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Grégoire Hamon, Leonardo de Moura and John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

A shorter version of this paper is to be presented at the 2nd IEEE International
Conference on Software Engineering and Formal Methods (SEFM), Beijing, China,
September 2004.

This research was supported by NASA Langley Research Center under contract
NAS1-00079 and Cooperative Agreement NCC-1-377 with Honeywell Tucson.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844





Abstract

It is well-known that counterexamples produced by model checkers can provide a basis
for automated generation of test cases. However, when this approach is used to meet a
coverage criterion, it generally results in very inefficient test sets having many tests and
much redundancy. We describe an improved approach that uses model checkers to generate
efficient test sets. Furthermore, the generation is itself efficient, and is able to reach deep
regions of the statespace. We have prototyped the approach using the model checkers of
our SAL system and have applied it to model-based designs developed in Stateflow. In one
example, our method achieves complete state and transition coverage in a Stateflow model
for the shift scheduler of a 4-speed automatic transmission with a single test case.
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1 Introduction

Automated generation of test cases is an attractive application for mechanized formal meth-
ods: the importance of good test cases is universally recognized, and so is the high cost
of generating them by hand. And automated test generation not only provides an easily
perceived benefit, but it is becoming practical with current technology and fits in with es-
tablished practices and workflows.

We focus on reactive systems (i.e., systems that constantly interact with their environ-
ment), where a test case is a sequence of inputs from its environment that will cause the
system under test to exhibit some behavior of interest. To perform the tests, the system is
combined with a test harness that simulates its environment; the test harness initiates and
engages in an interaction with the system that guides it through the intended test case and
observes its response. For simplicity of exposition, we will assume that the test harness has
total control of the environment and that the system under test is deterministic.

An effective approach to automated test generation is based on the ability of model
checkers to generate counterexamples to invalid assertions: roughly speaking, to generate
a test case that will exercise a behavior characterized by a predicatep, we model check for
the property “always notp” and the counterexample to this property provides the required
test case (if there is no counterexample, then the property is true and the proposed test
case is infeasible). This approach seems to have been first applied on an industrial scale
to hardware [GFL+96] and on a more experimental scale to software [CSE96], although
related technologies based on state machine exploration have long been known in protocol
testing [RWZ78].

Generally, individual test cases are generated as part of atest setdesigned to achieve
some desiredcoverageand there are two measures of cost and efficiency that are of interest:
what is the cost togeneratea test set that achieves the coverage target (this cost is primarily
measured in CPU time and memory, and may be considered infeasible if it goes beyond
a few hours or requires more than a few gigabytes), and what is the cost toexecutethe
test set that is produced? For execution, an efficient test set is one that minimizes the
number of tests (because in executing the tests, starting a new case can involve fairly costly
initialization activities such as resetting attached hardware), and their total length (because
in executing tests, each step exacts some cost). Many methods based on model checking
generate very inefficient test sets: for example, they generate a separate test for each case to
be covered, and the individual tests can be long also. This paper is concerned with methods
for generating test sets that are efficient with respect to both generation and execution.
Section 2 introduces our methods, which work by iteratively extending already discovered
tests so that they discharge additional goals.

The feasibility and cost of generating test sets are obviously dependent on the under-
lying model checking technology. The worst-case complexity of model checking is linear
in the size of the reachable state space (the “state explosion problem” recognizes that this
size is often exponential in some parameter of the system), but this complexity concerns
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valid assertions, whereas for test generation we use deliberately invalid assertions and the
time to find a counterexample, while obviously influenced by the size of the statespace, is
also highly sensitive to other attributes of the system under examination, to the test cases
being sought, and to the particular technology and search strategy employed by the model
checker. Any given model checking method is very likely to run out of time or memory
while attempting to generate some of the test cases required for coverage; Section 3 of the
paper discusses the pragmatics of model checking for the purpose of test generation.

We believe that the methods we present will be effective for many kinds of system
specifications, and for many notions of coverage, but our practical experience is with model-
based development of embedded systems. Here, executable models are constructed for the
system and its environment and these are used to develop and validate the system design.
The model for the system then serves as the specification for its implementation (which
is often generated automatically). The model is usually represented in a graphical form,
using statecharts, flowcharts, message sequence charts, use diagrams, and so on. Most of
our experience is with Stateflow [Mat03], which is the combined statechart and flowchart
notation of Matlab/Simulink, the most widely used system for model-based design. Section
4 of the paper describes the results of some modest experiments we have performed using
our method.

1.1 Background and Terminology

Coverage is often specified with respect to thestructureof a design representation: in this
context,state coveragemeans that the test set must visit every control location in the rep-
resentation, whiletransition coveragemeans that the test set must traverse every transition
between control locations. For certain safety-critical applications, a rather exacting type of
coverage called modified condition/decision coverage (MC/DC) is mandated. It is usually
required that test coverage is measured and achieved on theimplementation, but that the test
cases must be generated by consideration of its functionalrequirements(see [HVCR01]).
An approach that is gaining popularity in model-based design is to generate test sets auto-
matically by targeting structural coverage in the representation of the model: the intuition
is that if we generate tests to achieve (say) transition coverage in the model, then that test
set is very likely to come close to achieving transition coverage in the implementation. This
approach interprets the model as representing the functional requirements (it also serves as
the oracle for evaluating test outcomes); a variation (used for example by Motorola in its
VeriState tools1) augments the model with requirements and test “observers” and targets
structural coverage on these.

In practical terms, automated test generation proceeds by translating the system model
into the language of a model checker, then constructing assertions whose counterexamples,
when “concretized” to the form required by the implementation to be tested, will provide
the desired coverage. The assertions are typically temporal logic formulas over “trap prop-

1Seewww.motorola.com/eda/products/veristate/veristate.html .
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erties” [GH99] that characterize when execution of the system reaches a certain control
point, takes a certain transition, or exhibits some other behavior of interest. Trap properties
can be expressed in terms of state variables that are inherent to the representation, or the
translation to the language of the model checker can introduce additional state variables to
simplify their construction. Most of the following presentation is independent of the partic-
ular notion of coverage that is selected and of the method for constructing trap properties
and their associated temporal logic assertions. We will, however, speak of the individual
cases in a coverage requirement as testgoals (so the requirement to exercise a particular
transition is one of the test goals within transition coverage).

