
Presented at the Fifth International Symposium on the Theory and Applications of Satisfiability
Testing (SAT’02), Cincinnati, USA, 15 May 2002.

Lemmas on Demand for Satisfiability Solvers
�

Leonardo de Moura, and Harald Rueß

SRI International
Computer Science Laboratory

333 Ravenswood Avenue
Menlo Park, CA 94025, USA�

demoura, ruess � @csl.sri.com

Abstract. We investigate the combination of propositional SAT checkers with
satisfiability procedures for domain-specific theories such as linear arithmetic,
arrays, lists and the combination thereof. Our procedure realizes a lazy approach
to satisfiability checking of Boolean constraint formulas by iteratively refining
Boolean formulas based on lemmas generated on demand by the decision proce-
dures.

1 Introduction

Boolean Satisfiability (SAT) have been successfully applied in different areas rang-
ing from electronic design automation [7, 2] to artificial intelligence [6]. In bounded
model checking [2] (BMC), for example, the system verification problem is encoded as
a propositional formula such that every model of the formula corresponds to an invalid
execution trace. In this way, BMC extends ideas for using SAT checkers to generate
plans (as witnesses of eventually reaching goal) [6].

Finiteness is an inherent restriction in applications based on propositional repre-
sentations such as BMC. Many applications, however, require data values from infinite
domains such as integers, reals, arrays, or lists. Therefore, we investigate the combina-
tion of propositional SAT checkers with domain-specific satisfiability procedures as a
conceptual basis for applications such as BMC over infinite domains. The basic idea
is to iteratively refine Boolean formulas based on the analysis of a conjunction of con-
straints corresponding to a Boolean assignment. In this way, domain-specific knowledge
is added lazily in terms of Boolean clauses.

For the special case of equality theories over terms with uninterpreted function sym-
bols, Ackermann [1] already defined a reduction to Boolean logic by adding all possible
applications of the congruence axiom. Variations of Ackermann’s trick have been used,
for example, by Pnueli et al [10] for validating compilation runs and by Bryant, Ger-
man, and Velev [3] for equivalence checking of pipelined microprocessors. Compared
to reductions based on Ackermann’s translation, our procedure works for logics with a
rich set of data types. Moreover, instead of constructing an equisatisfiable Boolean for-
mula a priori, we compute a sequence of refinements by adding propositional lemmas

�
This research was supported by SRI International internal research and development, the
DARPA NEST program through Contract F33615-01-C-1908 with AFRL, and the National
Science Foundation under grants CCR-00-86096 and CCR-0082560.

1

2

as obtained from an analysis of spurious Boolean assignments. However, predetermined
classes of lemmas may be used to speed up our convergence of our refinement process
for certain applications. The process of refining Boolean formulas using lemmas gen-
erated on demand is similar to the refinement of abstractions based on the analysis of
spurious counterexamples [4].

The paper is structured as follows. In Section 2 we provide some background mate-
rial on satisfiability procedures and BMC. Section 3 describes our integrated approach
and Section 4 summarizes some initial experience with a prototypical implementation
of our integrated approach. Finally, in Section 5 we draw conclusions.

2 Background

Propositional variables can be assigned truth values ������� or �	��
��� . A literal is a variable
or its negation. A clause � is a disjunction of literals. A CNF formula is a conjunction
of clauses. For our purposes, a SAT solver (� -sat) is a function that receives a CNF
formula and returns a truth assignment to the variables such that the formula becomes
satisfied, or unsatisfiable if such assignment does not exist. A SAT solver is said to be
incremental if the state of the procedure after processing � can be used to decide if
������� is satisfiable.

A satisfiability procedure (constraint solver) � -sat is a function that checks whether
or not a set of constraints in a theory � is satisfiable. For instance, a linear programming
system is a satisfiability solver for linear arithmetic.

