
Pro
eedings of the 2003 Winter Simulation Conferen
eS. Chi
k, P. J. S�an
hez, D. Ferrin, and D. J. Morri
e, eds.FROM SIMULATION TO VERIFICATION (AND BACK)�Harald Rue�Computer S
ien
e LaboratorySRI InternationalMenlo Park, CA 94303, U.S.A. Leonardo de MouraComputer S
ien
e LaboratorySRI InternationalMenlo Park, CA 94303, U.S.A.ABSTRACTSymboli
 evaluation is the exe
ution of software andsoftware designs on inputs given as symboli
 or expli
it
onstants along with
onstraints on these inputs. EÆ-
ient symboli
 evaluation is now feasible due to re
entadvan
es in eÆ
ient de
ision pro
edures and symboli
model
he
king. Symboli
 evaluation
an be applied topartially implemented des
riptions and provides wider
overage and greater assuran
e than testing and tra-ditional simulation alone. Unlike full formal veri�
a-tion, symboli
 evaluation
an be used in a partial man-ner that is more likely to su

eed and yield some de-gree of assuran
e. Its main advantage is that it
anbe used within a smooth spe
trum of analyses rang-ing from refutation based on expli
it-state simulationto full-blown veri�
ation.1 INTRODUCTIONSymboli
 evaluation is the exe
ution of a program (oreven a spe
i�
ation) where some or all of the inputs aregiven in symboli
 form. Symboli
 evaluation is a ba-si
 te
hnique in theorem proving and veri�
ation. Forexample, a greatest-
ommon divisor (GCD) algorithmreturns a
ommon divisor
an be veri�ed by symboli-
ally evaluating the GCD operation and showing thatany
ommon divisor for x and y is also a
ommon divi-sor for y and x� y, for x > y > 0.Symboli
 evaluation has been espe
ially su

essful forhardware designs (for example, (Hardin et al. 1998;Moore 1998)), but it is also e�e
tive for the veri�
ationof the
orre
tness of
ompilation steps, in ensuring thesafety of byte
ode, and for
he
king that
ertain invari-ants are preserved. There are many other examples ofthe use of symboli
 evaluation. For example, an interval�This resear
h was supported by NASA Langley Resear
hCenter Cooperative agreement NCC-1-399 under a sub
ontra
tfrom Honeywell, by NSA (Maryland Pro
urement OÆ
e) underContra
t MDA904-02-C-1196, and by NSF under Contra
t EIA-0224465.

analysis of a program
an be
arried out by symboli
ally
omputing the �xed points of the intervals that
apturethe range of the numeri
 variables. A simpler form ofsu
h analysis has been applied to the Ariane-5 laun
h
ontrol software sin
e the initial deba
le. A sorting pro-gram
an be examined over a bounded size array to seeif the output is indeed a sorted permutation of the in-put. This is obviously weaker than verifying the sortingprogram over arrays of arbitrary size, but perhaps moreeÆ
ient at un
overing bugs.Symboli
 evaluation in
ludes testing but has someadded advantages. Most importantly, testing providesonly partial
overage and yields very limited
on�den
ein the
orre
tness of the design, whereas symboli
 simu-lation provides in
reased
overage sin
e a symboli
 eval-uation
overs a substantial range of
on
rete inputs. Inaddition, symboli
 simulation does not require a fullimplementation and
an be driven o� a partial imple-mentation or a high-level spe
i�
ation. It also providesin
reased
overage sin
e a symboli
 evaluation
oversa substantial range of
on
rete inputs. Also, symboli
evaluation
an be applied not only in the forward dire
-tion but also in the ba
kward dire
tion for
omputingpre
onditions from post
onditions.Symboli
 evaluation is a key
omponent of any usefulveri�
ation system, and has been a standard part of the-orem proving sin
e the work of Boyer and Moore (BoyerandMoore 1979). Its main advantage is that it is largelyautomati
 and
an be used within a smooth spe
trumof analyses ranging from testing to veri�
ation. In
on-trast, formal veri�
ation tends to be an all-or-nothingenterprise that yields few partial results, and is there-fore not yet an e
onomi
ally viable te
hnique for routineuse.Symboli
 evaluation is very e�e
tive for essentially�nite-state programs. For example, symboli
 traje
toryevaluation
arries out symboli
 simulation of hardwarein a ternary domain of truth values with an unknownelement. Model
he
king is a well-established te
hniquefor formal veri�
ation of rea
tive systems su
h as hard-