2 Efficient Tests by Iterated Extension

The basic problem in the standard approach to test generation by model checking is that a
separate test case is generated for each test goal, leading to test sets having much redun-
dancy. We can illustrate this problem in the example shown in Figure1, which presents the
Stateflow specification for a stopwatch with lap time measurement.

[sec==60] {
  sec=0;
  min=min+1;
}

[cent==100] {
  cent=0;
  sec=sec+1;
}

TIC {
  cent=cent+1;
}LAP {

  cent=0; sec=0; min=0;
  disp_cent=0; disp_sec=0;  
  disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Figure 1: A Simple Stopwatch in Stateflow

The stopwatch contains a counter represented by three variables (min , sec , cent ) and
a display, also represented as three variables (disp min , disp sec , disp cent ).

The stopwatch is controlled by two command buttons,STARTandLAP. TheSTART
button switches the time counter on and off; theLAP button fixes the display to show the
lap time when the counter is running and resets the counter when the counter is stopped.
This behavior is modeled as a statechart with four exclusive states:

• Reset : the counter is stopped. ReceivingLAP resets the counter and the display,
receivingSTARTchanges the control to theRunning mode.
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• Lap Stop : the counter is stopped. ReceivingLAP changes to theReset mode and
receivingSTARTchanges to theLap mode.

• Running : the counter is running, and the display updated. ReceivingSTART
changes to theStop mode, pressingLAP changes to theLap mode.

• Lap : the counter is running, but the display is not updated, thus showing the last
value it received. ReceivingSTARTchanges toLap Stop mode, receivingLAP
changes to theRunning mode.

These four states are grouped by pairs inside two main states:Run andStop , active when
the counter is counting or stopped, respectively. The counter itself is specified within the
Run state as a flowchart, incrementing itscent value every time a clockTIC is received
(i.e., every 1/100s); thesec value is incremented (andcent reset to 0) whenevercent
equals 100, and themin value is similarly incremented wheneversec equals 60.

Notice that it requires a test case of length 6,000 to exercise the lower right transition in
the flowchart: this is where themin variable first takes a nonzero value, following 60sec s,
each of 100cent s. Embedded systems often contain counters that must be exhausted be-
fore parts of the statespace become reachable so this is a (perhaps rather extreme) example
of the kind of “deep” test goal that is often hard to discharge using model checking.

Focusing now on the statechart to the left of the figure, if we generate a test case that
begins in the initial state and exercises the transition fromLap stop to Reset (e.g., the
sequence of eventsSTART, LAP, START, LAP), then this test also exercises the transitions
from Reset to Running , Running to Lap , andLap to Lap stop . However, the usual
approach to generating a test set to achieve transition coverage will independently generate
test cases to exercise each of these transitions, resulting in four tests and much redundancy.
Black and Ranville [BR01] describe a method for “winnowing” test sets after generation
to reduce their redundancy, while Hong et al. [HCL+03] present an algorithm that reduces
redundancy during generation. Their algorithm will record during generation of a test case
to exercise theLap stop to Reset transition that it has also exercised theRunning to
Lap transition and will remove the latter transition from its set of remaining coverage goals.
However, the effectiveness of this strategy depends on the order in which the model checker
tackles the coverage goals: if it generates the test forRunning to Lap before the one for
Lap stop to Reset , then this online winnowing will be ineffective.

A natural way to overcome this inefficiency in test sets is to attempt toextendexisting
test cases to reach uncovered goals, rather than start each one afresh. This should not only
eliminate much redundancy from the test set, but it should also reduce the total number
of test cases required to achieve coverage. Although conceptually straightforward, it is
not easy in practice to cause a model checker to find a counterexample that extends an
existing one when the only way to interact with the model checker is through its normal
interfaces (where all one can do is supply it with a system specification, an initial state, and
a property). Fortunately, several modern model checkers provide more open environments
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than was previously the case; in particular, they provide scriptable interfaces that permit
rapid construction of customized analysis tools.

We performed our experiments in the SAL 2 model checking environment
[dMOR+04b], which not only provides state-of-the-art symbolic, bounded, infinite-
bounded, and witness model checkers, but also an API that gives access to the basic ma-
chinery of these tools and that is scriptable in the Scheme language [KCe98] (in fact, the
model checkers are themselves just Scheme scripts).2 Among the API functions of SAL 2,
or easily scripted extensions to these, are ones to perform a (symbolic or bounded) model
check on a given system and property, and to continue a model check given a previously
reached state and a path to get there.

Given these API functions, it is easy to construct a script that extends each test case to
discharge as many additional coverage goals as possible, and that starts a new test case only
when necessary. A pseudocode rendition of this script is shown in Figure2. On completion,
the variablefailurescontains the set of coverage goals for which the algorithm was unable
to generate test cases.

It might seem specious (in the most deeply nested part of Figure2) to remove from
remainingand failures any goals discharged by extending a test case—because this set
contains only those that were not discharged by previous attempts to extend the current case.
However, if the model checker is using limited resources (e.g., bounded model checking to
depthk), a certain goal may be discharged by an extension that can be found by model
checking from a given test case, but not from its prefixes.

Although quite effective, the method of Figure2 fails to exploit some of the power of
model checking: at each step, it selects a particular coverage goal and tries to discharge it
by generating a new test case or extending the current one. This means that the coverage
goals are explored in some specific order that is independent of their “depth” or “difficulty.”

