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Superfluous S-polynomials in Strategy-Independent
Gröbner Bases

Grant Olney Passmore and Leonardo de Moura

Abstract—Using the machinery of proof orders originally

introduced by Bachmair and Dershowitz in the context of

canonical equational proofs, we give an abstract, strategy-

independent presentation of Gröbner basis procedures and

prove the correctness of two classical criteria for recognis-

ing superfluous S-polynomials, Buchberger’s criteria 1 and

2, w.r.t. arbitrary fair and correct basis construction strate-

gies. To do so, we develop a general method for prov-

ing the strategy-independent correctness of superfluous S-

polynomial criteria which seems to be quite powerful. We

also derive a new superfluous S-polynomial criterion which

is a generalization of Buchberger-1 for Gröbner basis pro-

cedures implementing a special form of eager simplification

and is proved to be correct strategy-independently.

I. Introduction

Buchberger’s algorithm for constructing Gröbner bases
of polynomial ideals is one of the central methods in com-
puter algebra [4]. It constructs a canonical simplifier for
ideals of polynomial rings over a field, and hence provides a
basis for many problems in polynomial ideal theory. Buch-
berger’s algorithm is very similar to completion procedures
such as Knuth-Bendix [11]. The similarity was first ob-
served in [12] and fully developed in [2].

The a priori recognition and discarding of superflu-
ous critical pairs is an important component in modern
Gröbner basis procedures. Such recognition is usually ac-
complished by a so-called superfluous S-polynomial or re-
duction to zero criterion which is a computationally ef-
ficient sufficient condition for recognizing S-polynomials
that would reduce to zero with respect to the rewrite sys-
tem being constructed. Gröbner basis procedures such as
Buchberger’s algorithm and its enhancements F4 [9] and
F5 [10] prescribe a fixed execution strategy for the con-
struction of S-polynomials, their reduction and simplifica-
tion, and the subsequent extension of the current partial
Gröbner basis until completion. Moreover, the proofs of
correctness for the admissibility of reduction to zero cri-
teria for such procedures are usually tied to the execution
strategy of the algorithm for which they were introduced.
For example, Buchberger’s Criterion 1 [5] is introduced
in the context of a fixed basis construction strategy (the
classical Buchberger’s algorithm), and the original proof
of correctness of the criterion uses an inductive cut-point
argument that makes explicit use of this strategy.

The idea of generalizing the essential features of a
Gröbner basis procedure into a strategy-independent set-
ting can perhaps be most immediately traced to the work of
Bachmair and Dershowitz on canonical equational proofs
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[1]. In this work, the authors observe that different com-
pletion algorithms (such as Knuth-Bendix, Huet, ordered,
etc.) can be seen to be merely particular strategies for
organising a collection of primitive “abstract completion”
inference rules. These inference rules crystallize operations
common to all completion procedures they considered. By
separating the primitive completion operations from the
choice of strategy guiding their application, the authors are
able to prove many important results whose justifications
were once tied to a particular completion algorithm (i.e.,
strategy) in a strategy-independent way. By doing so, such
results can then be carried over to other completion proce-
dures for free. Other related and influential work includes
that of Bachmair and Tiwari on a strategy-independent
presentation of procedures for computing D-bases of poly-
nomial ideals [3], and that of Winkler on the elimination
of superfluous critical pairs from completion procedures in
which the strategy of keeping all rules interreduced is used
[14].

We wish to have an abstract framework for reasoning
about Gröbner basis procedures with respect to a multi-
tude of possible execution strategies. This goal began with
a very practical motivation. In our work on using Gröbner
basis calculations as part of an automated theorem proving
system [8], we have experimented with computing Gröbner
bases through a number of different simplification and re-
duction strategies. These strategies originate from the au-
tomated deduction community and include the so-called
“Otter” and “Discount” loops used by modern superpo-
sition theorem provers [13]. Basing a Gröbner basis pro-
cedure on such a strategy can result in a procedure that
behaves very differently than Buchberger’s algorithm or
F4 or F5, and we struggled with the fact that a number of
the superfluous S-polynomials criteria we wished to exploit
were not easily seen to be admissible in such a setting. We
then learned of the Bachmair-Dershowitz work on abstract
completion and proceeded to adapt it to solve our problem.

In this article, we develop a strategy-independent de-
scription of correct Gröbner basis procedures called ab-
stract Gröbner bases, and then examine a number of clas-
sical superfluous S-polynomial criteria in this general set-
ting. These classical criteria are the so-called Buchberger-
1 and Buchberger-2, and a generalization of Buchberger-1
that we believe is novel. We then show how the technique
of proof orders can be used to prove the correctness of all
of these reduction to zero criteria, strategy-independently,
using a uniform method. The key idea is to (i) define a
formal notion of “proof” for abstract Gröbner basis pro-
cedures, (ii) define a well-ordering upon these proofs, and
(iii) reduce the strategy-independent admissibility of re-
duction to zero criteria to the existence of “smaller” proofs
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in the absence of S-polynomials deemed superfluous by the
criteria under investigation.