Rue� and de Mouraware
ir
uits and
ommuni
ation proto
ols. Systemsare modeled as state ma
hines and the spe
i�
ation isexpressed in temporal logi
. The rea
hable state spa
eof a simple proto
ol, resour
e
ontrol algorithm, orhardware
an be fully explored in symboli
 terms, usinga symboli
 model
he
ker (Bur
h et al. 1992; M
Mil-lan 1993b). Model
he
king te
hniques for rea
hability
an also be used for some in�nite state systems su
h asthose with timers (Alur et al. 1993), hybrid
ombina-tions of dis
rete and
ontinuous behavior (Alur et al.1995), and data stru
tures su
h as queues (Godefroidand Long 1996) and sta
ks (Abdulla et al. 1999). Ab-stra
tion
an be used to redu
e the symboli
 evaluationof in�nite-state systems to �nite-state systems throughthe use of abstra
t interpretation (Clarke et al. 1994;Loiseaux et al. 1995; Sa��di and Graf 1997; Sa��di andShankar 1999).Bounded model
he
king (BMC)
an be viewed as arestri
ted form of symboli
 simulation in that the sear
hfor falsifying tra
es is restri
ted to tra
es of some givenlength (Clarke et al. 2001). The BMC problem
an eÆ-
iently be redu
ed to a propositional satis�ability prob-lem, and o�-the-shelf propositional satis�ability (SAT)
he
kers are used to
onstru
t
ounterexamples fromsatisfying assignments. In this way, BMC extends ideasfor using SAT
he
kers to generate plans (as witnessesof eventually rea
hing some goal) (Kautz and Selman1992). Experien
e demonstrates that BMC
an be ef-fe
tive for falsi�
ation in
ases where there exist shortfalsifying tra
es (Clarke et al. 2001; Copty et al. 2001).In dedu
tive veri�
ation, the invarian
e rule for es-tablishing invarian
e properties requires a 1-step sym-boli
 simulation for establishing that a given safetyproperty (one true of all rea
hable states) is indeedpreserved on all transitions (Manna and Pnueli 1995).Appli
ation of the invarian
e rule usually requires
re-ativity in
oming up with a suÆ
iently strong indu
-tive invariant. It is also nontrivial to dete
t bugs fromfailed indu
tion proofs. Re
ent generalizations basedon k-step symboli
 simulation try to over
ome theselimitations (de Moura et al. 2002).This
on
ludes our brief, and ne
essarily in
omplete,overview of the lands
ape of formal veri�
ation te
h-niques based on symboli
 simulation. These methodsrange from refutation and simulation-based methods tofull-blown veri�
ation.In the rest of this paper we explore these validationte
hniques and their relative merits in some more de-tail. As our running example, we formally model apriority-
eiling real-time s
heduler and formally estab-lish that
ertain deadlines are always met. For theseexperiments, we use SRI's SAL veri�
ation toolbox,whi
h in
ludes a powerful modeling language for spe
-ifying
omputational systems in a modular way. The

E
st

er
el

St
at

ef
lo

w

ESMC BMC IND ESC

ICS

B
oo

le
an

 T
ra

ns
iti

on
 S

ys
te

m

T
ra

ns
iti

on
 s

ys
te

m

SA
L

SA
L

SA
L

SMC

Predicate
Abstraction

pa
rt

ia
l

V
er

ilo
g

Figure 1: SAL ToolbusSAL framework also integrates a number of validationand veri�
ation tools su
h as a sli
er, an expli
it-statesimulator, a BDD-based, symboli
 model
he
ker, abounded model
he
ker for in�nite-state systems basedon a
ombination of propositional SAT solving and
on-straint solving, and an indu
tion engine that
ombinesrefutation based on BMC with veri�
ation based on k-indu
tion.2 SYMBOLIC ANALYSIS LABORATORYWe have already seen a
atalog of symboli
 analysiste
hniques. The idea of symboli
 analysis is to allowthese te
hniques to
oexist so that the analysis of atransition system
an be
arried out by su

essive ap-pli
ations of a
ombination of these te
hniques. SALis su
h a framework for
ombining di�erent tools forabstra
tion, program analysis, theorem proving, andmodel
he
king toward the
al
ulation of properties(symboli
 analysis) of
on
urrent systems expressed astransition systems (Bensalem et al. 2000). SAL pro-vides a bla
kboard ar
hite
ture for symboli
 analysiswhere a
olle
tion of tools intera
t through a
ommonintermediate language for transition systems. The in-dividual analyzers (theorem provers, model
he
kers,stati
 analyzers) are driven from this language, and theanalysis results fed ba
k to this intermediate level. Thislanguage also serves as the target for translators that ex-tra
t the transition system des
ription for popular pro-gramming languages su
h as Esterel, Java, and State-
ow (see Figure 1). An earlier overview of SAL
an befound in (Bensalem et al. 2000), the SAL language isdo
umented in (Dill et al. 2001), and the rationale be-hind symboli
 analysis is explained in (Shankar 2000).

Rue� and de MouraThe SAL tools are available free of
harge for non
om-mer
ial use at <sal.
sl.sri.
om>.2.1 THE SAL LANGUAGEA key part of the SAL framework is a language for de-s
ribing transition systems. A variety of languages su
has UNITY (Chandy and Misra 1988), SMV (M
Mil-lan 1993a), and Rea
tive Modules (Alur and Henzinger1996) have been proposed in the literature, whi
h aresuitable for spe
ifying transition systems. SAL has a lotin
ommon with these languages, but it is also unique inthat it in
ludes a ri
h set of
ombinators for spe
ifyinglarge systems in a modular way.A module is a self-
ontained spe
i�
ation of a transi-tion system in SAL. Su
h a transition system module
onsists of a state type, an initialization
ondition onthis state type, and a binary transition relation of a spe-
i�
 form on the state type, and invariant de�nitions.The state type is de�ned by four pairwise disjoint setsof input , output , global , and lo
al variables. The in-put and global variables are the observed variables of amodule and the output, global, and lo
al variables arethe
ontrolled variables of the module. Usually, sev-eral modules are
olle
ted in a
ontext. Contexts alsoin
lude type and
onstant de
larations.The s
heduler module below, for example, re
eivesa
ommand as input and, depending on the values ofthe lo
al variables, it de
ides on the next value of theoutput variable turn. 1s
heduler: MODULE =BEGINLOCAL
lo
k : Clo
kRangeLOCAL dispat
h : ARRAY JobIdx OF Clo
kRangeLOCAL job_state : JobStateOUTPUT turn : TurnLOCAL rsr
 : RSRCINPUT
md : CommandINITIALIZATION: : :TRANSITION: : :ENDThe de�nition of datatypes su
h as Clo
kRange andCommand, the initial settings of variables, and transi-tions in terms of guarded
ommands are omitted here(for a more detailed des
ription, see Figure 3).Parametri
 modules allow the use of logi
al (state-independent) and type parameterization in the de�ni-tion of modules. Most importantly, modules in SAL
anbe
ombined both syn
hronously and asyn
hronously.The SAL language has been developed in
ollaboration withStanford, Berkeley, Verimag, and SRI International.

