) | LI T| T T 1 T T
Ms(o) | T| L] L T 1 1 T
My(o) | T| T | L T 1 T T




Satisfiability & Validity: examples

pvqg=qvVvp VALID
pvag=agqg SATISFIABLE

pA—g A(—pVaQ) UNSATISFIABLE

AVvB | AN-A| A= B | A= (BVA)

S
| =
oy
|
I

1
—

1
—

_| }_
|
|
A A A
|-
|
N

]
1
1
]




Equivalence

Two formulas A and B are equivalent, A — B, if their
truth values agree in each interpretation.

EXxercise 2 Prove that the following are equivalent

1. —A = A

2. A=B <= —-AVEB

3. -(ANB) < —-AV-B
4. -(AVB) — —-AAN-B

5, " A= B — —-B= A



Equisatisfiable

We say formulas A and B are equisatisfiable if and only if
A is satisfiable if and only if B is.

During this course, we will describe transformations that
preserve equivalence and equisatisfiability.
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Nomal Forms

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is
equivalent to one in NNF, CNF, and DNF.

EXercise 4 Show that every n-ary Boolean function can be
expressed using just — and V.



Nomal Forms

NNF?
(o Vv —=q)A(gV —=(rA—p))



Nomal Forms

NNF? NO
(b v —qg)AlgVv —(rA—p))



Nomal Forms

NNF? NO
(b v —qg)AlgVv —(rA—p))

1. A = A
2. A= B = -AVEB
3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B



Nomal Forms

NNF? NO

(o v —=q)A(gV —=(rA—p))
=

(b v —=g)A(gV(=rv—p)) 1. —A = A
2. A= B < -AVDEB
3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B



Nomal Forms

NNF? NO

(p v —=q) A(g Vv —(rA—p))
e

(v —=q)A(gV (=rv——p)) 1. —A = A
e

2 A= B — -AvVvEB
(b v —g)AlqV(=rvp))

3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B



Nomal Forms

CNF?
(pAS)V(=gAr)A(gyv —pvs)A(—rvs)



Nomal Forms

CNF? NO
(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)



Nomal Forms

CNF? NO
(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)



Nomal Forms

CNF? NO

(bAs)v(mgAan)algy —pvs)A(=rvs)

e

(bAs)v—=g)Anllpas)vr)algy —pvs)A(arvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)



Nomal Forms

CNF? NO

(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)

&

(bAs)v=g)Alloas)vr)algy —pvs)A(=rvs)

&

(pv—g)A(sv—g)A((pAS)vI)A(gV —pVS)A(—rvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)



Nomal Forms

CNF? NO

((pAS)V(=gAr))Aa(lgyv—pvs)A(—rvs)

&

(bAs)v—=g))Alloas)vi)algy —pvs)A(=rvs)

&

(pv—g)A(sv—g)A((pAS)vI)A(gy —pVS)A(—rvs)
&

(pv—ag)A(sv—g)A(pVvrIr)A(svr)a(lgy —pVvS)A(—rvs)



Nomal Forms

DNF?
pA(=pVvag)A(—=gvVvr)



Nomal Forms

DNF? NO, actually this formula is in CNF
pA(=pvag)A(—=gvr)



Nomal Forms

DNF? NO, actually this formula is in CNF
pA(=pvag)A(—=gvr)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)



Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pVvag)A(—=gvVvr)
N—

(bA—=p)VvipVva)A(=gvVvr)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)



Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pvag)A(—=gvr)

e
((oA—=p)VvipVva)A(=gvr)
Ne—

(bVvag)A(=gvVvr)

Distributivity

1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)
Other Rules

1. An—AS L

2. Avl <A



Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pVa)A(=gVr)

&

((pA=p)VvipVva))A(=gvr)

&

(pva)A(=gvr)

N Distributivity

((pvag)A—g)Vv(lpvag)Ar) 1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)
Other Rules

1. An-AsS L
2. Av1 S A



Nomal Forms

pA(=pVvg)A(—=gVvr)

=
(pA=p)VvipVva)A(=gvVvr)
Ne—

(ovag)A(=gvr)

=
(pbva)A—qg)vilpvag)Aar)
=

(bA—=q)Vv(gAr—=qg)Vvlpvag) Ar)
Ne—

(bA—=q)Vv(pAr)vi(gnar)



Refutation Decision Procedures

A decision procedure determines if a collection of formulas
is satisfiable.