II. Foundations

In the sequel, let pi denote polynomials in Q[~x] =
Q[x1, . . . , xn]. Given {p1, . . . , pk}, a finite subset of Q[~x],
the polynomial ideal I({p1, . . . , pk}) is the set of polyno-

mials {
∑k

i=1 piqi | qi ∈ Q[~x]}. An element xi1
1 . . . xin

n in
Q[x1, . . . , xn] is called a power-product (or term), and an
element cxi1

1 . . . xin
n with c ∈ Q and xi1

1 . . . xin
n a power-

product is called a monomial. We say a monomial is
monic if c = 1. (This terminology is not universally agreed
upon.) We use M to denote the set of all power-products in
Q[x1, . . . ,xn]. From hereafter, we use p, q, r, s and t to de-
note polynomials, m to denote power-products and monic
monomials, c to denote coefficients, and cm to denote
monomials. We say a power-product xi1

1 . . . xin
n contains

xk if ik > 0. Given two power-products m1 = xi1
1 . . . xin

n

and m2 = x
j1
1 . . . xjn

n , m1m2 denotes the power-product

x
i1+j1
1 . . . xin+jn

n , if ik ≥ jk for k ∈ {1, . . . , n}, then m1

m2

denotes the power-product x
i1−j1
1 . . . xin−jn

n , and the least
common multiple lcm(m1,m2) of m1 and m2 is the power

product x
max(i1,j1)
1 . . .x

max(in,jn)
n . We say a polynomial p

contains the power-product m if p contains the monomial
cm for some coefficient c 6= 0. Given a polynomial p =
c1m1 + . . .+ cnmn and a monomial cm, we use cmp to de-
note the polynomial (c1c)m1m+. . .+(cnc)mnm. Similarly,
given a polynomal p = c1m1 + . . .+ cnmn and a polynomal
q, we use pq to denote the polynomal c1m1q+ . . .+ cnmnq.
In the work that follows, all polynomials are assumed to
be in a sum-of-monomials normal form (e.g., a polynomial
will never contain two distinct monomials formed from the
same power-product).

Given two monic monomials p1 and p2 of the form m1 +
q1 and m2 + q2, let τ1,2 be the lcm(m1,m2), then we use
spol(p1,p2) to denote the polynomial

(
τ1,2

m1
)q1 − (

τ1,2

m2
)q2.

Given a set of polynomials S, it is easy to see that if
{p1,p2} ⊆ I(S), then spol(p1,p2) ∈ I(S).

An order relation ≺ on the set M is admissible if m1 ≺
m2 implies that m1m≺m2m, for all m1, m2 and m in M.
A monomial order is a total order on M which is admissible
and a well ordering. Given two polynomials p1 and p2, we
say p1 ≺ p2 if there is a monomial cm in p2 such that for
all monomials cimi in p1, mi ≺m.

We first recall Buchberger’s algorithm and observe that
it is but one of many possible strategies for computing
Gröbner bases. Then, we introduce abstract Gröbner bases
and formalize notions of fairness and correctness for basis
construction strategies.

A. Buchberger’s Algorithm and Strategy

Let us examine Buchberger’s algorithm (Fig. 1) and re-
flect upon the basis construction strategy underlying it.
But what is a strategy? Perhaps the best way to approach

Input: 〈F = {p1, . . . ,pk} ⊂Q[~x],≺〉
Output: G s.t. G is a GBasis of F w.r.t. ≺
G := F; S := {〈pi,pj〉 | 1≤ i < j ≤ k}
while S 6= ∅ do

Let 〈pi,pj〉 ∈ S

For some q s.t. S-polynomial(pi,pj)
G
−→ q

if q 6= 0 then

S := S ∪{〈p,q〉 | p ∈G}
G := G∪{q}

end if

S := S \ {〈pi,pj〉}
end while

Fig. 1. Buchberger’s Algorithm

this question is to examine what might be changed in the
algorithm while still preserving its correctness. Two abso-
lutely crucial ideas underlying the algorithm which seem
to be a requirement of all Gröbner basis procedures are
(i) the use of polynomials as rewrite rules, and (ii) the it-
erative recovery of confluence (that is, completion) of the
rewrite system induced by the polynomials through the
computation of critical pairs (S-polynomials).

If, for the sake of motivation, we assume that these
are the only two requirements of a Gröbner basis proce-
dure, then it is easy to see much that might be changed.
For instance, one might allow members of G to simplify
other members of G. Or one might simplify multiple S-
polynomials simultaneously, as done in F4. Or one might
allow specially selected members of G\ {pi,pj} to simplify
the individual components of pairs 〈pi, pj〉 ∈ S just before
considering spol(pi, pj). Or one might use spol(pi, pj) to
simplify members of G before using members of G to com-
pute a normal form for spol(pi,pj). When one attempts to
construct Gröbner basis procedures using different strate-
gies such as these, it can become difficult to (i) prove the
correctness of the resulting procedure, and (ii) prove that
desirable optimizations developed in the context of well-
studied procedures, such as a reduction to zero criteria
known to be admissible in Buchberger’s algorithm, are in
fact admissible under the strategy being used in the new
procedure. This is especially true of reduction to zero crite-
ria that have temporal requirements (e.g., by requiring that
certain S-polynomials were “processed” before others). We
introduce abstract Gröbner bases to address precisely these
problems.