PCP

J1

J2

J3

Idle

turn

System

command

RSRC

Job State

Figure 2: PCP Ar
hite
tureIn the syn
hronous form of
omposition, modules re-a
t to inputs in zero time, as with
ombinational
ir-
uitry in hardware. Absen
e of
ausal loops in syn-
hronous systems is ensured by generating proof obliga-tions, rather than by more restri
tive synta
ti
 methodsas in other languages. Asyn
hronously
omposed mod-ules that are driven by independent
lo
ks are mod-eled by means of interleaving the atomi
 transitionsof the individual modules. SAL allows for mixturesof syn
hronous and asyn
hronous module
omposition.For example, it is natural to model a s
heduler syn-
hronously (||)
omposed with a set of jobs runningasyn
hronously [℄ as depi
ted in Figure 2.2.2 THE SAL VALIDATION TOOLBUSThe
ore of the SAL validation tools is a s
riptable statespa
e exploration toolkit for traversing state spa
es as-so
iated with SAL spe
i�
ations. Using the API of thistoolkit, model
he
kers, simulators, stati
 debuggers,symboli
 simulators, and other state explorations
anbe en
oded as S
heme s
ripts. For eÆ
ien
y, these ex-tensions are then
ompiled and linked with the SALkernel.SAL validation tools are not ne
essarily required tosupport the
omplete SAL language, as there is a stagedtranslation of SAL into simpler fragments by sour
e tosour
e transformations (see Figure 1). These trans-formations in
lude expression simpli�
ation, Skolem-ization of universally quanti�ed expressions, and theexpansion of module
ombinators. Finite-state SALspe
i�
ations, for example, are
ompiled into a Booleantransition system (
ir
uit, net list) by
onverting statevariables into bitve
tors and abstra
tly interpreting op-erators in terms of bitve
tor expressions. The sele
tionof veri�
ation tools below is a snapshot of the
urrently

Rue� and de Mouraavailable ones, but new veri�
ation tools
an be addedto the SAL toolbus due to its open-ended nature.SAL-ESMC. Given a SAL module and a linear tem-poral logi
 (LTL) formula, the SAL expli
it-state model
he
ker translates the LTL formula into a SAL mod-ule for representing the asso
iated B�u
hi automaton,whi
h is then used as a syn
hronous oberserver for thesystem under
onsideration. Now, the given state spa
eis explored for violations of the spe
i�ed temporal logi
formula, and a
ounterexample in the form of an exe-
ution path leading to su
h a violation, is
onstru
ted.In this way, ESMC
an be seen as a standard simula-tor, but for the ri
hness of the SAL language, whi
hin
ludes primed variables in the guard of transitions,simulation requires online s
heduling. SAL-ESMC usesmany of the optimizations for expli
it-state simulatorssu
h as supertra
e redu
tion (Holzmann 1998). Otherpopular te
hniques for dealing with the state explosionproblem are partial order and symmetry redu
tion.SAL-ESMC is in parti
ularly useful in the initialsteps of developing a model, sin
e it dete
ts many errorsqui
kly. SAL-ESMC is rarely used for full veri�
ation,however, sin
e even on �nite-state systems, an enumer-ative
he
k is unlikely to su

eed be
ause the size of thesear
hable state spa
e
an be exponential in the size ofthe program state. Still, enumerative model
he
king isan e�e
tive debugging or refutation te
hnique that
anoften dete
t and display simple
ounterexamples whena property fails.SAL-SMC. Given a SAL module of �nite state spa
eand an LTL formula, the SAL symboli
 model
he
kerde
ides whether the
orresponding transition system in-deed satis�es the formula. In the tradition of the SMVmodel
he
ker, the �nite transition relation is en
odedusing binary de
ision diagrams (BDDs), and symboli
simulation is realized by �xpoint
omputations on theBDD representations. SAL-SMC supports both for-ward and ba
kward simulation.Symboli
 model
he
kers using BDD representations
an sometimes pro
ess state spa
es with more than101000 states. The problem, however, is that the sizeof the BDD representations may also explode during�xpoint
omputation. In some
ases, symboli
 model
he
king may fail to verify a small problem (say, with107 states) be
ause there is no
ompa
t BDD represen-tation for the underlying transition relation. Therefore,SAL-SMC is usually used for verifying simpli�ed andheavily abstra
ted models.SAL-BMC. The use of Boolean satis�ability (SAT)solvers for verifying temporal logi
 properties has beenexplored through a te
hnique known as bounded model