It actually improves the speed of model checking if we consider multiple goals in par-
allel: instead of picking a goal and asking the model checker to discharge it, we can give
it the entire set of undischarged goals and ask it to discharge any of them. That is, instead
of separately model checking the assertions “always notp,” “always notq” etc., we model
check “always not (p or q or. . . ).” This will have the advantage that the model checker
will (probably) first discharge shallow or easy goals and approach the deeper or more dif-
ficult goals incrementally; as noted above, it may be possible to discharge a difficult goal
by extending an already discovered test case when it could not be discharged (within some
resource bound) from an initial state, or from a shorter test case generated earlier in the
process.

A further refinement is to note that as test generation proceeds, those parts of the system
specification that have already been covered may become irrelevant to the coverage goals
remaining. Modern model checkers, including SAL, generally perform some form of au-
tomatedmodel reductionthat is similar to (backward) program slicing [Wei84]. Typically,

2We also use the explicit-state model checker of SAL 1, which is distinct from SAL 2, and not completely
compatible with it; a future release of SAL will unify these two systems.
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goals := the set of coverage goals
failures := empty set
while goals is nonempty do
Select and remove goal from goals
Call model checker to generate

a new test case to discharge goal
if successful then

Select and remove from goals any that
are discharged by the test case

remaining := empty set
while goals is nonempty do

Remove goal from goals
Call model checker to extend

test case to discharge goal
if successful then

remove from goals failures , and
remaining any goals
discharged by extended test case

else add goal to remaining
endif

endwhile
goals := remaining
Output test case

else add goal to failures endif
endwhile

Figure 2: Constructing Test Cases by Incremental Extension
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they use thecone of influence reduction[Kur94]: the idea is to eliminate those state vari-
ables, and those parts of the model, that do not influence the values of the state variables
appearing in the assertion to be model checked.

If we use this capability to slice away the parts of the system specification that become
irrelevant at each step then the specification will get smaller as the outstanding coverage
goals become fewer. Notice there is a virtuous circle here: slicing becomes increasingly
effective as the outstanding goals become fewer; those outstanding goals are presumably
hard to discharge (since the easy ones will be picked off earlier), but slicing is reducing the
system and making it easier to discharge them. Recall that in Figure1 it requires a test case
of length 6,000 to exercise the lower right transition in the flowchart. There is almost no
chance that a model checker could quickly find the corresponding counterexample while its
search is cluttered with the vast number of display and control states that are independent
of the state variables representing the clock. Once the coverage goals in the statechart part
of the model have been discharged, however, all those state variables can be sliced away,
isolating the flowchart and rendering generation of the required counterexample feasible
(we present data for this example later). Pseudocode for this refinement to the method is
shown in Figure3.

Still further improvements can be made in this approach to generating test sets. The
method of Figure3 always seeks to extend the current test case, and if that fails it starts a
new case. But the test cases that have already been found provide the ability to reach many
states, and we may do better to seek an extension from some intermediate point of some
previous test case, rather then start a completely new case when the current case cannot
be extended. This is particularly so when we have already found one deep test case that
gives entry to a new part of the statespace: there may be many coverage goals that can be
discharged cheaply by constructing several extensions to that case, whereas the method of
Figure3 would go back to the initial state once a single extension to the test case had been
completed.

Figure4 presents pseudocode for a search method that attempts (in the nestedwhile
loop) to extend the current test case as much as possible, but when that fails it tries (in
the outerwhile loop) to extend a test from some state that it has reached previously (these
are recorded in the variableknownstates). Notice that it is not necessary to call the model
checker iteratively to search from each of theknownstates: a model checker (at least a
symbolic or bounded model checker) can search from all these states in parallel. This par-
allel search capability increases the efficiency of test generation but might seem to conflict
with our desire for efficient test sets: the model checker might find a long extension from
a known shallow state rather than a short extension from a deeper one. To see how this is
controlled, we need to examine the attributes of different model checking technologies, and
this is the topic of the next section.
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goals := the set of coverage goals
failures := empty set
while goals is nonempty do
Call model checker to generate

a new test case to discharge some goal
if successful then

Remove from goals any that
are discharged by the test case

slice system relative to goals
while goals is nonempty do

Call model checker to extend
test case to discharge some goal

if successful then
remove from goals any

discharged by extended test case
slice system relative to goals

endif
endwhile
Output test case

else
failures := goals ;
goals := empty set

endif
endwhile

Figure 3: Searching for Test Cases in Parallel, and Slicing the Model as Goals Are Dis-
charged
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goals := the set of coverage goals
knownstates := initial states
failures := empty set
while goals is nonempty do
Call model checker to extend a test

case from some state in knownstates
to discharge some goal

if successful then
Remove from goals any that

are discharged by the test case
add to knownstates those states

traversed by the current test case
slice system relative to goals
while goals is nonempty do

Call model checker to extend
test case to discharge some goal

if successful then
remove from goals any

discharged by extended test case
add to knownstates those states

traversed by current test case
slice system relative to goals

endif
endwhile
Output test case

else
failures := goals ;
goals := empty set

endif
endwhile

Figure 4: Restarting from previously discovered states rather than initial states
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3 Finding the Extensions: Model Checking Pragmatics

All model checkers (of the kind we are interested in) take as their inputs the transition
relation defining a state machine and its environment, the initial states, and an assertion.
The assertion is usually expressed as a temporal logic formula but we are interested only in
formulas of the kind “always notp,” so the details of the temporal logic are not important.
And although the model checker may actually work by encoding the assertion as a Büchi
automaton, it does little harm in this particular case to think of the model checker as working
by searching for a state that satisfiesp and is reachable from the initial states.

The earliest model checkers used an approach now calledexplicit stateexploration, and
this approach is still very competitive for certain problems. As the name suggests, this
kind of model checker uses an explicit representation for states and enumerates the set of
reachable states by forward exploration until either it finds a violation of the assertion (in
which case a trace back to the start state provides a counterexample), or it reaches a fixed
point (i.e., has enumerated all the reachable states without discovering a violation, in which
case the assertion is valid).