B. Abstract Gröbner Bases

Given a monomial order ≺, the key idea in Buchberger’s
algorithm is to use a polynomial cm + q, where qi ≺m, as
a rewrite rule cm→ −q. For clarity, we will write poly-
nomials used as rewrite rules in a form in which the head
monomial has been underlined. For instance, when using
cm+ q as a rewrite rule we will mean cm→−q. We say a
polynomial used as a rewrite rule cm+ q is monic if c = 1.
To simplify the presentation that follows, we will assume
all polynomials used as rewrite rules are monic. The monic
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Orient
S ∪{cm+ q},G

S,G∪{m + (1
c
)q}

Superpose
S,G∪{p1,p2}

S ∪{spol(p1,p2)},G∪{p1,p2}

Delete
S ∪{0}, G

S,G

Simplify-S
S ∪{c1m1m2 + q1},G∪{m2 + q2}

S ∪{q1− c1m1q2},G∪{m2 + q2}

Simplify-H
S,G∪{m1m2 + q1, m2 + q2}

S ∪{q1−m1q2},G∪{m2 + q2}
if m1 6= 1

Simplify-T
S,G∪{m + c1m1m2 + q1, m2 + q2}

S,G∪{m− c1m1q2 + q1, m2 + q2}

Fig. 2. Inference rules.

polynomial p = m + q induces a reduction relation 7→p on
polynomials. It is defined as q1 + c1m1m 7→p q1 − c1m1q

for arbitrary monomials c1m1 and polynomials q1. Given
a set of monic polynomials G = {p1, . . . ,pk}, the reduction

relation induced by G is defined as: 7→G=
⋃k

i=1 7→pi
.

Definition 1 (Gröbner bases) A finite set of monic poly-
nomials G is a Gröbner basis of the ideal I(F ) iff I(G) =
I(F ) and 7→G is confluent.

The inference rules in Figure 2 work on pairs of sets of
polynomials (S,G). In all rules, the coefficients c and c1

are assumed to be non-zero. We use (S1,G1) ⊢ (S2,G2) to
indicate that (S1,G1) can be transformed to (S2,G2) by
applying one of the inference rules in Figure 2.

Theorem 1: (S1, G1) ⊢ (S2, G2) implies I(S1 ∪ G1)) =
I(S2 ∪G2)).

Proof: Easy by observing (i) every rule that extends
(S1,G1) does so by adding polynomials already in I(S1 ∪
G1), (ii) reducing a polynomial p using q when p and q

are in (S1, G1) does not change I(S1 ∪G1), and (iii) a
polynomial p is removed from (S1 ∪G1) only when p = 0.

Definition 2 (Procedure) A Gröbner basis procedure G

is a program that accepts a set of polynomials {p1, . . . ,pk},
a monomial order ≺, and uses the rules in Figure 2 to gen-
erate a (finite or infinite) sequence (S1 = {p1, . . . ,pk}, G1 =
∅) ⊢ (S2,G2) ⊢ (S3,G3) ⊢ . . . . This sequence is called a run
of G.

Given a set of monic polynomials G, the set of S-
polynomials SP(G) is defined as the set

{spol(p1, p2) | p1, p2 ∈ G}.

Definition 3 (Correct Procedure) A Gröbner basis pro-
cedure G is said to be correct iff it produces only finite
runs (S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn), and

SP(Gn) ⊆ (S1 ∪ S2 ∪ . . . ∪ Sn−1) .

Theorem 2: Let G be a correct Gröbner basis procedure,
then for any run (S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn), Gn is
a Gröbner basis for I(S1).

The proof of Theorem 2, which follows from Theorem 6
below, uses a technique called proof orders. We will study
this in detail in the next section.

Definition 4 (Eager S-simplification) Given a Gröbner
basis procedure G, we say G implements eager S-
simplification iff G only applies Orient to p ∈ Si when
Simplify-S cannot be applied to p.

Proposition 3: Given a Gröbner basis procedure G us-
ing eager S-simplification, then for any run (S1, G1) ⊢
(S2,G2) ⊢ . . ., for all j ≥ 1, there is no m1 + q1 and m2 + q2

in Gj such that m1 = m2 and q1 6= q2. Moreover, in this
case, the condition m1 6= 1 in the rule Simplify-H is only
restricting self simplifications.

Definition 5 (Fairness) A Gröbner basis procedure G is
said to be fair iff for any run (S1,G1) ⊢ (S2,G2) ⊢ . . .

SP(
⋃

i≥1

⋂

j≥i

Gj) ⊆
⋃

i≥1

Si.

Theorem 4: If a Gröbner basis procedure G implements
eager S-simplification, is fair, and Superpose is applied at
most once for any pair of polynomials in

⋃
i≥1 Gi, then G

is correct.
Proof: We just need to show that every run of G is

finite. This follows from Dickson’s lemma, and the fact
that any infinite run will contain an infinite number of
Superpose steps.

Example 1: Let F be the set of polynomials:

{x2y − 1, xy2 − y}.

Then, using the inference rules in Figure 2, we can generate
the run in Figure 3. A reduced Gröbner basis for F is
contained in the final state (∅, {y− 1, x− 1}).

As an exercise in gaining familiarity with the inference
rules, we illustrate how they can be used to simulate Buch-
berger’s algorithm in Figure 4.

III. Proof Orders

In the following, we assume that

(F = S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn)

is an arbitrary run of a correct Gröbner basis procedure G.
We use S∗ to denote the set S1∪ . . .∪Sn and G∗ to denote
the set G1 ∪ . . .∪Gn.