Given a constraint theory � , the set of boolean constraints �����������! includes all
constraints in � and it is closed under conjunction " , disjunction # , and negation$&% The notions of satisfiability, inconsistency, satisfying assignment, and satisfiability
solver are lifted to the set of boolean constraints in the usual way.

Bounded model checking (BMC) is concerned with searching for counterexamples
of length ' to the model checking problem (*) +,� , where (is the system (program)
being verified, and � is a property. The approach is similar to planning as satisfiability,
however, we have system transitions instead of actions, and the goal is a trace (coun-
terexample) that falsifies � .

3 The Integrated Satisfiability Solver

A satisfiability solver for �������-���. can be obtained from a Boolean SAT solver and a
� -solver by simply converting the problem into disjunctive normal form, but the result
is prohibitively expensive. Instead, we propose an algorithm based on the refinement
of Boolean formulas with lemmas about constraints �0/1� . We restrict our analysis to
formulas in CNF, since most SAT solvers expect their input to be in this format.

Translation schemes between propositional formulas and Boolean constraint formu-
las are needed, since SAT solvers and � -solvers operate over disjoint sets of formulas.
Given a formula � such a corresponce is easily obtained by abstracting constraints in
� with (fresh) propositional variables. In this way, Let 2 be a funtion that maps con-
straints in � to propositional variables. This mapping induces a mapping from boolean

3

procedure sat(�)� := �������
loop�

:= 	 -sat � � �
if
�

= unsatisfiable then unsatisfiable
else if
 -sat(��� � �) then satisfiable

else � := �� create-lemmas(
�

)

Fig. 1. Satisfiability solver for ����������
��

constraint formulas to propositional formulas. For example, the formula ���������� " ��! +"� �$#&%(' ��!)� % over linear arithmetic is mapped to 2 � � &++*,!�"-*/. ' */0 ,
where 2&�1� � � � 2' *�! , 2 ����! +3� �#4% 52' */. , and 2&�1��!6� % 72' *80 . Moreover,
an assignment 9 for propositional variables induces a set of constraints. Thus, let : be
the function that performs such mapping. For instance, the assignment 9,+<;=*>!?2'
�	��
���A@B*/.C2' �������D@B*/0E2' �	�
���GF induces the set :��H9� +I;J� �)K � @=��! +L� �M#N% @O��! K"% F .

The procedure PRQTS � � in Figure 1 combines a Boolean SAT solver � - ��� � and a
domain-specific satisfiability solver � -sat. � -sat generates a candidate Boolean assign-
ment for 2&� � . If there is no such candidate, the algorithm terminates, since � is clearly
unsatisfiable. Otherwise the satisfiability solver � - ����� is used to check whether or not
the Boolean assignment 9 determines a valid assignment for � . If the assignment is not
valid, new propositional clauses (lemmas) are added to the boolean formula at hand.
The function create-lemmas is used to create such clauses. Optionally, create-lemmas
uses the invalid assignment 9 to guide the lemma generation.

A simple implementation of create-lemmas creates clauses of increasing size in
each iteration. For example, if 2&�1� � � % U2' *�! , 2 ��� � � � U2' */. , 2&�1��! +V� � U2' */0 ,
2 ����!�� % W2' */X , 2 ����!Y� � W2' *8Z , the first call to create-lemmas produces the
clauses $ *�!�#-*8. , and $ */X #-*/Z , the second one produces the clauses $ *,!.# $ */0.#-*�X ,$ *�!�# $ */0 #-*/Z , and so on. This unguided enumeration is sound and complete proce-
dure, but it is usually infeasible in practice, since the number of clauses of size ' is[�1\^] , where \ is the number of constraints.

