
Tool description presented at CAV, Boston MA, July 2004. Appears in
Springer Verlag LNCS 3114, pp. 496-500. c© Springer-Verlag

SAL 2?

Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby,
N. Shankar, Maria Sorea, Ashish Tiwari

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. SAL 2 augments the specification language and explicit-state
model checker of SAL 1 with high-performance symbolic and bounded
model checkers, and with novel infinite bounded and witness model check-
ers. The bounded model checker can use several different SAT solvers,
while the infinite bounded model checker similarly can use several dif-
ferent ground decision procedures. SAL 2 provides a scriptable API for
its basic model checking and analysis functions that can be used to ex-
tend the system. All four new model checkers are implemented using this
interface.
Its high-level specification language and wide range of model checkers
make SAL convenient for those seeking a ready-to-use solution, while
its scriptability and flexible choice of backend analyzers should make it
attractive to those seeking an experimental platform.

1 Introduction

SAL (see http://sal.csl.sri.com) is an open suite of tools for analysis of state
machines; it constitutes part of our vision for a Symbolic Analysis Laboratory
that will eventually encompass SAL, the PVS verification system, the ICS deci-
sion procedures, and other tools developed in our group and elsewhere.

SAL provides a language similar to that of PVS, but specialized for the
specification of state machines; it was first released with an explicit-state model
checker as SAL 1 in July 2002; SAL 2, which was released in December 2003,
adds high-performance symbolic and bounded model checkers, and novel infinite
bounded and witness model checkers. Both the bounded model checkers can addi-
tionally perform verification by k-induction, and the capabilities of all the model
checkers and their components are available through an API that is scriptable
in Scheme.

2 The Language

The SAL language was originally conceived as an intermediate language and was
developed in collaboration with the research groups of David Dill at Stanford
? This work was partially supported by the DARPA and USAF Rome Laboratory

contract F33615-00-C-3043, NASA Langley Research Center contract NAS1-00079,
National Science Foundation grant CCR-ITR-0326540, and by SRI International.

1

http://sal.csl.sri.com


and Tom Henzinger at UC Berkeley. Since then, our version of the language
has evolved, principally through the addition of a richer type system, including
structured types and subtypes so that, in addition to its role as an intermediate
language, SAL is now a comprehensive specification language in its own right.

SAL’s type system and expression language are similar to those of PVS,
including higher types, predicate subtypes, datatypes, infinite types such as re-
als and integers (and their function types), recursive function definitions, and
quantification. State machines are specified as parameterized modules with state
variables explicitly identified as input, output, local, or global. The transition
relation of a module may be specified using both guarded commands and SMV-
style variable-wise invariants. Primes are used to indicate the values of variables
in the new state and may appear in guards and in the right-hand sides of assign-
ments and nondeterministic selections as well as on their left-hand sides. Modules
may be composed both synchronously and asynchronously (and in combinations
of these) to yield systems; a renaming construction allows inputs and outputs of
different modules to be “wired up” appropriately.

The assertion language is not primitive in SAL but is defined in libraries
associated with the analyzer concerned. Three of the model checkers that con-
stitute the analyzers in SAL 2 provide LTL as their assertion language, while
the witness model checker supports CTL. (Both notations can be used to specify
formulas in their common subset and SAL translates automatically to the form
required by the analyzer concerned).

To support its role as an intermediate language, SAL is defined in XML.
Parsers and prettyprinters are provided for a human-readable ASCII represen-
tation, and for a Lisp-like LSAL syntax that is useful in scripting and is trans-
lated directly into internal representations by the Scheme scripting interface.
Because the language is so rich, it is easy to translate most other state ma-
chine languages into SAL. We have a translator from the Stateflow notation of
Matlab/Simulink [8], and we expect that ourselves and others will soon provide
translators from other popular languages.

3 Preprocessing and Compilation

Because SAL is a rich language, compiling it into the representations used in
the deductive cores of its analysis tools (e.g., as BDDs, or as propositional or
ICS SAT problems) is a substantial task. All the SAL analysis tools share a
common set of preprocessing and compilation routines that perform extensive
optimizations. These include partial evaluation, common subexpression elimi-
nation, and slicing (i.e., cone of influence reduction). For the finite-state model
checkers, arithmetic values and operators are compiled into bitvectors and binary
“circuits” respectively, with comparable representations for other SAL types. Re-
verse translations allow counterexamples to be presented to the user as traces
through the original SAL specification with variable assignments expressed in
their original SAL types. LTL assertions are translated to optimized Büchi au-
tomata. Many transformations and optimizations can be controlled by the user.

2



SAL 2 provides a lightweight typechecker, called the SAL well-formedness
checker, that operates like the typechecker of a programming language: it checks
that functions and operators are applied to arguments of the correct types, but
does not perform the deeper checks needed for some of SAL’s richer constructs:
these require proof obligations similar to TCCs in PVS [11] (although SAL TCCs
within modules need merely be invariants, not universally valid as in PVS) and
will be supported by the full SAL typechecker, which is based on that of PVS.