There are several strategies for exploring the reachable states:depth firstsearch uses the
least memory and often finds counterexamples quickly, but the counterexamples may not
be minimal;breadth firstsearch, on the other hand, requires more memory and often takes
longer, but will find the shortest counterexamples. Gargantini and Heitmeyer [GH99] report
that counterexamples produced by an explicit-state model checker using depth-first search
were often too long to be useful as test cases. Using a translation into SAL for the example
of Figure1, SAL’s explicit-state model checker operating in depth-first mode finds a test
case for the transition at the bottom right in 25 seconds (on a 2 GHz Pentium with 1 GB
of memory) after exploring 71,999 states, but the test case is 24,001 steps long. This is 4
times the minimal length because severalSTARTandLAP events are interspersed between
eachTIC . In breadth-first mode, on the other hand, the model checker does not terminate
in reasonable time.3 However, if we slice the model (thereby eliminatingSTARTandLAP
events), both breadth- and depth-first search generate the minimal test case of length 6,001
in little more than a second.

In summary, explicit-state model checking needs to use breadth-first search to be useful
for test case generation, and the search becomes infeasible when the number of states to
be explored exceeds a few million; within this constraint, it is capable of finding deep test
cases.

For embedded systems, a common case where the reachable states rapidly exceed those
that can be enumerated by an explicit-state model checker is one where the system takes sev-
eral numerical inputs from its environment. In one example from Heimdahl et al. [HCW02],
an “altitude switch” takes numerical readings from three altimeters, one of which may be

3If we reduce the number ofcent s in asec from 100 to 4 (resp. 5), then the breadth-first search terminates
in 89 (resp. 165) seconds after exploring 171,133 (resp. 267,913) states; the time required is exponential in this
parameter.
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faulty, and produces a safe consensus value. If the altimeters produce readings in the range
0. . . 40,000 feet, then an explicit-state model checker could blindly enumerate through a
significant fraction of the40, 0003 (i.e., 64 trillion) combinations of input values before
stumbling on those that trigger cases of interest. In practice, this simple type of problem is
beyond the reach of explicit-state model checkers.

Symbolic model checkers, historically the second kind to be developed, deal with this
type of problem in fractions of a second. A symbolic model checker represents sets of
states, and functions and relations on these, as reduced ordered binary decision diagrams
(BDDs). This is a compact and canonical symbolic representation on which the image com-
putations required for model checking can be performed very efficiently. The performance
of symbolic model checkers is sensitive to the size and complexity of the transition relation,
and to the size of the total statespace (i.e., the number of bits or BDD variables needed to
represent a state), but it is less sensitive to the number of reachable states: the symbolic
representation provides a very compact encoding for large sets of states.

Symbolic model checkers can use a variety of search strategies and these can have
dramatic impact when verifying valid assertions: for example, backward search verifies
inductive properties in a single step. In test generation, however, where we have deliber-
ately invalid properties, a symbolic model checker, whether going forward or backward,
must perform at least as many image computations as there are steps in the shortest coun-
terexample. The symbolic model checker of SAL 2 can find the counterexample of length
6,000 that exercises the lower right transition of the flowchart in Figure1 in 125 seconds
(it takes another 50 seconds to actually build the counterexample) and visits 107,958,013
states. If we slice the model (eliminatingSTARTandLAP events), then the number of
visited states declines to 6,001 and the time decreases to 85 seconds (plus 50 to build the
counterexample).

Thus a symbolic model checker can be very effective for test case generation even when
there are large numbers of reachable states, and also for fairly deep cases. Its performance
declines when the number of BDD variables grows above a few hundred, and when the
transition relation is large: both of these increase the time taken to perform image computa-
tions, and thus reduce the depth of the test cases that can be found in reasonable time. There
is an additional cost to systems that require many BDD variables, and this is the time taken
to find a good variable ordering (the performance of BDD operations is very dependent on
arranging the variables in a suitable order). Heimdahl et al. [HRV+03] report that the time
taken to order the BDD variables became the dominant factor in their larger examples, and
caused them to conclude that symbolic model checking is unattractive for test generation.
Modern model checkers such as SAL 2 alleviate this concern a little: they allow the variable
ordering found in one analysis to be saved and reused for others—this amortizes the cost
of variable ordering over all tests generated (provided the one ordering is effective for them
all). The SAL 2 symbolic model checker also has a mode where it computes the reachable
states just once, and then analyzes many safety properties against it.
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Bounded model checkers, the third kind to be developed, are specialized to genera-
tion of counterexamples (though they can be used to perform verification byk-induction
[dMRS03]). A bounded model checker is given a depth boundk and searches for a coun-
terexample up to that depth (i.e., length) by casting it as a constraint satisfaction problem:
for finite state systems, this can be represented as a propositional satisfiability problem and
given to a SAT solver. Modern SAT solvers can handle problems with many thousands of
variables and constraints. Each increment of 1 in the depth of bounded model checking
increases the number of variables in the SAT problem by the number of bits needed to rep-
resent the statespace and by the number of constraints needed to represent the transition
relation: empirically, the complexity of bounded model checking is strongly dependent on
the depth, and the practical limit onk is around 30–50. At modest depths, however, bounded
model checking is able to handle very large statespaces and does not incur the startup over-
head of BDD ordering encountered in symbolic model checking large systems (though it
does have to compute thek-fold composition of the transition relation). It should be noted
that a bounded model checker does not necessarily generate the shortest counterexamples:
it simply finds some counterexample no longer thank. Obviously, it will find the shortest
counterexample if it is invoked iteratively fork = 1, 2, . . . until a counterexample is found
but most bounded model checkers do not operate incrementally, so this kind of iteration is
expensive.