Alternatively, clauses are added in a guided way based on the analysis of the set of
constraints corresponding to a Boolean assignment. For instance, if the Boolean assign-
ment 9 +_;`*�!(2' �������a@�*/.52' �	�
���A@�*80b2' �	��
����F has been tested to yield an inconsis-
tent set of constraints, the procedure create-lemmas adds the clause $ * ! #* . #* 0 . This
clause clearly prevents the invalid assignment to be regenerated by � -sat. Therefore,
the procedure of iteratively refining a Boolean formula based on the newly detected
inconsistencies is terminating and complete. However, a naive implementation is also
inefficient in practice, since only small fragments of the assignment 9 are inconsistent.
For example, suppose that an invalid assignment is associated with the following set of
constraints:

;J� � � � @=c � � � @O��! +&� � @=cG! +Yc �d#&% @O�/. +&��! #&% @Oca. +LcG!e@=�/.(� % @O�8. KV% F

4

It is clear that ;J�8. � % @O�8. K % F or ;J� � � � @O��! + � � @O�/. + ��! #I% @O�8. K % F
are sufficient to describe the conflict. Therefore, let us assume that there is a func-
tion explain that returns an overapproximation of the minimal set of constraints that
implies the inconsistency detected by � -sat. This function is similar to the conflict reso-
lution procedures found in SAT solvers such as GRASP [8] or Chaff [9]. Unfortunately,
current implementations of domain-specific decision procedures lack such a conflict
explanation facility explain. Therefore, we developed an algorithm that calls � -solver[� ' � \. times, where ' is given, for finding such an overapproximation. An execution
of this procedure is shown in Figure 2. First, since � -solver detects the first conflict
when processing the constraint c�� � � , this constraint is in the minimal inconsistent
subset. Second, an overapproximation of the minimal set is produced by connecting
constraints with common variables. Finally, an iterative approach is used to refine this
overapproximation. In our example, two steps are sufficient to produce the minimal set;JcaZ�� � @Oc�� + caZa@Oc�� � � F . In general, this procedure is not only linear in the number
of constraints but it also returns the exact minimal set if its size is less than or equal to
' .

�	�	�
�����
�����
������ � � � � � ���
�����
 �
�

� � � � �
����
��
 �! �"�	�	�

�	�	�
 � ��
 � ��
 � ��� � ��� � �����
 � ��
�� � ��� � �
����
��
�� � �	�	�

�	�	�
 � ��
 � ��
 � ���
�����
 �
#

 � �
 �
�� �"�	�	�

�	�	�
�����
�����
������
�����
 �

�

 � �
 �
 �! �"�	�	�

conflict

conflict

conflict

Fig. 2. Linear time explain function.

Now, we consider the BMC problem for systems with infinite state spaces. For sys-
tems of processes with an interleaving semantics only one action/transition occurs at
every given step. Therefore for a given assignment only a small subset of constraints is
needed to establish satisfiability. In other words, at step $ it is only necessary to consider
the constraints associated with the action/transition that occurs at step $. The constraints
associated with other actions/transitions are don’t cares. Overly eager assignments re-
sult in both useless search and overly specific plans/counterexamples. This can already
be demonstrated using the abstract example �&% "E*^!	 (' � $ % "E*8. , where ' is the exclu-

5

sive or. Now, given an assignment 9 + ; % 2' ��������@�*,!)2' � �����a@�*8. 2' �������DF , suppose
the following two situations:

1. 2 � *�! b2' �L� � , and 2&��*8. b2' � + � % , � -sat(:��H9�) returns unsatisfiable, since;J�W� � @>� + � % F is inconsistent. Therefore the assignment 9 is discarded and the
search continues. However, constraint *�. is clearly irrelevant, that is, it is a don’t
care.