he
king (BMC) (Clarke et al. 2001). As with sym-boli
 model
he
king, the state is en
oded in terms ofbooleans. The program is unrolled a bounded num-ber of steps for some bound k, and an LTL propertyis
he
ked for
ounterexamples over
omputations oflength k. Thus, a BMC problem
orresponds to en-
oding all bounded simulation problems as a Booleansatis�ability problem. For example, to
he
k whether aprogram with initial state I and next-state relation Tviolates the invariant ' in the �rst k steps, one
he
ks,using a propositional SAT solver:I(s0)^T (s0; s1)^T (s1; s2)^ : : : ^T (sk�1; sk)^(:'(s0)_ : : : _:'(sk)) .This formula is satis�able if and only if there exists apath of length at most k from the initial state s0, whi
hviolates the invariant '. This BMC methodology hasbeen extended to BMC for in�nite-state systems bytranslating the problem to a propositional
onstraintsatis�
ation problem (de Moura et al. 2002; de Mouraand Rue� 2002). The
onstraints involved might be lin-ear arithmeti

onstraints, equalities over uninterpretedfun
tion symbols, array and bitve
tor
onstraints, orany
ombination thereof. Given a SAL spe
i�
ationwith data types su
h as integers and arrays, an LTLformula with
onstraints on these datatypes, and anupper bound k, SAL-BMC de
ides whether there is a
ounterexample of length up to k to the hypotheses thata (possibly in�nite) transition system satis�es its tem-poral spe
i�
ation. The
orresponding
onstraint satis-fa
tion problems are solved using the ICS de
ision pro-
edures (Filliâtre et al. 2001). In this way, SAL-BMC isappli
able for in�nite-state veri�
ation problems, and ithas been applied for
ontinuous-time systems and spe-
ial
ases of hybrid systems (Sorea 2002).It has been demonstrated that BMC
an be more ef-fe
tive in falsifying hypotheses than traditional model
he
king (Clarke et al. 2001; Copty et al. 2001).Bounded model
he
king is therefore often used for refu-tation, where one systemati
ally sear
hes for
ounterex-amples whose length is bounded by some integer k. Thebound k is in
reased until a bug is found, or some pre-
omputed
ompleteness threshold or diameter (namely,the longest of all the shortest path to any rea
hablestate) is rea
hed. Unfortunately, the
omputation of
ompleteness thresholds is usually prohibitively expen-sive and these thresholds may be too large to e�e
tivelyexplore the asso
iated bounded sear
h spa
e. In addi-tion, su
h
ompleteness thresholds do not even exist formany in�nite-state systems.SAL-IND. The SAL indu
tion tool
ombines refuta-tion based on bounded model
he
king te
hniques with

Rue� and de Mouraveri�
ation based on a generalized indu
tion rule,
alledk-indu
tion (de Moura et al. 2003). This rule �rst re-quires demonstrating the invarian
e of a safety propertyin the �rst k states of any exe
ution. Consequently, er-ror tra
es of length k are dete
ted. This indu
tion rulealso generalizes the usual invarian
e rule in that it re-quires showing that if the property under
onsiderationholds in every state of every exe
ution of length k, thenevery su

essor state also satis�es '. As in BMC, thebound k is in
reased until either a violation is dete
tedin the �rst k states of an exe
ution or the property athand is shown to be k-indu
tive. In the ideal
ase ofattempting to prove
orre
tness of an indu
tive prop-erty (that is, a property preserved on all transitions),1-indu
tion suÆ
es and iteration up to a, possibly large,
omplete threshold, as in BMC, is avoided. Althoughk-indu
tion is
omplete for �nite systems, in pra
ti
e,it usually works only for small values of k < 20.Whenever k-indu
tion fails to prove a property, thereis a
ounterexample of length k + 1 su
h that the �rstk states satisfy ' and the last state does not satisfy'. If the �rst state of this tra
e is rea
hable, then' is refuted. Otherwise, the
ounterexample is la-beled spurious. By assuming the �rst state of thistra
e to be unrea
hable, a spurious
ounterexampleis used automati
ally to obtain a strengthened invari-ant. Many in�nite-state systems
an only be provenwith k-indu
tion enri
hed with invariant strengthening,whereas for �nite systems and many
ontinuous-timesystems the use of strengthening is an optimization inthat it de
reases the minimal k for whi
h a k-indu
tionproof su

eeds (de Moura et al. 2003).3 MODELING THE PRIORITY-CEILINGPROTOCOLWe report on our work and experien
e in modelingand validating Dutertre's version (Dutertre 2000) of thepriority-
eiling proto
ol (PCP) using SAL. The PCPproto
ol is parti
ularly interesting, sin
e s
heduling isa
riti
al
omponent of real-time system that are beingused in safety-
riti
al appli
ations su
h as IntegratedModular Avioni
s (IMA), and many real-world s
hed-ulers su
h as Honeywell's DEOS are based on simpler,but supposedly better understood, versions of PCPsu
h as the highest lo
ker proto
ol. In su
h a
ontext,one must obtain strong guarantees of
orre
tness, andrigorous development and veri�
ation methods are re-quired.Real-time s
heduling involves the allo
ation of re-sour
es and time intervals to tasks in su
h a way that
ertain timeliness performan
e requirements are met.A s
heduling problem is given in terms of a set of peri-odi
 tasks with given period length, priority, and budget,