A decision procedure is given by a collection of reduction
rules on a logical state 1.

State v is of the form k4|... |k, where each k; is a
configuration.

The logical content of K is either L or is given by a finite
set of formulas of the form Aq{,...,A.

&

A state v of the form kq,...,k, is satisfiable if some
configuration k; is satisfiable.

A configuration k of the form A4..... A, is satisfiable if

4 b

there is an interpretation M such that
M= A; for 1 <1 <m.



Inference Systems for Decision Procedures

A refutation procedure proves A by refuting —A through the
application of reduction rules.

An application of an reduction rule transforms a state ¢ to

a state ¢’ (written ¥ & ¢').

Rules preserve satisfiability.

If relation = between states is well-founded and any
non-bottom irreducible state is satisfiable, we say that the

inference system is a decision procedure,

Ex: Prove that a decision procedure as given above is
sound and complete.



Truth Table

| K | V(K]
An inference rule is shorthand for
kil ...|kn V(K| ... |Kn]

The truth table procedure can be viewed as a model
elimination procedure.

r
split  p and —p are not in T,
F'.'p | r —p
rr . . . .
T elim F' is falsified by the literals in T.

A literal is a proposition or the negation of a proposition.
The literals in T" can be viewed as a partial interpretation.

Ex: Prove correctness (soundness, termination, and
completeness).



Truth Table (example)

A truth table refutation of {pV —qV -r,pVvr,pVgq,—p}:

pV—qV-or,pVr,pVg,p

pV—qV-r,pVr,pVq-pq|pV-qV-r,pVr,pVq,-p —q
pv—qV-or,pvr,pVg,p.q | 1

pv—-qV-or,pVr,pVg,p,q
pV —qV-r,pVr,pVaq,-pqr | pV-oqV-r,pVr,pVq-p,q, T
L|lpv—-qv-rpvr,pVvq-pq—r

pvV—qV-r,pvr,pVvg,—-pq,T
1

Ex: Implement the truth table procedure.



Semantic Tableaux

The inference rules for the Semantic Tableaux procedure

are:
AnB,T -(AAB),T
— A+ N
A, BT -A, T | -B,T
ﬁ(AvB),FV (AvB),FV
—uﬁl.,—lB,F A,F | B,F
-(A= B),T (A= B),T
= — = +
x‘iL_lB,:F —IA.,F | B.,F
—-—A,T A AT
- —1
AT 1

Semantic Tableaux is a “DNF translator”.

Ex: Prove correctness.



Semantic Tableaux (example)

Refutation of =(pVv qg= qV p):

—-(pVg=qVp)

AANB,T ~(AAB),T
A+ A—
A, B,T —A,T | -B,T pVq,—(qVp)
~(AV B),T (AVB),T
—asr’" | arjsr’t p.~(qVp) | q¢~(qVp)
-A=B).I_ | A=B).T _ P,—q,—p | q,—(qV p)
A,-B,T ~A,T | B,T
——A.T A’_'A‘FJ_ 1 | Q'a_'(qvp)
AT = ¢, —(qVp)
4, 4. —p
1

Ex: Use the Semantic Tableaux procedure to refute
~(pVigArr)=(pVvg A(pVrT)).

Ex: Implement the Semantic Tableaux.



Semantic Tableaux (cont.)

The complexity of Semantic Tableaux proofs depends on
the length of the formula to be decided.

T he complexity of the truth-table procedure depends only
on the number of distinct propositional variables which
occur in it.

The Semantic Tableaux procedure does not p-simulate the
truth-table procedure. Consider fat formulas such as:

(p1 VP2 Vps)A(=p1 Vs Vps) A
(p1V —p2Vps) A(=p1V —p2Vp3) A
(pl Vpg AV —|p3) FAY (_lp]_ Vpg \v4 _'p?,) M

(p1 V —p2 V —p3) A (—p1 V —p2 V —p3)

Ex: Use Semantic Tableaux to refute the formula above.



Semantic Tableaux (cont.)

T he classical notion of truth is governed by two basic
principles:

Non-contradiction no proposition can be true and false at
the same time.

Bivalence every proposition is either true of false.

There is no rule in the Semantic Tableaux procedure which
correspondes to the principle of bivalence.