2. 2 � *�! M2' �W� � , and 2 � */. M2' � � % , � -sat(:��H9�) returns satisfiable. However, the
resultant model is overly specific, that is, the value of � is in the interval

� � @ %�� .
To ameliorate the situation we analyze the structure of the formula before CNF

conversion. For each action/transition and step, we collect an auxiliary propositional
variable that indicates whether the action/transition is executed at the given step or not.
We use this information to assign don’t care values to literals corresponding to inac-
tive(unfired) actions(transitions) in each step. For example, the formula � % "-* ! ' � $ % "-* .
is mapped to the following CNF formula

��� ! #�� . �"�� $ � ! # $ � . �"
� $ % # $ * ! #�� ! �"�� $ � ! # % �"�� $ � ! #E* ! �"
� % # $ * . #�� . �" � $ � . # $ % �" � $ � . #E* .

where, � ! and � . are auxiliary propositional variables, that is, � !	� % "-* ! and � .
�$ %�"-* . . Now, given an assignment 9 , the values of � ! and � . are used to check whether
the constraints *�! and *8. should be considered or not.

Finally, restarting the SAT solver in every loop is wasteful. However, if � -sat is
incremental, restarts can be avoided. Moreover, several SAT solvers use a conflict res-
olution procedure that records conflict clauses [8]. These clauses reduce the restart
cost, since previously detected conflicts are avoided. However, not all conflicts can be
avoided, since some of the conflict clauses are removed by the SAT solver to avoid
exponential growth of the CNF formula.

4 Experiments

We implemented a prototypical satisfiability solver using Chaff [9] and ICS [5]. Its
input is a Boolean formula in the standard DIMACS format extended with interpreta-
tions for propositional variables; for example, the line i 7 |-> x >=y assigns the
constraint x >= y to the propositional variable with number 7. The program either
returns unsatisfiable in case the input Boolean constraint problem is unsatisfiable or an
assignment for the variables. We describe some of our experiments using the Bakery
mutual exclusion protocol in Figure 3.1 with initial states cG! � � " c�. � � . The basic
idea is that of a bakery, where customers take numbers, and whoever has the lowest
number gets service next. Here, of course, “service” means entry to the critical section.
In our example, there are only two processes (�M! and �>.). The program location �T0 (� 0)
represents the critical section of the process � ! (� .). The variable cA! (ca.) contains the

1 See also www.csl.sri.com/ demoura/bmc-examples.

6
��! �A. �A0c �!�� +Lca. #&% ca. + � # cA! � ca.

c �! � + �
� ! � . � 0c �.�� +LcG! #&% cG! + � # $ ��cG! � ca.

c �.�� + �

Fig. 3. Bakery Mutual Exclusion Protocol.

number that � ! (� .) uses to enter the critical section, it is zero if the process is not trying
to enter the critical section. Only one process can execute a transition at each time. In
this example, we want to verifiy whether both processes can be in the critical section at
same time. The current variables are written as cT! whereas the next-state variables are
written as c��! .

We use the notation � � to represent the value of the variable � at time
�
. The variable* �J! (* � .) is the program counter of the process �M! (�>.). Thus the formula that describes

the initial state is:

* � � ! + ��!�" c �! � � "-* � � . + � !�" c �. � �
We want to verify the property $ � * � ! + � 0 "-* � . + � 0 , thus, a counterexample

of length ' is a trace that reaches the goal (* �R]! + � 0 "-* �]. + � 0). The transitions are
encoded as:

��* � � ! + ��!�"7c ��� !! +Lc �. #&% "E* � ��� !! + �A.."-* � ��� !. + * � �. " c ��� !. +Lc �. '
��* � � ! + �A.." ��c �. + � #bc �! � c �. �" c ��� !! +Lc �! "-* � ��� !! + �A0."-* � ��� !. + * � �. " c ��� !. +&c �. ('
��* � � ! + � 0 "7c ��� !! + � "C* � ��� !! + � ! "-* � ��� !. + * � �. "7c ��� !. +&c �. '
��* � �. + � ! " c ��� !. +&c �! #L% "E* � ��� !. + � . "-* � ��� !! + * � � ! "5c ��� !! +Lc �! '
��* � �. + � . "��1c �! + � # $ �1c �! � c �. �"7c ��� !. +&c �. "-* � ��� !. + � 0 "* � ��� !! +N* � � ! "5c ��� !! +Lc �! '
��* � �. + � 0 " c ��� !. + � "-* � ��� !. + � ! "-* � ��� !! +N* � � ! " c ��� !! +Lc �!