Bounded model checking can be extended to infinite state systems by solving constraint
satisfaction problems in the combination of propositional calculus and the theories of the in-
finite data types concerned (e.g., real and integer linear arithmetic). SAL 2 has such an “in-
finite bounded” model checker; this is based on the ICS decision procedure [dMOR+04a],
which has the best performance of its kind for many problems [dMR04]. However, this
model checker does not yet produce concrete counterexamples (merely symbolic ones), so
we have not used it in our test generation exercises.

Given these performance characteristics of various model checking technologies, which
is the best for test case generation? Recall that Gargantini and Heitmeyer [GH99] report
dissatisfaction with unnecessarily long test sequences produce by an explicit-state model
checker operating depth first, and satisfaction with a symbolic model checker. On the other
hand, Heimdahl et al. [HRV+03] report dissatisfaction with a symbolic model checker be-
cause of the lengthy BDD ordering process required for large models, and satisfaction with
a bounded model checker, provided it was restricted to very modest bounds (depth 5 or so).
The examples considered by Heimdahl et al. were such that coverage could be achieved
with very short tests, but this will not generally be the case, particularly when counters are
present.

Our experiments with the approaches to iterated extension described in the previous sec-
tion confirm the effectiveness of bounded model checking for test generation. Furthermore,
our approach minimizes its main weakness: whereas bounded model checking to depth 5
will not discharge a coverage goal that requires a test case of length 20, and bounded model
checking to depth 20 may be infeasible, iterated bounded model checking to depth 5 may
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find a path to one goal, then an extension to another, and another, and eventually to the goal
at depth 20—because four or five checks to depth 5 are much easier than one to depth 20.

However, bounded model checking to modest depths, even when iterated, may be un-
able to exhaust a loop counter, or to find entry to other deep parts of a statespace. We have
found that an effective combination is to use symbolic model checking (with some resource
bound) as the model checker at the top of the outerwhile loop in Figure3. This call is cheap
when many easy goals remain (the cost of BDD ordering is amortized over all calls), and
can be useful in finding a long path to a new part of the state space when all the easy goals
have been discharged. As noted in the previous section, slicing can be especially effective
in this situation.

Although we have not yet performed the experiments, we believe that using symbolic
model checking in the outerwhile loop in the method of Figure4 will be an even more ef-
fective heuristic. As in Figure3, using a symbolic model checker in this situation preserves
the possibility of finding long extensions, should these be necessary. Equally important, the
representation ofknownstatesas a BDD for symbolic model checking is likely to be com-
pact, whereas its representation as SAT constraints for a bounded model checker could be
very large. We also conjecture that explicit-state model checking may be useful for finding
long paths in heavily sliced models, but it is perhaps better to see this as an instance of a
more general approach, developed in the following paragraphs, rather than as an indepen-
dently useful combination.

All the enhancements to test generation that we have presented so far have used model
checking as their sole means for constructing test cases, but there is a natural generalization
that leads directly to an attractive integration between model checking and other methods.

In particular, the method of Figure4 uses the states in the setknownstatesas starting
points for extending known paths into test cases for new goals. As new test cases generate
paths to previously unvisited states, the method adds these toknownstates, but it starts with
this set empty. Suppose instead that we initialize this set with some sampling of states,
and the paths to reach them, as portrayed in Figure5 (the shaded figure suggests the reach-
able statespace and the three interior lines represent known paths through a sampling of
states). Random testing is one way to create the initial population of states and paths, and
(concretized) states and paths found by model checking abstractions of the original system
could be another (explicit-state model checking in heavily sliced models would be an in-
stance of this). Now, given a goal represented by the solid dot in Figure5, the method of
Figure4will start symbolic model checking from all theknownstatesin parallel and is likely
to find a short extension from one of them to the desired goal. Ifknownstatesis considered
too large to serve as the starting point for model checking, then some collection of the most
likely candidates can be used instead (e.g., those closest to the goal by Hamming distance
on their binary representations). Of course, if there is more than a single outstanding goal,
the symbolic model checker will search in parallel from allknownstatesto all outstanding
goals; once an extension has been found, the bounded model checker will seek to further
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Figure 5: Generalization:knownstatesSeeded by Random Testing or Other Methods

extend that path; when that path is exhausted the search will revert to the symbolic model
checker of the outer loop.

This combination of methods is actually an elaboration of those used in two commercial
tools. Ketchum (aka. FormalVera and Magellan) from Synopsys [HSH+00] uses bounded
model checking to extend paths found by random testing in hardware designs, while Reactis
from Reactive Systems Inc.4 uses constraint solving (similar to the technology underlying
infinite bounded model checking) to extend paths found by random testing in Simulink and
Stateflow models. Neither of these tools (to our knowledge) uses model checking to search
toward the goal from the whole set ofknownstates(or a large subset thereof); instead they
pick a state that is “close” (e.g., by Hamming distance) to the goal. Neither do they use the
model checker to search toward all outstanding goals simultaneously.

4 Experimental Results

We have implemented the test generation method of Figure3 as a script that runs on
the API of SAL 2.5 The SAL API is provided by a program in the Scheme language

4Seewww.reactive-systems.com .
5We are in the process of implementing the method of Figure4, which requires some extensions to the API.
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[KCe98] that uses external functions (mostly written in C) to provide efficient imple-
mentations of the core model checking algorithms. Our test generation script is thus a
small collection of function definitions in Scheme; arguments to the top-level function
determine whether or not slicing is to be performed, whether initial searches from the
start states should use symbolic or bounded model checking (and, in the latter case, to
what depth), and the depth of bounded model checking to be used in the iterated ex-
tensions. Despite all these options to support experimentation, the script is less than
100 lines long. The script and the examples described below can be downloaded from
http://www.csl.sri.com/˜rushby/abstracts/sefm04 . A convenient way
to experiment with such scripts is to read them into thesal-sim component of SAL,
which provides a read-eval-print-loop on the SAL API. To replicate the exercises described
here, just copy the contents of the filetestgen.scm from the web site named above into
the prompt ofsal-sim and then enter the various commands described below.

