
Proeedings of the 2003 Winter Simulation ConfereneS. Chik, P. J. S�anhez, D. Ferrin, and D. J. Morrie, eds.FROM SIMULATION TO VERIFICATION (AND BACK)�Harald Rue�Computer Siene LaboratorySRI InternationalMenlo Park, CA 94303, U.S.A. Leonardo de MouraComputer Siene LaboratorySRI InternationalMenlo Park, CA 94303, U.S.A.ABSTRACTSymboli evaluation is the exeution of software andsoftware designs on inputs given as symboli or expliitonstants along with onstraints on these inputs. EÆ-ient symboli evaluation is now feasible due to reentadvanes in eÆient deision proedures and symbolimodel heking. Symboli evaluation an be applied topartially implemented desriptions and provides wideroverage and greater assurane than testing and tra-ditional simulation alone. Unlike full formal veri�a-tion, symboli evaluation an be used in a partial man-ner that is more likely to sueed and yield some de-gree of assurane. Its main advantage is that it anbe used within a smooth spetrum of analyses rang-ing from refutation based on expliit-state simulationto full-blown veri�ation.1 INTRODUCTIONSymboli evaluation is the exeution of a program (oreven a spei�ation) where some or all of the inputs aregiven in symboli form. Symboli evaluation is a ba-si tehnique in theorem proving and veri�ation. Forexample, a greatest-ommon divisor (GCD) algorithmreturns a ommon divisor an be veri�ed by symboli-ally evaluating the GCD operation and showing thatany ommon divisor for x and y is also a ommon divi-sor for y and x� y, for x > y > 0.Symboli evaluation has been espeially suessful forhardware designs (for example, (Hardin et al. 1998;Moore 1998)), but it is also e�etive for the veri�ationof the orretness of ompilation steps, in ensuring thesafety of byteode, and for heking that ertain invari-ants are preserved. There are many other examples ofthe use of symboli evaluation. For example, an interval�This researh was supported by NASA Langley ResearhCenter Cooperative agreement NCC-1-399 under a subontratfrom Honeywell, by NSA (Maryland Prourement OÆe) underContrat MDA904-02-C-1196, and by NSF under Contrat EIA-0224465.

analysis of a program an be arried out by symboliallyomputing the �xed points of the intervals that apturethe range of the numeri variables. A simpler form ofsuh analysis has been applied to the Ariane-5 launhontrol software sine the initial debale. A sorting pro-gram an be examined over a bounded size array to seeif the output is indeed a sorted permutation of the in-put. This is obviously weaker than verifying the sortingprogram over arrays of arbitrary size, but perhaps moreeÆient at unovering bugs.Symboli evaluation inludes testing but has someadded advantages. Most importantly, testing providesonly partial overage and yields very limited on�denein the orretness of the design, whereas symboli simu-lation provides inreased overage sine a symboli eval-uation overs a substantial range of onrete inputs. Inaddition, symboli simulation does not require a fullimplementation and an be driven o� a partial imple-mentation or a high-level spei�ation. It also providesinreased overage sine a symboli evaluation oversa substantial range of onrete inputs. Also, symbolievaluation an be applied not only in the forward dire-tion but also in the bakward diretion for omputingpreonditions from postonditions.Symboli evaluation is a key omponent of any usefulveri�ation system, and has been a standard part of the-orem proving sine the work of Boyer and Moore (BoyerandMoore 1979). Its main advantage is that it is largelyautomati and an be used within a smooth spetrumof analyses ranging from testing to veri�ation. In on-trast, formal veri�ation tends to be an all-or-nothingenterprise that yields few partial results, and is there-fore not yet an eonomially viable tehnique for routineuse.Symboli evaluation is very e�etive for essentially�nite-state programs. For example, symboli trajetoryevaluation arries out symboli simulation of hardwarein a ternary domain of truth values with an unknownelement. Model heking is a well-established tehniquefor formal veri�ation of reative systems suh as hard-