4 Model Checkers

SAL 2 provides high performance symbolic and bounded model checkers (SMC
and BMC, respectively) for systems defined over finite state types, and a novel
“infinite bounded” model checker (inf BMC) that can handle infinite as well
as finite state types; SAL 2.1 added the “witness” model checker (WMC) that
performs finite-state CTL model checking using a new symbolic method.

The SMC and WMC symbolic model checkers use the CUDD BDD package
(see http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html) and provide
access to its options for controlling the ordering and dynamic reordering of vari-
ables. The representation of the transition relation as a BDD and the evaluation
of the transformed assertion use many optimizations and deliver performance
comparable to other state-of-the-art symbolic model checkers, most of which
start from much more primitive notations. In a case study with Holger Pfeifer
and Wilfried Steiner concerning fault-tolerant startup of the Time-Triggered
Architecture (TTA) [13], we routinely analyzed systems with many hundreds of
state bits and hundreds of billions of reachable states in tens of minutes using
commodity workstations.

The WMC model checker implements a novel approach that constructs both
symbolic witnesses (positive) and counterexamples (negative) for assertions in
full CTL [12]. This symbolic evidence is useful in abstraction-refinement, vacuity
checking and controller synthesis, and also allows explicit (trace or tree-like)
witnesses and counterexamples to be extracted.

The BMC model checker uses a propositional SAT solver to search for coun-
terexamples no longer than some specified “depth” (i.e., length); the model
checker can be instructed to advance the depth incrementally, so that it will find
the shortest counterexample, and it can also verify properties by k-induction [5]
(optionally using other formulas as lemmas). By default, SAL uses ICS [3] as its
SAT solver, but it can optionally be instructed to use zChaff [10] or GRASP [9].
In our TTA startup example, the SAL bounded model checker would often solve
problems having hundreds of thousands of DAG nodes in their SAT representa-
tions (and more than 600 variables in a BDD representation) in a few minutes.

The inf BMC model checker uses the standard formulation of bounded model
checking, but instead of translating into a purely propositional SAT problem, it
translates to the theory supported by ICS [4]. Although ICS is competitive as
a pure SAT solver, it is actually a decision procedure and satisfiability solver
for the combination of ground (i.e., unquantified) real and integer linear arith-
metic, equality with uninterpreted function symbols, products (i.e., tuples) and

3

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html


coproducts (i.e., disjoint sums), propositional calculus and propositional sets,
and restricted forms of lambda calculus, bitvectors, and arrays. Like its finite
counterpart, the inf BMC model checker can advance its depth of search incre-
mentally and can perform k-induction. Counterexamples are presented symbol-
ically. Although inf BMC uses ICS as its default satisfiability procedure, it can
also be instructed to use UCLID [2], SVC [1], CVC [14], or CVC-Lite, albeit
with restrictions (e.g., UCLID decides less theories than ICS) and without coun-
terexamples.

Using real or unbounded integer state types, SAL can represent infinite state
systems such as hybrid or timed automata, and other formulations of continuous
or real-time behavior. For example, with Bruno Dutertre, we have developed
a timed formulation for TTA startup: instances with up to 10 nodes (whose
representation uses 24 real and 99 discrete variables) can be verified in a few
minutes using inf BMC to perform 1-induction on a series of lemmas [6]. Instances
of Fischer’s real time mutual exclusion algorithm with as many as 39 nodes have
been verified in the same way.

5 Scripting and the SAL Simulator

The preprocessing and model checking components of SAL can be accessed
through an API defined in Scheme. The actual model checkers are simply Scheme
scripts defined over this API. Users can write their own scripts to perform spe-
cialized analyses using the full resources of SAL. The SAL Simulator provides
a convenient environment in which to develop such scripts: it is essentially a
read-eval-print loop with the SAL libraries preloaded. Used as a simulator, it
allows users interactively to explore a specification by executing selected tran-
sitions, filtering the current set of states, or finding a path to a state satisfying
a given assertion. Used as an environment for scripting, all the capabilities de-
scribed above can be employed within user-written Scheme functions. For exam-
ple, with Grégoire Hamon we have used this capability to develop a prototype
test case generator for Stateflow that first uses symbolic model checking to find a
path to some previously unvisited state or transition, then alternates slicing and
bounded model checking to extend the path to additional unvisited targets [7].

6 Plans for Further Development

SAL 1, which is still available, provides an explicit-state model checker for a
subset of the language supported in SAL 2. We intend to redevelop this model
checker and to integrate it with the others in forthcoming versions of SAL. We
will also integrate the extensions for specifying and abstracting hybrid systems
developed by Ashish Tiwari [15].