and a
orresponding real-time s
heduler needs to ensurethat every task
onsumes its budget of pro
essing timeon a shared pro
essor in ea
h of its periods. A

ess toother shared resour
es su
h as
ommon I/O
hannels is
ontrolled by semaphores for ensuring mutual ex
lusivea

ess to ea
h of these resour
es. When syn
hroniza-tion primitives, su
h as semaphores, are used, there is aproblem
alled priority inversion whi
h
auses low pri-ority jobs to prevent higher priority jobs from running.For instan
e, a job j
an be blo
ked when trying to lo
ka semaphore S if a job k of lower priority has lo
ked Sbefore j was dispat
hed. As a result, a job j of toppriority
an be unable to exe
ute and a job k of lowerpriority than j
an be
ome a
tive. This phenomenonmay blo
k j for long periods of time, sin
e other jobs,with priority greater than k, may prevent k to exe
uteand
onsequently to unlo
k S. So, the high-priorityjob j
an then be delayed by the low-priority job kthat lo
ks S but also by any job of intermediate prior-ity that might preempt k. Sin
e high-priority jobs areusually the most urgent and may have tight deadlines,su
h unrestri
ted priority inversion
an be disastrous.In the Priority Ceiling Proto
ol, the following approa
his used: ea
h semaphore S is assigned a �xed
eilingwhi
h is equal to the highest priority among the jobsthat need a

ess to S, and a job j exe
uting lo
k (S) isgranted a

ess to S if the priority of j is stri
tly higherthat the
eiling of any semaphore lo
ked by a job otherthan j. Otherwise, j be
omes blo
ked and S is notallo
ated to j.The s
heduler and ea
h of the jobs are representedas SAL modules. Ea
h a
tive job nondeterministi
ally
hooses to either lo
k or unlo
k a semaphore or to per-form some lo
al step
omputation (Figure 2). Thus,the a
tions of a job
an be modeled using the abstra
tdata type Command below. 2Command: TYPE = DATATYPE
md_lo
k(arg: Semaphore),
md_unlo
k(arg: Semaphore),
md_unlo
k_all,
md_stepENDGiven the identi�er of the
urrently a
tive pro
ess, the
urrent
on�guration RSRC of the semaphores, and the
lo
k value, the PCP s
heduler pi
ks an exe
utable jobof highest pre
eden
e whi
h is not blo
ked, and
ontrolsjob sele
tion through the turn variable. The skeletonof the SAL module for spe
ifying this s
heduler
an befound in Figure 3. This module has lo
al variables fora dis
rete
lo
k (with a suÆ
iently large upper bounddepending on the job
on�guration), the
urrent dis-pat
h times, and the
urrent job states. At ea
h
lo
kti
k, it re
eives a
ommand from the
urrently a
tivejob and updates the resour
es rsr
 depending on this

Rue� and de Moura3s
heduler: MODULE =BEGINLOCAL
lo
k : Clo
kRangeLOCAL dispat
h : ARRAY JobIdx OF Clo
kRangeLOCAL job_state : JobStateOUTPUT turn : TurnLOCAL rsr
 : RSRCINPUT
md : CommandINITIALIZATION
lo
k = 0;dispat
h = [[j : JobIdx℄ 0℄;job_state = [[j : JobIdx℄ 0℄;rsr
 = rsr
Ctx!initial_rsr
;turn = idle_turnTRANSITION
lo
k' = adjust(
lo
k + 1);job_state' =[[j : JobIdx℄IF sleeping?(j, job_state) ANDdispat
h[j℄ =
lo
kTHEN 1ELSIF turn?(turn, j) THENIF end_of_budget?(j, job_state) THEN 0ELSE job_state[j℄ + 1 ENDIFELSE job_state[j℄ ENDIF ℄;dispat
h' = : : :rsr
' = : : :[([℄(j : JobIdx):eligible?(j, rsr
, job_state')--> turn' = job_turn(j))[℄ELSE --> turn' = idle_turn℄END Figure 3: PCP S
heduler in SAL
ommand. Furthermore, the
lo
k is in
remented, andthe state of ea
h job is updated. Now, an eligible job jis sele
ted to be a
tive, depending on the old value ofthe resour
es and the new (!) state of the jobs. The [j:JobIdx℄
onstru
t in this spe
i�
ation denotes simul-taneous array updates, and [℄ denotes asyn
hronous
omposition.The use of parametri
 transition systems in SAL al-low us to investigate di�erent task sets by simply in-stantiating the s
heduler model without
hanging spe
-i�
ations. In parti
ular, the PCP model is parameter-ized with respe
t to the number of tasks, the number ofsemaphores, and the spe
i�
s for ea
h task. In this way,the PCP model
an be reused for di�erent s
hedulingproblems by means of simple instantiation of parame-ters.