An equational step in (S∗, G∗) is a tuple 〈s, p, cm, t〉,
where s, p and t are polynomials, cm is a monomial,
p ∈ S∗ ∪G∗, and t = s− cmp. We use

s
〈p, cm〉
←−−−−→ t

to denote the equational step 〈s,p,cm,t〉.
Proposition 5: Let 〈s, p, cm, t〉 be an equational step,

then for any monomial c′m′ in p, s or t contains the power-
product m′m.
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{x2y− 1, xy2− y}, ∅
⊢ Orient: x2y− 1
{xy2− y}, {x2y− 1}

⊢ Orient: xy2− y

∅, {x2y− 1, xy2− y}
⊢ Superpose: spol(x2y− 1, xy2− y) = xy− y

{xy− y}, {x2y− 1, xy2− y}
⊢ Orient: xy− y

∅, {x2y− 1, xy2− y, xy− y}
⊢ Simplify-H: xy− y over x2y− 1
{xy− 1}, {xy2− y, xy− y}

⊢ Simplify-S: xy− y over xy− 1
{y− 1}, {xy2− y, xy− y}

⊢ Orient: y− 1
∅, {xy2− y, xy− y, y− 1}

⊢ Simplify-H: y− 1 over xy2− y

{xy− y}, {xy− y, y− 1}
⊢ Simplify-S: xy− y over xy− y

{0}, {xy− y, y− 1}
⊢ Delete

∅, {xy− y, y− 1}
⊢ Simplify-H: y− 1 over xy− y

{x− y}, {y− 1}
⊢ Simplify-S: y− 1 over x− y

{x− 1}, {y− 1}
⊢ Orient: x− 1
∅, {y− 1, x− 1}

⊢ Superpose: spol(y− 1,x− 1) = x− y

{x− y}, {y− 1, x− 1}
⊢ Simplify-S: y− 1 over x− y

{x− 1}, {y− 1, x− 1}
⊢ Simplify-S: x− 1 over x− 1
{0}, {y− 1, x− 1}

⊢ Delete:
∅, {y− 1, x− 1}

Fig. 3. A run for {x2
y − 1, xy

2 − y} w.r.t. DegLex with x ≺ y.

Input: 〈S = {p1, . . . ,pk} ⊂Q[~x],≺〉
Output: G s.t. G is a GBasis of S w.r.t. ≺
Apply Orient to every member of S
Apply Superpose between every pi,pj ∈G (pi 6= pj)
while S 6= ∅ do

Choose spol(pi,pj) ∈ S

Apply Simplify-S to spol(pi,pj) ∈ S as long as possible
Call the resulting simplified polynomial (in S) q

if q 6= 0 then

Apply Orient to q

Apply Superpose to all pairs 〈p,q〉 (p 6= q ∈G)
for which Superpose has not been previously
applied

else

Apply Delete to q

end if

end while

Fig. 4. Rule-based Simulation of Buchberger’s Algorithm

A right rewrite step in (S∗,G∗) is a tuple 〈s, p,m, t〉,
where s, p and t are polynomials, m is a monic monomial,
p ∈ G∗. Let s be of the form csmmp + qs and p be of the
form mp + qp, then t = s− csmp = qs− csmqp. Intuitively,
p is a polynomial being used as a rewrite rule, and m spec-
ifies that the monomial csmmp of s will be “rewritten” to
−csmqp. We use

s
〈p, m〉
−−−−→ t

to denote the right rewrite step 〈s,p,m,t〉.
Similarly, a left rewrite step in (S∗, G∗) is a tuple
〈t,p,m,s〉, where s, p, t and m are defined as in the right
rewrite step case. We use

t
〈p, m〉
←−−−− s

to denote the left rewrite step 〈s,p,m,t〉. A rewrite step is
a left or right rewrite step. For every rewrite step, we say
s is the source and t is the target. Note that t≺ s.

A proof step is an equational step or a rewrite step. We
use s≃F t to denote that s ∈ I(F ) iff t ∈ I(F ). Recall that
I(F ) = I(S∗∪G∗), hence for all proof steps p ∈ I(F ), and
s≃F t.

A proof Pr for p≃F q in (S∗,G∗) is a sequence of proof
steps

〈s1, p1, c1m1, t1〉 . . . 〈sk, pk, ckmk, tk〉

such that, s1 = p, tk = q, ti = si+1 for i ∈ {1, . . . , k− 1}.
We use lhs(Pr) to denote s1 and rhs(Pr) to denote tk.

For example, let F be the set {xy− y,x2y− 1}. Hence,
for any run, xy−y ∈ S0. Now, assume x2y−1 ∈G∗. Then,

y
〈xy−y,−x〉
←−−−−−−−→ y + x2y − xy

〈xy−y,−1〉
←−−−−−−−→ x2y

〈x2y−1, 1〉
−−−−−−→ 1

is a proof for y ≃F 1.
A rewrite proof Pr is a proof containing k rewrite steps

such that pi is in Gn for i ∈ {1, . . . ,k}, and there is a j ∈
{0, . . . , k}, where the first j steps are right rewrite steps,
and the others are left rewrite steps.

For example, assume Gn contains the polynomials {x+
1, y + z, w2− 1}. Then, the following proof is a rewriting

proof for xy + 2≃F w2z + 2.

xy + 2
〈x+1, y〉
−−−−−→ −y + 2

〈y+z, 1〉
−−−−−→ z + 2

〈w2−1, z〉
←−−−−−− w2z + 2

We say two proofs Pr1 and Pr2 in (S∗,G∗) are equivalent
if lhs(Pr1) = lhs(Pr2) and rhs(Pr1) = rhs(Pr2).

The cost of a proof step is a pair where the first compo-
nent is a multi-set of polynomials and the other a polyno-
mial, and is defined as:

1. For s
〈p,cm〉
←−−−−→ t, the cost is ({s,t},0).

2. For s
〈p,m〉
−−−−→ t and t

〈p,m〉
←−−−− s, the cost is ({s},p).