The elimination of the principle of bivalence seem to be
inadequate from the point of view of efficiency.



Semantic Tableaux + Bivalence

The principle of bivalence can be recovered if we replace
the Semantic Tableaux branching rules by:

—l(A;'\B),F —l(Af\B).,F
Nleft — right —
“A,T | A,—-B,T ~B.T | B,—-A,T
(Av B), T’ S (Av B),T N
AT |-A,BT " B,T | -B,A,T ™"
(A= B),T L (A= B),T _ N
AT | ABT T | Br|-B,-AD "™

The new rules are asymmetric.

Ex: Show that the new rules are sound.



CNF (again)

A CNF formula is a conjunction of clauses. A clause is a
disjunction of literals.

Ex: Implement a linear-time decision procedure for 2CNF
(each clause has at most 2 literals).

A clause is trivial if it contains a complementary pair of
literals.

Since the order of the literals in a clause is irrelevant, the
clause can be treated as a set.

A set of clauses is trivial if it contains the empty clause
(false).



CNF (again)

Equivalence rules can be used to translate any formula to

CNF.
eliminate = A= B=-AVvB
reduce the scope of — -(AV B)=-AN-B,

-(AANB)=-AvV-B
apply distributivity Av(BANC)=(AvB)A(AvO),
AN(BVC)=(AANB)V(ANC)




CNF (again)

The CNF translation described in the previous slide is too
expensive (distributivity rule).

However, there is a linear time translation to CNF that
produces an equisatisfiable formula. Replace the
distributivity rules by the following rules:

Fliiop l]
Flzl,x = 1l; op |;
I — Ei‘v'lj

_|33V-'fi VEJ,,_IEEVI..,_I-ZJ VT
= Eihij

ﬁ:rVIi-j—-mv.-fjj—-liV—-ij:ﬂ
(*) x must be a fresh variable.

Ex: Show that the rules preserve equisatisfiability.



CNF translation (example)

Translation of (pA(qVvr))Vi:

(pA(gvr)) Vi
(pAhzy)VExy = qVr

To Vi, xo & pAxy, 21 = qVrT

To VI, =Zo VP, ~ZoVIy,7pV 2y VIg, xS qVr

Lo VI, 2o Vp, 2 VI,pV oz VI, VgVr,-qVIy,rVir

Ex: Implement a CNF translator.



Semantic Trees

A semantic tree represents the set of partial interpretations
for a set of clauses. A semantic tree for

{pv ﬂqv—-r,pw“r'.,p\r’q.,—'p}i

ol

A node N is a failure node if its associated interpretation
falsifies a clause, but its ancestor doesn’'t.

Ex: Show that the semantic tree for an unsatisfiable
(non-trivial) set of clauses must contain a non failure node
such that its descendants are failure nodes.



Resolution

Formula must be in CNF.

Resolution procedure uses only one rule:

CyVp,CyV—p

res
C1Vp,CyV—=p, VG

T he result of the resolution rule is also a clause, it is called
the resolvent. Duplicate literals in a clause and trivial
clauses are eliminated.

There is no branching in the resolution procedure.
Example: The resolvent of pvgvr, and -pvrviisqgVvrVvt.

Termination argument: there is a finite number of distinct
clauses over n propositional variables.

Ex: Show that the resolution rule is sound.



Resolution (example)

A refutation of =pV —qVr, pvVr, gqVr, —r:

—pV-ogVrT

/—.fr qvr /—-r

NN
7

Ex: Implement a naive resolution procedure.



Completeness of Resolution

Let Res(S) be the closure of S under the resolution rule.

Completeness: S is unsatisfiable iff Res(S) contains the
empty clause.

Proof (=):

Assume that S is unsatisfiable, and Res(S) does not contain
the empty clause.

Key points: Res(S) is unsatisfiable, and Res(S) is a non
trivial set of clauses.

The semantic tree of Res(S) must contain a non failure
node N such that its descendants (N,, N_,) are failure
nodes.



Completeness of Resolution

/N

Nop

There is C7 vV —p which is falsified by N,, but not by N.
There is Cy V p which is falsified by N—,, but not by N.

C, v Cy is the resolvent of C; v —p and C5 V p.

Cy Vv Cs is in Res(S), and it is falsified by N (contradiction).

Proof («<): Res(S) is unsatisfiable, and equivalent to S. So,
S is unsatisifiable.