Although time is progressing inde�nitely, the result-ing system, for a given
on�guration, is essentially�nite-state. Indeed, for the assumed periodi
ity of pro-
esses it suÆ
es to
onsider time only up to the least
ommon multiple of the task periods. Thus, we
anrestri
t ourselves to the SAL validation tools for �nite-state systems.4 VALIDATING TIME PARTITIONINGTime-partitioning is a
ru
ial property for hard real-time s
hedulers, parti
ularly those in whi
h appli
ationof di�erent
riti
alities run on the same pro
essor. In atime-partitioned operating system, the s
heduler is re-sponsible for ensuring that the a
tions of one job
annot a�e
t other jobs guaranteed a

ess to CPU exe
u-tion time. We say that a deadline has been missed forjob j if the
lo
k is at a period boundary for job j butthe job j has not been put into sleeping mode. The
orresponding theorem deadline missed, expressed inLTL, formalizes that this
ondition is never been vio-lated. 4dl_missed?(dispat
h : ARRAY JobIdx OF Clo
kRange,job_state : JobState,
lo
k : Clo
kRange): BOOLEAN= (EXISTS (j : JobIdx) :dispat
h[j℄ =
lo
k ANDNOT sleeping?(j, job_state));deadline_missed : THEOREMsystem |-G(NOT(dl_missed?(dispat
h, job_state,
lo
k)));Similarly important, at ea
h
lo
k ti
k, there should beat least one job ready to exe
ute. 5deadlo
k?(job_state:JobState,t:Turn):BOOLEAN =idle_turn?(t) AND(EXISTS (j: JobIdx) :ready_to_exe
ute?(j, job_state));deadlo
k_free : THEOREMsystem |- G(NOT deadlo
k?(job_state, turn));We prove these properties for the three s
heduling
on-�gurations in Figure 4 using various SAL veri�
ationtools.Con�guration 1 has three jobs with the givenpriorities, periods, budgets, and semaphores as givenin Figure 4. This
on�guration leads to a s
hedulingproblem with 209; 737; 024 rea
hable states. This num-ber is
learly beyond the
apabilities of expli
it-statemodel
he
king, but the deadlo
k property is easily

Rue� and de MouraCon�guration 1.job priority period budget semaphores1 100 8 3 f1; 3g2 50 12 4 f1; 2g3 25 20 5 f1; 2; 3gCon�guration 2.job priority period budget semaphores1 100 28 4 f1; 3g2 50 16 4 f1; 2g3 25 16 4 f1; 2; 3gCon�guration 3.job priority period budget semaphores1 100 10 3 f1g2 75 16 4 f2g3 50 8 7 f1; 3g4 50 12 6 f1; 2g5 25 20 5 f1; 2; 3gFigure 4: Con�gurationsproved with symboli
 model
he
king (both forwardand ba
kward rea
hability) and indu
tion of depthk = 1.SAL-SMC (forward) 76:21 se
s(ba
kward) 4:24 se
sSAL-IND (k = 1) 6:4 se
sFor this property, a proof using SAL-BMC withoutindu
tion is mu
h harder than with SAL-IND, sin
ethe diameter of the system to be explored is 194. Forthe indu
tiveness of the property under
onsidera-tion, however, exploration of depth 1 suÆ
es. Thetimeliness property does not hold for
on�guration 1,and
ounterexamples of length 16 are easily generatedusing forward symboli
 model
he
king and boundedmodel
he
king.SAL-SMC (forward) 7:64 se
s(ba
kward) timeoutSAL-IND 7:7 se
sCon�guration 2 only generates 4; 992 rea
hablestates and the diameter is 112. Again, it is straightfor-ward to establish deadlo
k-freeness using either model
he
king or indu
tion.

SAL-SMC (forward) 9; 46 se
s(ba
kward) 8:24 se
sSAL-IND (k = 1) 4:15 se
sSymboli
 model
he
king using forward traversal provesthe timeliness property. Both ba
kward simulation andindu
tion fail, but at least, bounded model
he
kingestablishes the property up to the diameter.SAL-SMC (forward) 9:68 se
s(ba
kward) timeoutSAL-BMC (upto k = 112) 24:83 se
sIn general, however, the diameter of a system is diÆ
ultto
ompute, and therefore it is un
lear when to stop in-
reasing the bound k in BMC. k-indu
tion fails for thisproblem, sin
e it has to be iterated up to the re
urren
ediameter (the length of the longest a
y
li
 path), whi
husually is mu
h larger than the diameter. In
ontrast,SAL-ESMC proves this property almost immediately.Con�guration 3 generates a rather huge problemspa
e with 329; 924; 301; 744 rea
hable states and thediameter of the system is 437. Again, all symboli
methods establish deadlo
k-freeness, but this timesymboli
 forward traversal is less eÆ
ient than boththe other methods.SAL-SMC (forward) 7055:6 se
s(ba
kward) 16:54 se
sSAL-IND (k = 1) 8:49 se
sTime-partitioning fails for this
on�guration, and bothforward symboli
 model
he
king and k indu
tionprodu
e a
ounterexample of length 8.SAL-SMC (forward) 17:32 se
s(ba
kward) timeoutSAL-IND 11:38 se
sAltogether, the best
hoi
e of veri�
ation te
hniqueusually depends on the
hara
teristi
s of the problem athand, and ea
h veri�
ation te
hnique has its parti
ularweaknesses and strengths. However, they are
omple-mentary in that when one is weak the other is strong.5 CONCLUSIONSHighly eÆ
ient symboli
 evaluation te
hnology
an beused to apply the whole spe
trum of analysis of pro-grams and spe
i�
ations from testing and debugging toveri�
ation. We believe that the relevant te
hnology
onsisting of de
ision pro
edures and
onstraint prop-agation has progressed to a point where it
an be em-ployed eÆ
iently for symboli
 evaluation. A major ad-vantage of symboli
 simulation is that it s
ales smoothlyfrom expli
it-state exploration to indu
tive veri�
ation.