Two different cost pairs are compared using the lexico-
graphic product order ≪ of (≺M ,≺), where ≺M is the
multi-set extension of the order ≺ on polynomials. Proof
steps are compared by comparing their costs. The overall
cost of a proof Pr is the multi-set of the costs of all its proof
steps, and two different multi-sets of costs are compared



SUPERFLUOUS S-POLYNOMIALS IN STRATEGY-INDEPENDENT GRÖBNER BASES 5

using the multi-set extension≪M of≪. Finally, proofs are
compared by comparing their costs, and we use Pr′ ⊏ Pr
to denote that proof Pr′ is smaller than proof Pr.

Lemma 1: The order ⊏ is well-founded.
Proof: This is an immediate consequence of the fol-

lowing facts: the order ≺ is well-founded, the multi-set
extension of a well-founded order is well-founded, and the
lexicographic product order of well-founded orders is well-
founded.

Lemma 2: Let Pr be a proof in (S∗,G∗) that is not a
rewrite proof. Then, there exists a proof Pr′ in (S∗,G∗)
such that Pr′ is equivalent to Pr and Pr′ ⊏ Pr.

Proof: If Pr is not a rewrite proof, then there are three
possible reasons:

1. Pr contains an equational step.
2. Pr contains a rewrite step 〈si, pi,mi, si+1〉, and pi is

not in Gn.
3. Pr contains a peak of the form

t1
〈p1, m1〉
←−−−−− s

〈p2, m2〉
−−−−−→ t2

for p1 and p2 in Gn.
In the following, we consider each of these three cases sep-
arately.

1. Assume Pr contains an equational step

s
〈p, cm〉
←−−−−→ t

By definition of equational step, t = s− (cm)p. First,
assume p ∈ S∗, then since Sn = ∅, p is removed from
some Sj<n using Orient, Delete or Simplify-S. The case
where p ∈G∗ is similar to the case where p is removed
from some Sj<n using Orient.

(a) Assume Orient was used to remove p. Let p be
of the form cpmp + qp, then p′ = ( 1

cp
)p is in Gj+1.

By Proposition 5, s or t must contain the power-
product mpm. First, let us assume that s contains
csmpm and t does not. Then, cs = cpc because t

does not contain the power-product mpm, and by
simple algebraic manipulation:

t = s− (cm)p = s− (
cs

cp

m)p = s− (csm)((
1

cp

)p)

= s− (csm)p′.

Let Pr′ be the proof that is obtained by replacing
the equational step with:

s
〈p′, m〉
−−−−→ t

Similarly, if t contains the power-product mpm and
s does not, we replace the the equational step with
the rewrite step:

s
〈p′, m〉
←−−−− t

Finally, if both of them contain the power-product
mpm, let ct be the coefficient of mpm in t. Then,
by the definition of equational step, ct = cs − cpc.

Let s′ be the polynomial s− (csm)p′. By algebraic
manipulation, we have:

s′ = s− (csm)p′ = s− ((cpc + ct)m)p′

= s− (cm)(cpp
′)− (ctm)p′ = s− (cm)p− (ctm)p′

= t− (ctm)p′.

In this case, let Pr′ be the proof that is obtained by
replacing the equational step with:

s
〈p′, m〉
−−−−→ s′

〈p′, m〉
←−−−− t

In all three cases, the rewrite steps are smaller
than the equational step, because {s} ≺M {s, t}
and {t} ≺M {s, t}. This shows that the new proof
Pr′ ⊏ Pr.
Before we consider the next case, note that the case
where p ∈ G∗ can be handled as above. The only
difference is that p′ = p when p ∈G∗.

(b) Assume that Delete was used to remove p, then
p = 0 and s = t, and the equational step can be
removed from the proof. Therefore, Pr′ ⊏ Pr.

(c) Assume p is of the form cpmpmr + qp and Simplify-

S was applied to p using a polynomial r ∈ Gj of
the form mr + qr. Let p′ be −cpmpqr + qp, then p′

is in Sj+1. By Proposition 5, s or t must contain
the power-product mpmrm. Let us assume both of
them contain mpmrm, and cs and ct are the coeffi-
cients of mpmrm in s and t respectively. Recall that
ct must be cs− cpc. Now, let s′ be the polynomial
s−(csmpm)r and t′ be the polynomial t−(ctmpm)r.
Note that s′ ≺ s and t′ ≺ t. By simple algebraic ma-
nipulation we can show that t′ = s′− (cm)p′. Now,
let Pr′ be the proof that is obtained by replacing
the equational step with:

s
〈r, mpm〉
−−−−−−→ s′

〈p′, cm〉
←−−−−−→ t′

〈r, mpm〉
←−−−−−− t

All three new proof steps are smaller than the orig-
inal equational step because {s} ≺M {s,t}, {t} ≺M

{s, t}, and {s′, t′} ≺M {s, t}. This shows that the
new proof Pr′ ⊏ Pr. If s does not contain the power-
product mpmrm, then the first rewrite step is not
needed. Similarly, if t does not contain the power-
product mpmrm the last rewrite step is not needed.