Subsumption

The resolution procedure may generate several irrelevant
and redundant clauses.

Subsumption is a clause deletion strategy for the resolution
procedure.

C1.C, v Oy
C1

sub

Example: pV —q subsumes pV gV r VL.

Deletion strategy: Remove the subsumed clauses.



Unit & Input Resolution

Unit resolution: one of the clauses is a unit clause.

Cvil

a

C,l

unit

Unit resolution always decreases the configuration size
(C vl is subsumed by ).

Input resolution: one of the clauses is in S.

Ex: Show that the unit and input resolution procedures are
not complete.

Ex: Show that a set of clauses S has an unit refutation iff it
has an input refutation (hint: induction on the number of

propositions).



Hom Clauses

Each clause has at most on positive literal.
Rule base systems (—=py V...V=p,Vqg = p1 N ... \pp=q).

Positive unit rule:

C'V-p,p
C,p

unit™

Horn clauses are the basis of programming languages as
Prolog.

Ex: Show that the positive unit rule is a complete
procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.



Semantic Resolution

Remark: An interpretation I can be used to divide an
unsatisfiable set of clauses S.

Let I be an interpretation, and P an ordering on the
propositional variables. A finite set of clauses {Ey,...,E;, N}

b

is called a clash with respect to P and I, if and only if:
o Ey, ..., E; are false in I.
e Ry =N, foreachi=1,...,q, thereis a resolvent R;;; of R; and E;.

e [ he literal in E;, which is resolved upon, contains the largest
propositional variable.

o Ryy1is false in I. Rgy1 is the PlI-resolvent of the clash.



Semantic Resolution (example)

Let I ={p,~q}, S={pVq,—pVaq,pV—g-pV—q}, and
P=[p<gq|.

PVq “pV g

Ex: Show that PI-resolution is complete (hint: induction on
the number of propositions).



Semantic Resolution (special cases)

Positive Hyperresolution: I contains only negative literals.
Negative Hyperresolution: I contains only positive literals.

A subset T of a set of clauses S is called a set-of-support of
S if S —T is satisfiable.

A set-of-support resolution is a resolution of two clauses
that are not both from S —T.

Ex: Show that set-of-support resolution is complete (hint:
use Pl-resolution completeness).



DPLL = Unit resolution 4 Split rule.

r
Lp | Ly=p
C VI,

split  p and —p are not in I'.

unat

1

Used in the most efficient SAT solvers.



Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p = ( —1X1 \/Xg) N\ ( X3 V —|X2) /N (X4 V —'X5) /\ (X5 V —|X4)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xia = (X4 V 7x5) A (X5 V —xs)

Preserve satisfiability, not logical equivalency!



Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p = ( —1X1 \/Xg) N\ ( X3 V —|X2) /N (X4 V —'X5) /\ (X5 V —|X4)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xia = (X4 V 7x5) A (X5 V —xs)

Preserve satisfiability, not logical equivalency!



DPLL (as a procedure)

» Standard backtrack search

» DPLL(F) :
» Apply unit propagation
» |f conflict identified, return UNSAT
» Apply the pure literal rule
» If F is satisfied (empty), return SAT
» Select decision variable x

» |f DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)



DPLL (example)

(av—-bvd)n(aVv-bVe)A

(b V dV—e)A
(avbvevd)A(aVvbVveVv—d)n
(avbVv-cVve)A(aVbV-cV—e)

(JQ:



DPLL (example)

aVvV-bvd)A(aVv-bVe)A

bV -dV-e)A @
aVbvevd)A(avbVeVad)A
avVbVvV-ocVve)A(aVbV-cV—e)

i]p:

(
(=
(
(



DPLL (example)

aV-bVd)A(aV-bVe)A

bV —dV —e)A @

avbvevd)A(aVvbVveVv-ad)n

avVbV-cVve)A(aVbV-cV—e) f

conflict

(,p:

(
(=
(
(



DPLL (example)

aVvV-bvd)An(aVv-bVve)A

(

(=bV —dV -—e)A @
( .

(

(]Q:

avVbveVvd)A(aVvbVcV-d)A

avVbVvV-cVve)A(aVbV-cV —e) f

conflict



DPLL (example)

aV—-bVvd)An(aV—-bVe)A

bV —=dV-e)A ;CD

avbvecvd)A(aVvbVeV-d)Aa

avVbVvV-cVe)A(aVbV-cV —e) f

conflict )
!
!