Rue� and de MouraSymboli
 simulation in k-indu
tion proofs, as developedin the SAL framework, for example,
ombines refuta-tion and veri�
ation-based methods in a natural anduseful way.We have des
ribed a graded sequen
e of integratedformal analysis te
hnologies in SAL, based on symboli
simulation, and demonstrated their e�e
tiveness. Inthe early life
y
le of a model, testing, debugging, andexpli
it-state exploration seem to be parti
ularly e�e
-tive for validation, whereas more heavy-weight veri�
a-tion tools are applied at later life
y
les.Compared to testing, symboli
 simulation providesin
reased
overage and is appli
able to partial modelsand high-level designs. On the other hand, symboli
simulation is often restri
ted too rather shallow explo-ration of state spa
es
ompared to, say, random sim-ulation. Combinations of expli
it with symboli
-stateexploration should make it possible to not only drasti-
ally in
rease
overage of expli
it-state simulation butalso to use lo
alized symboli
 simulation to drive sim-ulations to territory in the state spa
e that would oth-erwise remain unexplored. Mu
h more intri
ate
om-binations seem to be possible. For example, the statespa
e is divided into expli
itly and symboli
ally repre-sented set of sets, and simulation
onsists of a hybrid ofexpli
it sear
h and
onstraint solving. Symboli
 simu-lation
an also be used to generate \
heap" invariants,whi
h themselves are used to restri
t the sear
h spa
efor expli
it exploration.There is mu
h more to a
omputational system thanmerely
orre
tness, sin
e it should also provide
er-tain quality of servi
e. In the priority-
eiling proto
ol,for example, an upper bound on the maximum time apro
ess is blo
ked should be established. In some ini-tial experiments, we developed SAL s
ripts based onexpli
it-state model
he
king for
omputing su
h max-imum blo
king time, but many more te
hniques fromtraditional simulation, in parti
ular probabilisti
 meth-ods, need to be in
orporated.ACKNOWLEDGMENTS. Many of the ideas andte
hniques presented here have been developed in
lose
ooperation with our
ollegues S. Owre, J. Rushby, andN. Shankar.REFERENCESAbdulla, P. A., A. Anni
hini, S. Bensalem, A. Bouaj-jani, P. Habermehl, and Y. Lakhne
h. 1999, July.Veri�
ation of in�nite-state systems by
ombiningabstra
tion and rea
hability analysis. See Halb-wa
hs and Peled (1999), 146{159. 2

Alur, R., C. Cour
oubetis, and D. Dill. 1993, May.Model-
he
king in dense real-time. Informationand Computation 104 (1): 2{34. 2Alur, R., C. Cour
oubetis, N. Halbwa
hs, T. A. Hen-zinger, P. Ho, X. Ni
ollin, A. Olivero, J. Sifakis,and S. Yovine. 1995, 6 February. The algorithmi
analysis of hybrid systems. TCS 138 (1): 3{34. 2Alur, R., and T. A. Henzinger. 1996, 27{30 July.Rea
tive modules. See IEEE Computer So
ietyPress (1996), 207{218. 3Bensalem, S., V. Ganesh, Y. Lakhne
h, C. Mu~noz,S. Owre, H. Rue�, J. Rushby, V. Rusu, H. Sa��di,N. Shankar, E. Singerman, and A. Tiwari.2000, June. An overview of SAL. In LFM 2000:Fifth NASA Langley Formal Methods Workshop,ed. C. M. Holloway, 187{196. Hampton, VA:NASA Langley Resear
h Center. Pro
eedingsavailable at <http://shemesh.lar
.nasa.gov/fm/Lfm2000/Pro
/>. 2Boyer, R. S., and J. S. Moore. 1979. A
omputationallogi
. New York, NY: A
ademi
 Press. 1Bur
h, J. R., E. M. Clarke, K. L. M
Millan, D. L.Dill, and L. J. Hwang. 1992, June. Symboli
model
he
king: 1020 states and beyond. Infor-mation and Computation 98 (2): 142{170. 2Chandy, K., and J. Misra. 1988. Parallel program de-sign: A foundation. Addison Wesley. 3Clarke, E. M., A. Biere, R. Raimi, and Y. Zhu. 2001.Bounded model
he
king using satis�ability solv-ing. Formal Methods in System Design 19 (1): 7{34. 2, 4Clarke, E. M., O. Grumberg, and D. E. Long. 1994,September. Model
he
king and abstra
tion. 16(5): 1512{1542. 2Copty, F., L. Fix, R. Fraer, E. Giun
higlia,G. Kamhi, A. Ta

hella, and M. Vardi. 2001,July. Bene�ts of bounded model
he
king in anindustrial setting. In Computer-Aided Veri�
a-tion, CAV 2001, Volume 2101 of LNCS, 436{453:Springer-Verlag. 2, 4de Moura, L., and H. Rue�. 2002, May. Lemmason demand for satis�ability solvers. Presentedat SAT 2002, a

epted for journal publi
ation.Available at <http://www.
sl.sri.
om/users/demoura/sat02_journal.pdf>. 4de Moura, L., H. Rue�, and M. Sorea. 2002, July.Lazy theorem proving for bounded model
he
k-ing over in�nite domains. In International Con-feren
e on Automated Dedu
tion (CADE'02), ed.A. Voronkov, Volume 2392 of LNCS, 438{455.Copenhagen, Denmark: Springer-Verlag. 2, 4