2. Assume Pr contains a rewrite step 〈s, p,m, t〉, and p

is not in Gn. Without loss of generality, assume it is
a right rewrite step

s
〈p, m〉
−−−−→ t

Since p is not in Gn, it was removed from some Gj<n

using Simplify-H or Simplify-T and a polynomial r ∈Gj

of the form mr + qr.
(a) Assume Simplify-H was applied to p using r, and p

is of the form mpmr +qp. Note that mp 6= 1 because
of the side condition of Simplify-H, therefore r ≺ p.
Let p′ be the polynomial −mpqr + qp, then p′ is in
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Sj+1. Since 〈s,p,m,t〉 is a right rewrite step, s must
contain the monomial csmpmrm. By the definition
of right rewrite rule, t = s− (csm)p. Now, let s′ be
the polynomial s− (csmpm)r. Thus, by algebraic
manipulation, we can show that t = s′−(cm)p′. Let
Pr′ be the proof that is obtained by replacing the
rewrite step with:

s
〈r, mpm〉
−−−−−−→ s′

〈p′, cm〉
←−−−−−→ t

The new equational step is smaller than the origi-
nal step because s′ ≺ s and t≺ s, and consequently
{s′, t} ≺M {s}. The cost of the original rewrite
step is ({s}, p). The cost of the new rewrite step is
({s},r), and is smaller than ({s},p) because r ≺ p.

(b) Assume Simplify-T was applied to p using r, and
p is of the form m′

p + cpmpmr + qp. Let p′ be the

polynomial m′
p − cpmpqr + qp, then p′ is in Gj+1.

This case is similar to the case 1c for Simplify-S. Let
s′ and t′ be polynomials defined as in case 1c. Now,
let Pr′ be the proof that is obtained by replacing
the rewrite step with:

s
〈r, mpm〉
−−−−−−→ s′

〈p′, cm〉
−−−−−→ t′

〈r, mpm〉
←−−−−−− t

The cost of the original rewrite rule is ({s}, p),
and the costs of the new rewrite rules are ({s}, r),
({s′},p′) and ({t},r). They are smaller than ({s},p)
because r ≺ p, s′ ≺ s and t≺ s. If s does not contain
the power-product mpmrm, then the first rewrite
step is not needed. In this case s′ = s, and the
cost ({s′},p′) is smaller than ({s},p) because p′ ≺ p.
Similarly, if t does not contain the power-product
mpmrm the last rewrite step is not needed.

3. Assume Pr contains a peak of the form

t1
〈p1, m′

1
〉

←−−−−− s
〈p2, m′

2
〉

−−−−−→ t2

for p1 and p2 in Gn. Assume p1 and p2 are of the form
m1 + q1 and m2 + q2 respectively. Now, we consider
two cases: m′

1m1 6= m′
2m2 and m′

1m1 = m′
2m2.

(a) Assume m′
1m1 6= m′

2m2, then s must be of the form
qs + c1m

′
1m1 + c2m

′
2m2. Moreover, we must have

t1 = qs− c1m
′
1q1 + c2m

′
2m2

t2 = qs + c1m
′
1m1− c2m

′
2q2

Let s′ be the polynomial qs− c1m
′
1q1− c2m

′
2q2. Let

Pr′ be the proof that is obtained by replacing the
peak with:

t1
〈p2, c2m′

2
〉

←−−−−−−→ s′
〈p1, c1m′

1
〉

←−−−−−−→ t2

The polynomials t1, t2 and s′ are smaller than s,
hence {t1, s′} ≺M {s}, and {s′, t2} ≺M {s}. There-
fore both equational steps are smaller than the
rewrite steps in the peak.

(b) Assume m′
1m1 = m′

2m2, then s must be of the form
qs + cmτ1,2 where τ1,2 = lcm(m1, m2). Then, we
must have

t1 = qs− cm(
τ1,2

m1
)q1

t2 = qs− cm(
τ1,2

m2
)q2

Moreover, spol(p1, p2) =
τ1,2

m1

q1 −
τ1,2

m2

q2 must be in

S∗. Let Pr′ be the proof that is obtained by replac-
ing the peak with:

t1
〈spol(p1,p2),−cm〉
←−−−−−−−−−−−−→ t2

Since {t1, t2} ≺M {s}, the new equational step is
smaller than the rewrite steps in the peak.

Lemma 3: Every proof Pr in (S∗,G∗) is equivalent to a
rewrite proof.

Proof: By well-founded induction on the well-founded
order ⊏. Let Pr be a proof in (S∗,G∗). If Pr is itself a
rewrite proof, then we are done. Otherwise, by Lemma 2,
there is a proof Pr′ such that Pr′ ⊏ Pr. By induction, Pr′,
and thus also Pr, is equivalent to a rewrite proof.

Given a polynomial q of the form c1m1 + c2m2 + . . . +
ckmk, we use

s←
〈p, q〉
←−−−→→ t

to denote a multi-equational step, that is, the sequence of
equational steps:

s
〈p, c1m1〉
←−−−−−−→ s1

〈p, c2m2〉
←−−−−−−→ s2 . . . sk−1

〈p, ckmk〉
←−−−−−−→ t

It is easy to see that t = s− pq.
Theorem 6: Given a set of polynomials F = {p1, . . . ,pk},

an arbitrary run

(F = S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn)

of a correct Gröbner basis procedure G, and a polyno-
mial p, the following holds: If p ∈ I(F ), then there exists
a rewrite proof for p ≃F 0 using 7→Gn

. Moreover, Gn is
confluent.