(Jp:

(
(-
(
(



DPLL (example)

aV-bVvd)AN(aV—-bVe)A
bV —dV—e)A f()

(
(—
(avbvevd)A(avbVeVv-d)a
(

avVbV-cVe)A(aVbV-cV —e) f

conflict J,
!
!

(]0:




DPLL (example)

aV-abvd)A(aV-bVve)Aa

p = (
(=bV —d VvV —e)A (@\
(avbVvevd)A(aVbVcVad)A
(a2vbV-cVe)A(aVbV-cV—e) f

conflict f
!
!




DPLL (example)

(avV—-bVvVd)An(aVv—-bVe)A

(—=bV —dV—e)A ,
(avbVvevd)A(aVbVeV—d)A
(aVbV-cVe)A(aVbV-cV —e) f o

conflict / solution
!

{]p:




Some Applications



Bit-vector / Machine anthmetic

Let x, y and z be 8-bit (unsigned) integers.

IsSX>0Ay>0Az=x+y=z>0 valid?

IsSXx>0AYy>0AzZ=X+Yy A —(z>0) satisfiable?



Bit-vector / Machine anthmetic

We can encode bit-vector satisfiability problems in
propositional logic.

|dea 1:

Use n propositional variables to encode n-bit integers.
X 2 (Xq, ey X))

ldea 2:
Encode arithmetic operations using hardware circuits.



Encoding equality

p < g is equivalentto (—p v g) A (=g Vv p)

The bit-vector equation x =y is encoded as:
(X, @y )A . Alx, SVy,)



Encoding addition

We use (ry, ..., r,) to store the result of x +y
p xor g is defined as —(p < q)

xor is the 1-bit adder
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Encoding 1-bit full adder

1-bit full adder
Three inputs: x, y, ¢,
Two outputs: r, ¢,

0
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Encoding n-bit adder

We use (r, ..., r,) to store the result of x +y,
and (¢, ..., ¢,)

r; < (x, xory;)

¢, < (X, Ayy)

r, < (x, xor y, xor c,)

C, = (X AY,) VI X, ACy) VY, AC)

r, < (x, xory, xor c, ;)

c, o x,Ay)vix,Ac, vy, Ac, )



Exercises

1) Encode x *vy
2) Encode x >y (signed and unsigned versions)



Test case generation (again)

unsigned GCD(X, V) {

(yO > O) and XO =2
requires(y > 0); _
q Yy (mO = XO % yo) and yo —
hile (t SS ST
whniie ( rue) { JJJL\ > not (mo — O) and JQJVS‘f > S
unsigned m = x % v; °
_ (x, =y,) and X =4
if (m == 0) return v; 1
=y (y, =m,) and y, =2
(m, =x, %y,) and m. =0

} We want a trace where the loopiis
executed twice.

Microsoft

Research



Bounded Model Checkers

Model checkers are used to verify/refute properties of
transition systems.

Transition systems are used to model hardware and
software.

Bounded Model Checking is a special kind of model checker.



Transition Systems

Transition system M = (S,1,T)
S: set of states.

I C 5: set of initial states. Example:

I(s) = sax=0Aspc=1

T C 5 =% S: transition relation. Example:

T(s,s8") = (spc=hrnsx=sx+2Nspc=1)V
(spec=lahnsx>0Nsx=50—-2Nspc=1)V

(s.pc=Iy Ns'.x=sx A8 pc=1)



Transition Systems (cont.)

T(s,s') = (spec=lLNnsdx=s82+2ANspc=1)V
(spc=laNhse>0Nsx=s502-2Nspc=1)V

(s.pc=IlyAns.x=s2Nspc=1)

r>01r =xr—-2

m(80,...,8n) is @ path iff I(sg) and T'(s;, 8i+1) for 0 < i < n.
Example:

("!1'10) — (3212) — (Zl.,Q) — (Z234) — ('{2=2) — (EE&D) — (ZI#U)



Invanants

A state s, is reachable iff there is a path m(sq,...,s).

Invariants characterize properties that are true of all
reachable states in a system.

Any superset of the set of reachable states is an invariant.
Example: s.z = 0.

A counterexample for an invariant ¢ is a path m(sg,...,s)
such that —p(sg).