4.1 Stopwatch

Our first example is the Stopwatch example of Figure1, translated by hand into the SAL
specification shown in Figures6 and7. The specification begins by introducing the types
needed for the specification. The stopwatch itself is specified in theclock module; this
has three local variables (min , sec , andcent ) that record the state of its counter, and
one (pc ) that records the currently active state in its statechart. The stopwatch is driven
by events at itsev input variable (where the valuesTIC , START, andLAP respectively
represent occurrence of a timer tick, or pressing the start or lap buttons), while the output
of the module is given by the three variables (disp min , disp sec , anddisp cent )
that represent its display. In addition, the collection of Booleanss1, s2, s3, t0,
...t10 is added for test generation purposes. Notice that this declaration and other SAL
code added for test generation is shown in blue; we will explain these additions later. The
initialization sets the all the counters to zero and the initial state toreset .

The behavior of theclock module is specified by the transition relation specified in
Figure7 by means of a series of guarded commands. For example, in thereset state, a
LAPevent sets the display variables to zero, while aSTARTevent causes the state to change
to running . The six following guarded commands similarly enumerate the behavior of
the stopwatch for each combination theLAP andSTARTevents in its other three states.
The final guarded command specifies the behavior of the variables representing the counter
in response toTIC events (corresponding to the flowchart at the right of Figure1).

The Boolean variabless1 , s2 , ands3 are “trap variables” for state coverage and are
setTRUEwhen execution reaches therunning , lap , andlap stop states, respectively.
The variablest0 . . .t10 are likewise trap variables for the various transitions in the pro-
gram. Thus, to generate a test case in which execution reaches thelap state, we model
check for the property “always nots2 ” and extract the sequence of input events from the
counterexample produced. Similarly, to exercise the transition from thelap to running
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stopwatch: CONTEXT =
BEGIN

ncount: NATURAL = 99;
nsec: NATURAL = 59;
counts: TYPE = [0..ncount];
secs: TYPE = [0..nsec];
states: TYPE = {running, lap, reset, lap_stop };
event: TYPE = {TIC, LAP, START };

clock: MODULE =
BEGIN
INPUT

ev: event
LOCAL

cent, min: counts,
sec: secs,
pc: states,
s1, s2, s3: BOOLEAN,
t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10: BOOLEAN

OUTPUT
disp_cent, disp_min: counts,
disp_sec: secs

INITIALIZATION
cent = 0;
sec = 0;
min = 0;
disp_cent = 0;
disp_sec = 0;
disp_min = 0;
pc = reset;
s1 = FALSE; s2 = FALSE; s3 = FALSE;

t0 = FALSE; t1 = FALSE; t2 = FALSE; t3 = FALSE; t4 = FALSE;
t5 = FALSE; t6 = FALSE; t7 = FALSE; t8 = FALSE; t9 = FALSE;
t10 = FALSE;

...continued

Figure 6: First part of SAL translation of the Stopwatch
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TRANSITION
[

pc = reset AND ev’ = LAP -->
disp_cent’ = 0; disp_sec’ = 0; disp_min’ = 0;
pc’ = pc; t0’ = TRUE;

[]
pc = reset AND ev’ = START -->

pc’ = running; s1’ = TRUE; t1’ = TRUE;
[]

pc = running AND ev’ = LAP -->
pc’ = lap; s2’ = TRUE; t2’ = TRUE;

[]
pc = running AND ev’ = START -->

pc’ = reset; t3’ = TRUE;
[]

pc = lap AND ev’ = LAP -->
pc’ = running; s1’ = TRUE; t4’ = TRUE;

[]
pc = lap AND ev’ = START -->

pc’ = lap_stop; s3’ = TRUE; t5’ = TRUE;
[]

pc = lap_stop AND ev’ = LAP -->
pc’ = reset; t6’ = TRUE;

[]
pc = lap_stop AND ev’ = START -->

pc’ = lap; s2’ = TRUE; t7’ = TRUE;
[]

ev’ = TIC AND (pc = running OR pc = lap) -->
cent’ = IF cent /= ncount THEN cent+1 ELSE 0 ENDIF;
t8’ = IF cent’ /= cent THEN TRUE ELSE t8 ENDIF;
sec’ = IF cent /= ncount THEN sec

ELSIF sec /= nsec THEN sec+1 ELSE 0 ENDIF;
t9’ = IF sec’ /= sec THEN TRUE ELSE t9 ENDIF;
min’ = IF cent /= ncount OR sec /= nsec THEN min

ELSIF min /= ncount THEN min+1 ELSE 0 ENDIF;
t10’ = IF min’ /= min THEN TRUE ELSE t10 ENDIF;
disp_cent’ = IF pc = running THEN cent’ ELSE disp_cent ENDIF;
disp_sec’ = IF pc = running THEN sec’ ELSE disp_sec ENDIF;
disp_min’ = IF pc = running THEN min’ ELSE disp_min ENDIF;

[]
ELSE -->
]
END;

END

Figure 7: Final part of SAL translation of the Stopwatch
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states, we model check for “always nott4 .” Notice that trap variables latchTRUE: hence,
to check whether a test case to discharget4 , say, also dischargess2 , we simply need to
check whethers2 is TRUEin the final state of the test case. These trap variables obviously
increase the size of the representations manipulated by the model checkers (requiring addi-
tional BDD or SAT variables) but they add no real complexity to the transition relation and
their impact on overall performance seems negligible.

To use the test generation script, we first load thestopwatch specification in its
“compiled” form

(define module (make-boolean-flat-module "(@ clock stopwatch)"))

and then specify (by means of their trap variables) the test targets that we wish to cover
(for brevity, these exclude the transitions in the flowchart part of the original Stateflow
specification).