Proof: If p ∈ I(F ), then we must have p = p1q1 + . . . +
pkqk for some q1, . . . , qk ∈ Q[~x]. Let Pr be the following
proof in (S∗,G∗) for p≃F 0

p←
〈p1, q1〉
←−−−−→→ . . .←

〈pk, qk〉
←−−−−−→→ 0

By Lemma 3, Pr is equivalent to a rewrite proof.
Now, we show that Gn is confluent. Suppose not. Let
7→Gn

be the reduction relation induced by Gn. Since Gn is
not confluent, there are polynomials s, t1 and t2 such that

s 7→Gn
. . . 7→Gn

t1
s 7→Gn

. . . 7→Gn
t2

where t1 and t2 cannot be reduced by Gn. The reductions
above induce a proof Pr in (S∗,G∗) for t1 ≃F t2. Actually,
this proof only uses polynomials in Gn, but it has a peak
at s. By Lemma 3, there is an equivalent rewrite proof
Pr′, contradicting the assumption that t1 and t2 cannot be
reduced by Gn.
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IV. Criteria for Discarding S-polynomials

Buchberger introduced two criteria for discarding su-
perfluous S-polynomials [6]. We now examine how these
classical criteria can be accommodated in the general set-
ting of abstract Gröbner bases. Inspecting the proof of
Lemma 2, we see that S-polynomials are only used in
case 3b, where a non-rewrite proof Pr contains a peak.
This observation suggests a methodology for proving the
strategy-independent admissibility of criteria for discard-
ing redundant S-polynomials.

Observation 1: An S-polynomial spol(p1,p2) can be dis-
carded if it is not needed to obtain a smaller proof Pr′ in
case 3b of Lemma 2.

In the following, we assume p1, p2 and pk are polyno-
mials in G∗ of the form m1 + q1, m2 + q2 and mk + qk

respectively.
Criterion 1: If lcm(m1,m2) = m1m2, then spol(p1, p2)

is superfluous.

Criterion 2: If there exists some pk ∈ G∗ s.t.
lcm(m1, m2) is a multiple of mk and spol(p1, pk) and
spol(p2,pk) are in S∗, then spol(p1,p2) is superfluous.

Proposition 7: If lcm(m1,m2) = mmk, then

lcm(m1,m2) = (mk1
)lcm(m1,mk)

lcm(m1,m2) = (mk2
)lcm(m2,mk)

for some mk1
and mk2

. Actually,

mk1
=

lcm(m1,m2)

lcm(m1,mk)

mk2
=

lcm(m1,m2)

lcm(m2,mk)

Note that mk1
and mk2

are well defined monomials because
lcm(m1,m2) = lcm(m1,m2,mk).

We first adjust our notion of a correct procedure to take
into account the fact that the Superpose rule may be en-
hanced to carry a side-condition, ϕ, barring its application.

Definition 6 (Conditionally Correct Procedure)
A Gröbner basis procedure G is said to be con-
ditionally ϕ-correct iff it produces only finite runs
(S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn), and

SPϕ(Gn) ⊆ (S1 ∪ S2 ∪ . . . ∪ Sn−1) ,

where SPϕ(Gn) = {spol(p1,p2) | p1,p2 ∈Gn ∧ ¬ϕ(p1,p2)}.
Theorem 8: Let ϕ1, ϕ2 be the natural side-conditions

barring applications of Superpose corresponding to Criteria
1 and 2 respectively. Let G be a Gröbner basis procedure
that is conditionally (ϕ1 ∨ ϕ2)-correct. Then, Lemma 2
still holds for G.

Proof: Inspecting the proof of Lemma 2, it is easy to
see that case 3b is the only one affected by the restricted
Superpose rule. That is, Pr has a peak of the form:

t1
〈p1, m′

1
〉

←−−−−− s
〈p2, m′

2
〉

−−−−−→ t2

for p1 and p2 in Gn, p1 and p2 are of the form m1 + q1

and m2 + q2 respectively, and m′
1m1 = m′

2m2. Then, s

must be of the form qs +cmτ1,2, where τ1,2 = lcm(m1,m2).
Moreover, we must have:

t1 = qs− cm
τ1,2

m1
q1

t2 = qs− cm
τ1,2

m2
q2

Now, assume spol(p1,p2) is not in S∗ because one of the
criteria above was used.

1. Assume spol(p1,p2) is not in S∗ because of Criterion 1.
Then, τ1,2 = m1m2, and consequently

s = qs + cmm1m2

t1 = qs− cmm2q1

t2 = qs− cmm1q2

Now, let s′ be the polynomial qs + (cm)q1q2, and Pr′

be the proof that is obtained by replacing the peak
with:

t1 ←
〈p2,−cmq1〉
←−−−−−−−→→ s′ ←

〈p1,−cmq2〉
←−−−−−−−→→ t2

Since, t1, t2, s′ and every intermediate polynomial in
the multi-equational steps above is smaller than s, the
new equational steps in Pr′ are smaller than the two
rewrite rules in the peak in Pr. Therefore, Pr′ ⊏ Pr.