Model Checkers can verify/refute invariants.

T here are different kinds of model checkers:
e EXxplicit State
e Symbolic (based on BDDs)
¢ Bounded (based on DP)



Bounded Model Checking: Invanants

Given.
e Transition system M = (S5,1,T)
e Invariant ¢
e Natural number k

Problem.

Is there a counterexample of length k for the
invariant ©7

There is a counterexample for the invariant ¢ if the
following formula is satisfiable:

I(51) ANT(81,82) Ao o AT (Sk—1,8k) A (—@(81) V...V —p(51))



Bounded Model Checking: Invanants

Given.
e Transition system M = (S5,1,T)
e Invariant ¢
e Natural number k

Problem.

Is there a counterexample of length k for the
invariant ©7

There is a counterexample for the invariant ¢ if the
following formula is satisfiable:

{(31) ANT(sy,82) Ao AT (8321, Sk}) A (—p(s1) V...V —p(si))




Bounded Model Checking (cont.)

BMC is mainly used for refutation.

Users want counterexamples. The decision procedure (DP)
must be able to generate models for satisfiable formulas.

BMC is a complete method for finite systems when the
diameter (longest shortest path) of the system is known.

The diameter is usually to expensive to be computed.

The recurrence diameter (longest loop-free path) is usually
used as a completeness threshold.

The recurrence diameter can be much longer than the
diameter.



Recurrence diameter

A system M contains a loop-free path of length n iff

(S0, ...y 8n) N /\ Si # 8§

0<i<j<n
T he recurrence diameter is the smallest n such that the

formula above is unsatisfiable.

The diameter of infinite systems (i.e., infinite state space)
may be infinite.



Venfying Invanants

An invariant is inductive if:
e I(s) — p(s) (base step)
e p(s)NnT(s,s") — p(s") (inductive step)
Invariants are not usually inductive.
The inductive step is violated.

Example: (l2,1) — (l2,—1)



Ventying Invanants: k-induction

An invariant ¢ is k-inductive if:
® [(sy)NnT(s1,82)N.. . AT(8p_1,8) — @w(s1)N...ANp(sy)
® o(s1)N...ANp(sp) AT (s1,82) Ao AT (Sg, Skg1) — ©(Skt1)

It is harder to violate the inductive step.

The base case is BEMC.

If ¢ is ki-inductive then it is also ky-inductive for ky = k.



Venfying Invanants: k4nduction (cont.)

Can be used to verify finite and infinite systems.

Not complete even for finite systems: Self-loops in
unreachable states.

Example:

o
@

Bad state s,

Counterexamples s; ~s 8§53~ ... ~> 83~ 54

k




Venfying Invanants: k4nduction (cont.)

Completeness for finite systems: consider only loop-free
paths.

Not complete for infinite systems. Example:
e (I2,1)— (lo,—1)
e (15,3) = (I2,1) — (I, —1)

e (I2,5) — (12,3) — (l2,1) — (2, —1)



Expernmental Exercises

» The first step is to pick up a SAT solver.
» Play with simple examples
» Translate your problem into SAT

» Experiment



Avallable SAT Solvers

Several open source SAT solvers exist :

Minisat (C++) www.minisat.se Presumably the most widely
used within the SAT community. Used to be the best
general purpose SAT solver. A large community
around the solver.

Picosat (C)/Precosat (C+-+)
http://fmv. jku.at/software/index.html
Award winner in 2007 and 2009 of the SAT
competition, industrial category.

SAT4]J (Java) http://www.satdj.org. For Java users. Far less
efficient than the two others.

UBCSAT (C) http://www.satlib.org/ubcsat/ Very efficient
stochastic local search for SAT.

http://www.satcompetition.org Both the binaries and the

source code of the solvers are made available for research purposes.



Avallable Examples

e Satisfiability library: http://www.satlib.org
e The SAT competion: http://www.satcompetition.org
o Search the WEB: “SAT benchmarks”



http://www.satlib.org/
http://www.satcompetition.org/

Using SAT solvers

All SAT solvers support the very simple DIMACS CNF input
format :

(aVv bV —c)N(=bV —c)

will be translated into

p cnf 3 2
12-30
-2 -3 0

The first line is of the form

p cnf <maxVarId> <number(OfClauses>

Each variable is represented by an integer, negative literals as
negative integers, O is the clause separator.