(define goal-list ’("s1" "s2" "s3"
"t0" "t1" "t2" "t3" "t4" "t5" "t6" "t7"))

Then, to generate tests, we make the following invocation.

(define res (testgen module goal-list #f #t #t #t 5 2 3 7))

The #t and#f flags invoke various options discussed later, while the series of numbers
5 2 3 5 indicates that when starting a new test case, bounded model checking to depth
5 should be used (here,#f would indicate that symbolic model checking should be used);
then when extending a test case, first try bounded model checking to depth 2 and, if that
fails, keep increasing the depth by 3 to a maximum of 7. Notice that when using bounded
model checking to depthn (either initially, or in seeking an extension) the path found may
be shorter thann.

The call totestgen above reports thatt1 ands1 are discharged at the first step by a
test case of length 2 (really 1, because the first step is the initialization), this is then extended
to length 4 wheret3 is discharged, then to length 6 wheret2 ands2 are discharged, and
so on to a total length of 15, at which point all the coverage goals have been discharged.

We can print the input events that comprise the test using the following command.

(print-tests (cdr res) #t)

The test comprises the following sequence of input events.

START TIC START START LAP LAP LAP START LAP LAP START LAP START START

Observe the irrelevantTIC event—that is just an artifact of bounded model checking when
the depth bound specified is greater than the minumum required. We can get more parsi-
monious tests, at the expense of possibly greater generation time, by using symbolic model
checking to start things off, then using bounded model checking to depth 1 and increment-
ing the depth by 1 each time.
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(define res (testgen module goal-list #f #t #t #t #f 1 1 7))

This finds the following test case that is three events shorter than the previous one.

START LAP START START LAP START LAP START LAP START LAP

We can observe the value of the incremental approach to generating test cases by setting
to zero the maximum depth that the bounded model checker can use in the extension phase.

(define res (testgen module goal-list #f #t #t #t #f 1 1 0))

This forces each test case to be generated from the start state and results in 8 separate
tests with a total length of 20 (the length of a test set is given by(count-tests (cdr
res)) ).

We can observe the effect of another optimization by changing the second Boolean
argument to#f .

(define res (testgen module goal-list #f #f #t #t #f 1 1 0))

This causes a separate test to be generated for each coverage target (it eliminates the check
to see whether a newly generated test happens to discharge goals other than the one tar-
geted). This results in 11 separate tests with a total length of 26.

We next consider the full set of transitions, adding trap variablest8 , t9 , and t10
(these correspond to the transitions in the flowchart part of the original specification) to the
goal-list .

(define goal-list ’("s1" "s2" "s3"
"t0" "t1" "t2" "t3" "t4" "t5" "t6" "t7" "t8" "t9" "t10"))

Then we invoke test generation as before.

(define res (testgen module goal-list #f #t #t #t #f 1 1 7))

This results in a test set comprising three tests: one of length 12 (the one seen earlier that
exercises the statechart part of the program), one of length 101 [aSTARTfollowed by 100
TIC s] that exercises transitiont9 (the rollover of thecent variable from 99 to 0), and
one of length 6001 [aSTARTfollowed by 6000TIC s] that exercises transitiont10 (the
rollover of thesec from 59 to 0). (The second test is subsumed by the third but our method
does not detect this.) Slicing ensures that the second and third tests are generated in a
reduced model in which the variables corresponding to the statechart part of the program
have been removed, and the generation is therefore quite efficient. Generation of the third,
and largest test uses 92,128 BDD nodes and visits 65,990 states in 84 seconds. If, however,
we disable slicing using the following variant of the command

(define res (testgen module goal-list #f #t #f #f #f 1 1 7))

then the BDD count increases to 838,850, the number of visited states becomes
3,952,522,241 and the time increases to 433 seconds.
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4.2 Shift Scheduler

Our next example is a shift scheduler for a four-speed automatic transmission that was made
available by Ford as part of the DARPA MoBIES project.6 The Stateflow representation of
this example is shown in figure8: it has 23 states and 25 transitions.

We converted the Stateflow component of the Matlab.mdl file for this example into
SAL using a prototype translator based on the Stateflow semantics presented in [HR04] (a
couple of internal names were changed by hand as our translator does not yet handle all the
naming conventions of Matlab). Several of the inputs to this example are real numbers: we
changed them to 8-bit integers for model checking purposes.

The model is introduced intosal-sim by the command

(define module (make-boolean-flat-module "(@ main trans_ga2)"))

and state and transition coverage is established as the goal using the following command
(our translation automatically introduces the trap variables).

(define goal-list ’(
"x2" "x31" "x65" "x60" "x19" "x69" "x78" "x56" "x49" "x26" "x22" "x63"
"x44" "x52" "x74" "x72" "x35" "x81" "x47" "x40" "x38" "x29" "x83"
"x20" "x42" "x50" "x17" "x76" "x45" "x57" "x27" "x32" "x70" "x75"
"x54" "x67" "x33" "x23" "x24" "x79" "x15" "x16" "x36" "x41" "x53"
"x58" "x61" "x66"))

This example has 311 state variables in its SAL representation, of which 95 are imme-
diately sliced away; the remainder require 288 state bits (300 is generally regarded as the
point where model checking can become difficult). The following command

(define res (testgen module goal-list #f #t #t #t #f 5 5 10))

achieves full coverage with a single test of length 73 that is generated in a couple of minutes,
Examination of the test that was generated revealed that it works by holding the ve-

locity and gear inputs constant and changing theshift speed ij inputs that determine
when a shift from geari to j should be scheduled. In the Simulink model of which the
Stateflow diagram is a part, all of theshift speed ij parameters are driven from a
single torque input and therefore cannot change independently in the actual context of
use. It can be debated whether all input sequences that satisfy the desired structural cov-
erage criteria should be considered equally acceptable for purposes of unit testing. If there
are constraints that render certain input sequences unacceptable or unrealistic, surely these
should be stated as part of the specification of the unit. In this example, it could be argued
that it is wrong to consider the isolated Stateflow diagram as a unit: the true unit is the
Simulink block of which the Stateflow diagram is but a part. As we do not have a trans-
lator for Simulink to SAL, we wrote the followingconstraints module by hand and
composed it synchronously withmain to yield asystem module.