2. Assume spol(p1,p2) is not in S∗ because of Criterion 2.
Then, there is a pk of the form mk + qk in G∗ such
that spol(p1,pk) and spol(p2,pk) are in S∗, and τ1,2 =
m′mk for some m′. Let τ1,k = lcm(m1,mk) and τ2,k =
lcm(m2,mk). Then, by Proposition 7, we have τ1,2 =
mk1

τ1,k and τ1,2 = mk2
τ2,k.

t1 = qs− cm
τ1,2

m1
q1

= qs− cm
mk1

τ1,k

m1
q1

= qs− cmmk1

τ1,k

m1
q1

Similarly, t2 = qs− cmmk2

τ2,k

m2

q2. Recall that,

spol(p1,pk) = (
τ1,k

m1
)q1− (

τ1,k

mk

)qk

spol(p2,pk) = (
τ2,k

m2
)q2− (

τ2,k

mk

)qk

Now, let s′ be the polynomial qs− cm
τ1,2

mk
qk. By alge-

braic manipulation, we have:

t1 + cmmk1
spol(p1,pk) = qs− cmmk1

τ1,k

mk

qk

= qs− cm
mk1

τ1,k

mk

qk

= qs− cm
τ1,2

mk

qk = s′

= qs− cm
mk2

τ2,k

mk

qk

= qs− cmmk2

τ2,k

mk

qk

= t2 + cmmk2
spol(p2,pk)
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Note that in the equations above, all “fractions” of the
form mi

mj
are actual monomials because in all cases mj

divides mi. For instance,
τ1,k

mk
is a monomial because

mk always divides lcm(m1,mk) = τ1,k. Now, let Pr′

be the proof that is obtained by replacing the peak in
Pr with:

t1
〈spol(p1,pk),−cmmk1

〉
←−−−−−−−−−−−−−−→ s′

〈spol(p2,pk),−cmmk2
〉

←−−−−−−−−−−−−−−→ t2

Since t1, t2 and s′ are smaller than s, we have Pr′ ⊏ Pr.

Definition 7 (Eager SH-simplification) We say a
Gröbner basis procedure G implements eager SH-
simplification iff G only applies Orient to p ∈ Si when
Simplify-S cannot be applied to p, and G only attempts1

to apply Superpose to p1, p2 ∈ Gi when Simplify-H cannot
be applied to p1,p2.

Criterion 3: Assume p1 and p2 are polynomials in G∗ of
the form m1 + q1, m2 + q2 respectively. If m1 divides m2

or m2 divides m1, then spol(p1,p2) is superfluous2.
Theorem 9: Let ϕ be the natural side-condition for Su-

perpose corresponding to Criteria 3. Let G be a con-
ditionally ϕ-correct Gröbner basis procedure using eager
SH-simplification. Let G have the property that it has at-
tempted to apply Superpose to every p1, p2 ∈ Gn. Then,
Lemma 2 still holds.

Proof: As in the proof of Theorem 8, we only need to
consider case 3b. That is, Pr has a peak of the form:

t1
〈p1, m′

1
〉

←−−−−− s
〈p2, m′

2
〉

−−−−−→ t2

for p1 and p2 in Gn, and p1 and p2 are of the form m1 + q1

and m2 +q2. Now, assume spol(p1,p2) is not in S∗ because
of Criterion 3, then m1 divides m2 or m2 divides m1. Since
G uses eager SH-simplification, by Proposition 3, m1 6= m2.
Therefore, m1 properly divides m2 or m2 properly divides
m1. Without loss of generality, assume m1 properly divides
m2, then p2 cannot be in Gn because rule Simplify-H would
simplify it using p1.

V. Conclusion

In conclusion, we have developed a general method for
proving the strategy-independent correctness of superflu-
ous S-polynomial critera which seems to be quite power-
ful. We then used this methodology to prove the strategy-
independent correctness of three criteria. We began by in-
troducing the general setting of abstract Gröbner bases,
where different Gröbner basis procedures correspond to
different strategies for applying a small set of inference
rules. Then, we used the machinery of proof orders and

1 By “attempts to apply” we mean that Superpose is either applied
as usual, or it is tried but is ultimately skipped because of an active
side-condition ϕ barring its application.

2 As a very helpful referee pointed out, it is perhaps unlikely that
this criteria will be very effective in practice, especially when the
Gebauer-Möller criteria are used [7]. Nevertheless, we find it to be
an interesting example of the usefulness of Observation 1 as the basis
of a methodology for proving the strategy-independent correctness of
superfluous S-polynomial criteria.

formal equational proofs to prove the correctness of ar-
bitrary strategies meeting some simple requirements. We
observed that in proving the correctness of a Gröbner ba-
sis procedure G, S-polynomials are only needed to elimi-
nate peaks in the formal proofs constructed by G. This
suggested a methodology for proving the correctness of su-
perfluous S-polynomial criteria. The key idea was to re-
duce the strategy-independent admissibility of superfluous
S-polynomial criteria to the existence of “smaller” proofs
in the absence of S-polynomials deemed superfluous by the
criteria under investigation.
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bases (F4). Journal of Pure and Applied Algebra, 139(1), 1999.

[10] J.-C. Faugère. A new efficient algorithm for computing Grbner
bases without reduction to zero (F5) . In International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC), 2002.

[11] D. E. Knuth and P. B. Bendix. Simple word problems in uni-
versal algebras. Computational Problems in Abstract Algebra,
1970.

[12] R. Loos. Term reduction systems and algebraic algorithms. In
5th GI Workshop on Artificial Intelligence, 1981.

[13] A. Riazanov and A. Voronkov. Limited resource strategy in
resolution theorem. Journal of Symbolic Computation, 36(1–2),
2003.

[14] F. Winkler. Reducing the Complexity of the Knuth-Bendix
Completion Algorithm: A ”Unification” of Different Ap-
proaches. In European Conference on Computer Algebra (EU-
ROCAL’85), volume 204 of LNCS, 1985.