Rue� and de Mouraware iruits and ommuniation protools. Systemsare modeled as state mahines and the spei�ation isexpressed in temporal logi. The reahable state spaeof a simple protool, resoure ontrol algorithm, orhardware an be fully explored in symboli terms, usinga symboli model heker (Burh et al. 1992; MMil-lan 1993b). Model heking tehniques for reahabilityan also be used for some in�nite state systems suh asthose with timers (Alur et al. 1993), hybrid ombina-tions of disrete and ontinuous behavior (Alur et al.1995), and data strutures suh as queues (Godefroidand Long 1996) and staks (Abdulla et al. 1999). Ab-stration an be used to redue the symboli evaluationof in�nite-state systems to �nite-state systems throughthe use of abstrat interpretation (Clarke et al. 1994;Loiseaux et al. 1995; Sa��di and Graf 1997; Sa��di andShankar 1999).Bounded model heking (BMC) an be viewed as arestrited form of symboli simulation in that the searhfor falsifying traes is restrited to traes of some givenlength (Clarke et al. 2001). The BMC problem an eÆ-iently be redued to a propositional satis�ability prob-lem, and o�-the-shelf propositional satis�ability (SAT)hekers are used to onstrut ounterexamples fromsatisfying assignments. In this way, BMC extends ideasfor using SAT hekers to generate plans (as witnessesof eventually reahing some goal) (Kautz and Selman1992). Experiene demonstrates that BMC an be ef-fetive for falsi�ation in ases where there exist shortfalsifying traes (Clarke et al. 2001; Copty et al. 2001).In dedutive veri�ation, the invariane rule for es-tablishing invariane properties requires a 1-step sym-boli simulation for establishing that a given safetyproperty (one true of all reahable states) is indeedpreserved on all transitions (Manna and Pnueli 1995).Appliation of the invariane rule usually requires re-ativity in oming up with a suÆiently strong indu-tive invariant. It is also nontrivial to detet bugs fromfailed indution proofs. Reent generalizations basedon k-step symboli simulation try to overome theselimitations (de Moura et al. 2002).This onludes our brief, and neessarily inomplete,overview of the landsape of formal veri�ation teh-niques based on symboli simulation. These methodsrange from refutation and simulation-based methods tofull-blown veri�ation.In the rest of this paper we explore these validationtehniques and their relative merits in some more de-tail. As our running example, we formally model apriority-eiling real-time sheduler and formally estab-lish that ertain deadlines are always met. For theseexperiments, we use SRI's SAL veri�ation toolbox,whih inludes a powerful modeling language for spe-ifying omputational systems in a modular way. The
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Figure 1: SAL ToolbusSAL framework also integrates a number of validationand veri�ation tools suh as a slier, an expliit-statesimulator, a BDD-based, symboli model heker, abounded model heker for in�nite-state systems basedon a ombination of propositional SAT solving and on-straint solving, and an indution engine that ombinesrefutation based on BMC with veri�ation based on k-indution.2 SYMBOLIC ANALYSIS LABORATORYWe have already seen a atalog of symboli analysistehniques. The idea of symboli analysis is to allowthese tehniques to oexist so that the analysis of atransition system an be arried out by suessive ap-pliations of a ombination of these tehniques. SALis suh a framework for ombining di�erent tools forabstration, program analysis, theorem proving, andmodel heking toward the alulation of properties(symboli analysis) of onurrent systems expressed astransition systems (Bensalem et al. 2000). SAL pro-vides a blakboard arhiteture for symboli analysiswhere a olletion of tools interat through a ommonintermediate language for transition systems. The in-dividual analyzers (theorem provers, model hekers,stati analyzers) are driven from this language, and theanalysis results fed bak to this intermediate level. Thislanguage also serves as the target for translators that ex-trat the transition system desription for popular pro-gramming languages suh as Esterel, Java, and State-ow (see Figure 1). An earlier overview of SAL an befound in (Bensalem et al. 2000), the SAL language isdoumented in (Dill et al. 2001), and the rationale be-hind symboli analysis is explained in (Shankar 2000).