This enconding includes the frame axioms to describe which variables a transition
does not affect. The exclusive or (') operator guarantees that one and only one transi-
tion occurs at a time. The program counter (* � ! and * � .) can be encoded using propo-
sitional variables, since their domains are finite.

Table 1 includes some statistics for three different configurations depending on
whether don’t care processing or the linear explain are disabled or not. In each col-
umn we list the number of additional lemmas (new clauses) necessary for detecting
inconsistency of the problem at hand. This table indicates that the effort of assigning
don’t care values and the linear explain function are essential for efficiency.

Recall that the experiments so far represent worst-case scenarios in that the given
formulas are unsatisfiable. For BMC problems with counterexamples, however, our pro-

7

don’t cares, no explain no don’t cares, explain don’t cares, explain
depth new lemmas new lemmas new lemmas�

66 577 16�
132 855 18�
340 1405 58�
710 1942 73�

1297 2566 105
�	� 2296 - 185
� � - - 646� � - - 1343

Table 1. Experimental Results.

cedure usually converges much faster. Consider, for example the mutual exclusion prob-
lem of the Bakery protocol with the assignment c��. � + c . #L% instead of c��. � +Vc ! #"% .
The corresponding counterexample for ' +�� is produced in a fraction of a second after
adding 53 lemmas.

��� ! @ ' ! @ � ! @ ' . ' ��� ! @ ' ! @ � . @ %U# ' . ' � � . @	� # ' . @ � . @ %U# ' . '
��� . @
� # ' . @ � 0 @ %U# ' . ' ��� . @	� # ' . @ � ! @ � ' � � 0 @	� # ' . @ � ! @ � '
���A0D@
� # '�.D@ � .D@ % ' ���A0�@	� # 'a.a@ � 0a@ %

Notice that this counterexample represents a family of traces, since it is parametrized
by (newly introduced constants) 'T! and '�. with 'A!e@ 'a.)� � .

5 Conclusion

We presented a generate-and-test approach to integrate boolean satisfiability checkers
with domain-specific decision procedures. Boolean assignments generated by a SAT
solver are tested by the constraint solver for consistency, and newly detected incon-
sistencies are used to iteratively refine Boolean formulas. We developed heuristics for
accelerating this refinement process by computing good approximations of minimal in-
consistent constraint sets at reasonable cost.

We barely scratched the surface of possible applications. For the rich logic of ICS—
including constraints over uninterpreted function symbols, bitvectors, and arrays—our
integrated solver is directly applicable to bounded model checking over large and infi-
nite domains. It remains to be seen if our approach is also applicable to other application
areas such as AI planners with resource constraints and domain-specific modeling.

References

1. W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation
of Mathematics, 1954.

2. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of bdds. In Proceedings of DAC’99, 1999.

8

3. R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic of equality
with uninterpreted functions. In Proceedings of CAV’99, volume 1633 of LNCS, pages 470–
482. Springer-Verlag, 1999.

4. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of CAV’00, volume 1855
of LNCS, pages 154–169, Chicago, IL, 2000. Springer-Verlag.

5. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization and Solving.
In Proceedings of CAV’2001, volume 2102 of LNCS, pages 246–249. Springer-Verlag, 2001.

6. Henry A. Kautz and Bart Selman. Planning as satisfiability. In Proceedings of ECAI’92,
pages 359–363, 1992.

7. Tracy Larrabee. Test Pattern Generation Using Boolean Satisfiability. IEEE Transactions on
Computer-Aided Design, 11(1):6–22, 1992.

8. Joao P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. In Proceedings of ICCAD’96, pages 220–227, 1996.

9. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of DAC’01, 2001.

10. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small
domains instantiations. In Proceedings of CAV’99, volume 1633 of LNCS, pages 455–469,
Trento, Italy, 1999. Springer-Verlag.