6Seevehicle.me.berkeley.edu/mobies/ .
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[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
        to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
         to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
         to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
         to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
         to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
         to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

Figure 8: Stateflow Model for Four-Speed Shift Scheduler
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constraints: MODULE =
BEGIN
OUTPUT

x4 : [-127..127], % shift_speed_43
x5 : [-127..127], % shift_speed_34
x6 : [-127..127], % shift_speed_32
x7 : [-127..127], % shift_speed_23
x10 : [-127..127], % shift_speed_21
x11 : [-127..127], % shift_speed_12
x12 : [-127..127], % V
x13 : [-127..127] % gear

INPUT
torque: [0..127],
velocity: [0..127],
gear: [1..4]

TRANSITION
x4’ = torque;
x5’ = torque;
x6’ = torque;
x7’ = torque;
x10’ = torque;
x11’ = torque;
x12’ = velocity;
x13’ = gear;

END;

system: MODULE = main || constraints;

The composition simply drives all theshift speed ij inputs from a common
torque input, which is constrained to be positive; the gear input is also constrained to
take only values1..4 . We can now repeat the previous test generation exercise, but with
the appearance ofmain replaced bysystem in the following command.

(define module (make-boolean-flat-module "(@ system trans_ga2)"))

The same test generation strategy as before takes three minutes to yield two tests of length
31 and 55 (for a combined length of 86) that together achieve full state and transition cov-
erage. If incremental generation of tests is disabled, then 25 separate tests are generated,
with a combined length of 229 steps.

4.3 Flight Guidance System

Our final example is a model of an aircraft flight guidance system developed by Rockwell
Collins under contract to NASA to support experiments such as this [HRV+03]. The models
were originally developed in RSML; we used SAL versions kindly provided by Jimin Gao
of the University of Minnesota who is developing an RSML to SAL translator. The largest
of the examples isToyFGS05 Left , which has over 490 state variables. The SAL version
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of this specification is not instrumented with trap variables for coverage, but the model
does contain 369 Boolean variables. Many of these have names ending inUndefined or
Randomand seem to be present for error detection and not intended to become activated.

The remaining variables number 185; purely as an exercise to assess scaling effects, we
generated a test suite to drive as many as possible of these Boolean variables into theTRUE
state using the following commands.

(define module (make-boolean-flat-module "(@ main ToyFGS05_Left)"))

(define goal-list ’(
"This_Output_Publish"
"Is_LAPPR_Selected"
"Is_ALT_Selected"
"Onside_FD_On"
"Is_LAPPR_Active"
"Is_ALTSEL_Active"
"Is_ALTSEL_Selected"
"Is_PITCH_Active"

... many lines omitted

"m_No_Higher_Event_Than_Transfer_Switch_Pressed"
"m_When_AP_Engage_Switch_Pressed"
"m_When_AP_Engage_Switch_Pressed_Seen"
"m_No_Higher_Event_Than_AP_Engage_Switch_Pressed"
"m_When_AP_Disconnect_Switch_Pressed"
"m_When_AP_Disconnect_Switch_Pressed_Seen"
"m_Select_ALT"
))

(define res (testgen module goal-list #t #t #f #t 1 1 2 5))

This command uses bounded model checking (at depth 1) to start the search because the
example is so big that symbolic model checking makes no progress in several hours. In five
minutes, bounded model checking succeeds in building single test case of length 57 that
takes all but two of the Boolean state variables toTRUE. Using symbolic model checking,
we have confirmed that these two state variables are invariantlyFALSE. Interestingly, the
symbolic model checker is able to analyze individual goals because slicing eliminates most
of the model, whereas in our test generation script the large number of goals means that
slicing is ineffective and symbolic model checking is unable to make progress.

In the command above, the first Boolean flag causes test generation to examine the
whole test generated so far to check which state variables have become true (compensating
for the fact that these variables do not latchTRUEin this model). If this optimization is
turned off by changing the first flag to#f , then the length of the test case increases to 59.
If incremental generation of tests is disabled, then 76 separate tests are generated, with a
combined length of 144 steps (there are many tests of length 1).
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5 Summary and Future Plans

We have described a method for generating efficient test sets for model-based embedded
systems by using a model checker to extend tests discovered earlier in the process. Ex-
tending tests not only eliminates the redundancy of many tests with similar prefixes, but
it allows the model checker incrementally to explore deeper into the statespace than might
otherwise be possible within given resource bounds, leading to more complete coverage.
Our method requires “going under the hood” of the model checker to exploit the capabili-
ties of its API, but several modern model checkers provide a suitably scriptable API. Our
methods exploit the full power of model checking to search at each step for an extension
from any known state to any uncovered goal, and use slicing so that the complexity of the
system being model checked is reduced as the outstanding coverage goals become harder
to achieve. We described how the method can be combined with others, such as random
testing, that create a preliminary “map” of known paths into the statespace.

We discussed the pragmatics of different model checking techniques for this application
and described preliminary experiments with the model checkers of our SAL system. Our
preliminary experiments have been modest but the results are promising. We are in the
process of negotiating access to additional examples of industrial scale and plan to compare
the performance of our method with others reported in the literature. We are also exploring
efficient methods for MC/DC coverage.

Our methods use the raw power of modern model checkers. It is likely that analy-
sis of the control flow of the model under examination could target this power more effi-
ciently, and we intend to explore this possibility. Our methods also can use techniques based
on abstraction and counterexample-driven refinement, such as those reported by Beyer et
al. [BCH+04] (ICS, already present as part of SAL, can be used to solve the constraint
satisfaction problems), and we intend to examine this combination.
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