Rue� and de Mourade Moura, L., H. Rue�, and M. Sorea. 2003, July.Bounded model
he
king and indu
tion: Fromrefutation to veri�
ation. In Computer-AidedVeri�
ation, CAV '2003, ed. W. A. Hunt, Jr. andF. Somenzi, Volume 2725 of LNCS, 14{26. Boul-der, CO: Springer-Verlag. 5Dill, D., T. Henzinger, S. Owre, and N. Shankar.2001, Mar
h. The SAL language. Te
hni
al Re-port SRI-CSL-01-02, Computer S
ien
e Labora-tory, SRI International, Menlo Park, CA. 2Dutertre, B. 2000, De
ember. Formal analysis of thepriority
eiling proto
ol. In Real Time SystemsSymposium. Orlando, FL: IEEE Computer So
i-ety. To appear. 5Filliâtre, J.-C., S. Owre, H. Rue�, and N. Shankar.2001, July. ICS: Integrated Canonization andSolving. In Computer-Aided Veri�
ation, CAV'2001, ed. G. Berry, H. Comon, and A. Finkel,Volume 2102 of LNCS, 246{249. Paris, Fran
e:Springer-Verlag. 4Godefroid, P., and D. E. Long. 1996, 27{30 July.Symboli
 proto
ol veri�
ation with queue BDDs.See IEEE Computer So
iety Press (1996), 198{206. 2Halbwa
hs, N., and D. Peled. (Eds.) 1999, July.Computer-aided veri�
ation,
av '99, Volume1633 of LNCS, Trento, Italy. Springer-Verlag. 8,9Hardin, D., M. Wilding, and D. Greve. 1998, June.Transforming the theorem prover into a digitaldesign tool: From
on
ept
ar to o�-road vehi-
le. In Computer-Aided Veri�
ation, CAV '98, ed.A. J. Hu and M. Y. Vardi, Volume 1427 of LNCS,39{44. Van
ouver, Canada: Springer-Verlag. 1Holzmann, G. 1998, Mar
h. Designing exe
utableabstra
tions. In Se
ond Workshop on FormalMethods in Software Pra
ti
e (FMSP '98), ed.M. Ardis, 103{109. Clearwater Bea
h, FL: Asso-
iation for Computing Ma
hinery. 4IEEE Computer So
iety Press 1996, 27{30 July. Pro-
eedings, 11th annual ieee symposium on logi
 in
omputer s
ien
e, New Brunswi
k, New Jersey.IEEE Computer So
iety Press. 8, 9Kautz, H. A., and B. Selman. 1992. Planning as sat-is�ability. In European Conferen
e on Arti�
ialIntelligen
e, 359{363. 2Loiseaux, C., S. Graf, J. Sifakis, A. Bouajjani, andS. Bensalem. 1995. Property preserving abstra
-tions for the veri�
ation of
on
urrent systems.FMSD 6:11{44. 2

Manna, Z., and A. Pnueli. 1995. Temporal veri�
a-tion of rea
tive systems: Safety. Springer-Verlag.2M
Millan, K. 1993a. Symboli
 model
he
king.Kluwer A
ademi
 Publishers, Boston. 3M
Millan, K. L. 1993b. Symboli
 model
he
king.Boston, MA: Kluwer A
ademi
 Publishers. 2Moore, J. S. 1998, November. Symboli
 simula-tion: An ACL2 approa
h. In Formal Methodsin Computer-Aided Design (FMCAD '98), ed.G. Gopalakrishnan and P. Windley, Volume 1522of LNCS. Palo Alto, CA: Springer-Verlag. 1Sa��di, H., and S. Graf. 1997, June. Constru
tion ofabstra
t state graphs with PVS. In Computer-Aided Veri�
ation, CAV '97, ed. O. Grumberg,Volume 1254 of LNCS, 72{83. Haifa, Israel:Springer-Verlag. 2Sa��di, H., and N. Shankar. 1999, July. Abstra
t andmodel
he
k while you prove. See Halbwa
hs andPeled (1999), 443{454. 2Shankar, N. 2000, Mar
h. Symboli
 analysis of transi-tion systems. In Abstra
t State Ma
hines: Theoryand Appli
ations (ASM 2000), ed. Y. Gurevi
h,P. W. Kutter, M. Odersky, and L. Thiele, Volume1912 of LNCS, 287{302. Monte Verit�a, Switzer-land: Springer-Verlag. 2Sorea, M. 2002. Bounded model
he
king for timedautomata. ENTCS 68 (5). At: <http://www.elsevier.
om/lo
ate/ent
s/volume68.html>.4AUTHOR BIOGRAPHIESHARALD RUESS is a Computer S
ientist at theComputer S
ien
e Laboratory of SRI International. His
urrent work is
on
erned with the development andimplementation of de
ision pro
edures, the appli
ationof formal methods for analyzing software and hardwaresystems, analysis of se
urity proto
ols, and the logi
alfoundation of evidential transa
tions. The address ofhis home page is <www.
sl.sri.
om/users/ruess>.LEONARDO DE MOURA is a Computer S
ientistat the Computer S
ien
e Laboratory of SRI Interna-tional. He is mainly
on
erned with developing and im-plementing model
he
kers, simulators, and other veri�-
ation tools. His e-mail address is <demoura�
sl.sri.
om>.