Over the longer term, we intend to integrate SAL with PVS (so that, for
suitable specifications, it will be possible to translate SAL into PVS, and vice-
versa), and to evolve both into an open scriptable environment for symbolic
analysis in which numerous tools, developed by ourselves and others, will interact
through a SAL Tool Bus. The tool bus will extend the SAL language with XML

4



representations for the many artifacts and intermediate products of analysis: for
example, invariants, abstractions, counterexamples, test cases and their outputs.

7 Current Status and Availability

SAL 2 with all the capabilities described is freely available for noncommer-
cial research purposes (i.e., roughly, research that will be openly published)
from http://sal.csl.sri.com. Binary versions of the system, which require
an automatically-generated license key, may be downloaded for Linux, Solaris,
MacOS X, and Cygwin (for Windows). The SAL binaries also install the ICS
executable. The SAL and ICS source code is available with a signed license agree-
ment. The top-level page for tools developed by our group is http://fm.csl.
sri.com, from which you can find links to our Roadmap, papers, examples, and
a tutorial illustrating all our tools.

References

1. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for
bit-vector arithmetic. In Proceedings of the 35th Design Automation Conference,
June 1998. San Francisco, CA.

2. Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and ver-
ifying systems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Computer Aided Verification. Volume 2404 of Springer-
Verlag Lecture Notes in Computer Science, pages 78–92, July 27–31 2002.

3. Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, and N. Shankar. The
ICS decision procedures for embedded deduction. In David Basin and Michaël
Rusinowitch, editors, 2nd International Joint Conference on Automated Reasoning
(IJCAR), Volume 3097 of Springer-Verlag Lecture Notes in Computer Science,
pages 218–222, Cork, Ireland, July 2004.

4. Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for
bounded model checking over infinite domains. In A. Voronkov, editor, 18th Inter-
national Conference on Automated Deduction (CADE), Volume 2392 of Springer-
Verlag Lecture Notes in Computer Science, pages 438–455, Copenhagen, Denmark,
July 2002.

5. Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model check-
ing and induction: From refutation to verification. In Warren A. Hunt, Jr. and
Fabio Somenzi, editors, Computer-Aided Verification, CAV ’2003, Volume 2725 of
Springer-Verlag Lecture Notes in Computer Science, pages 14–26, Boulder, CO,
July 2003.

6. Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant
real-time startup protocol using calendar automata. In Formal Techniques in Real-
Time and Fault-Tolerant Systems, Grenoble, France, September 2004. To appear,
available at http://fm.csl.sri.com/doc/abstracts/ftrtft04.

7. Grégoire Hamon, Leonardo deMoura, and John Rushby. Generating efficient test
sets with a model checker. In 2nd IEEE International Conference on Software
Engineering and Formal Methods, Beijing, China, September 2004. To appear,
available at http://fm.csl.sri.com/~rushby/abstracts/sefm04.

5

http://sal.csl.sri.com
http://fm.csl.sri.com
http://fm.csl.sri.com
http://fm.csl.sri.com/doc/abstracts/ftrtft04
http://fm.csl.sri.com/~rushby/abstracts/sefm04


8. Grégoire Hamon and John Rushby. An operational semantics for Stateflow. In
M. Wermelinger and T. Margaria-Steffen, editors, Fundamental Approaches to Soft-
ware Engineering: 7th International Conference (FASE), Volume 2984 of Springer-
Verlag Lecture Notes in Computer Science, pages 229–243, Barcelona, Spain, 2004.

9. Joao P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 220–227, November 1996.

10. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

11. John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–720,
September 1998.

12. N. Shankar and Maria Sorea. Counterexample-driven model checking. Technical
Report SRI-CSL-03-04, Computer Science Laboratory, SRI International, Menlo
Park, CA, October 2003. Available at http://www.csl.sri.com/users/sorea/

reports/wmc.ps.gz.
13. Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model checking

a fault-tolerant startup algorithm: From design exploration to exhaustive fault
simulation. In The International Conference on Dependable Systems and Networks,
pages 189–198, IEEE Computer Society, Florence, Italy, June 2004.

14. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: a cooperating validity
checker. In Computer Aided Verification. Volume 2404 of Springer-Verlag Lecture
Notes in Computer Science, pages 500–504, July 27–31 2002.

15. Ashish Tiwari. Approximate reachability for linear systems. In O. Maler and
A. Pnueli, editors, Hybrid Systems: Computation and Control, 6th International
Workshop, HSCC 2003, Volume 2623 of Springer-Verlag Lecture Notes in Computer
Science, pages 514–525, Prague, Czech Republic, April 2003.

6

http://www.csl.sri.com/users/sorea/reports/wmc.ps.gz
http://www.csl.sri.com/users/sorea/reports/wmc.ps.gz