Rue� and de MouraThe SAL tools are available free of harge for nonom-merial use at <sal.sl.sri.om>.2.1 THE SAL LANGUAGEA key part of the SAL framework is a language for de-sribing transition systems. A variety of languages suhas UNITY (Chandy and Misra 1988), SMV (MMil-lan 1993a), and Reative Modules (Alur and Henzinger1996) have been proposed in the literature, whih aresuitable for speifying transition systems. SAL has a lotin ommon with these languages, but it is also unique inthat it inludes a rih set of ombinators for speifyinglarge systems in a modular way.A module is a self-ontained spei�ation of a transi-tion system in SAL. Suh a transition system moduleonsists of a state type, an initialization ondition onthis state type, and a binary transition relation of a spe-i� form on the state type, and invariant de�nitions.The state type is de�ned by four pairwise disjoint setsof input , output , global , and loal variables. The in-put and global variables are the observed variables of amodule and the output, global, and loal variables arethe ontrolled variables of the module. Usually, sev-eral modules are olleted in a ontext. Contexts alsoinlude type and onstant delarations.The sheduler module below, for example, reeivesa ommand as input and, depending on the values ofthe loal variables, it deides on the next value of theoutput variable turn. 1sheduler: MODULE =BEGINLOCAL lok : ClokRangeLOCAL dispath : ARRAY JobIdx OF ClokRangeLOCAL job_state : JobStateOUTPUT turn : TurnLOCAL rsr : RSRCINPUT md : CommandINITIALIZATION: : :TRANSITION: : :ENDThe de�nition of datatypes suh as ClokRange andCommand, the initial settings of variables, and transi-tions in terms of guarded ommands are omitted here(for a more detailed desription, see Figure 3).Parametri modules allow the use of logial (state-independent) and type parameterization in the de�ni-tion of modules. Most importantly, modules in SAL anbe ombined both synhronously and asynhronously.The SAL language has been developed in ollaboration withStanford, Berkeley, Verimag, and SRI International.
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Figure 2: PCP ArhitetureIn the synhronous form of omposition, modules re-at to inputs in zero time, as with ombinational ir-uitry in hardware. Absene of ausal loops in syn-hronous systems is ensured by generating proof obliga-tions, rather than by more restritive syntati methodsas in other languages. Asynhronously omposed mod-ules that are driven by independent loks are mod-eled by means of interleaving the atomi transitionsof the individual modules. SAL allows for mixturesof synhronous and asynhronous module omposition.For example, it is natural to model a sheduler syn-hronously (||) omposed with a set of jobs runningasynhronously [℄ as depited in Figure 2.2.2 THE SAL VALIDATION TOOLBUSThe ore of the SAL validation tools is a sriptable statespae exploration toolkit for traversing state spaes as-soiated with SAL spei�ations. Using the API of thistoolkit, model hekers, simulators, stati debuggers,symboli simulators, and other state explorations anbe enoded as Sheme sripts. For eÆieny, these ex-tensions are then ompiled and linked with the SALkernel.SAL validation tools are not neessarily required tosupport the omplete SAL language, as there is a stagedtranslation of SAL into simpler fragments by soure tosoure transformations (see Figure 1). These trans-formations inlude expression simpli�ation, Skolem-ization of universally quanti�ed expressions, and theexpansion of module ombinators. Finite-state SALspei�ations, for example, are ompiled into a Booleantransition system (iruit, net list) by onverting statevariables into bitvetors and abstratly interpreting op-erators in terms of bitvetor expressions. The seletionof veri�ation tools below is a snapshot of the urrently



Rue� and de Mouraavailable ones, but new veri�ation tools an be addedto the SAL toolbus due to its open-ended nature.SAL-ESMC. Given a SAL module and a linear tem-poral logi (LTL) formula, the SAL expliit-state modelheker translates the LTL formula into a SAL mod-ule for representing the assoiated B�uhi automaton,whih is then used as a synhronous oberserver for thesystem under onsideration. Now, the given state spaeis explored for violations of the spei�ed temporal logiformula, and a ounterexample in the form of an exe-ution path leading to suh a violation, is onstruted.In this way, ESMC an be seen as a standard simula-tor, but for the rihness of the SAL language, whihinludes primed variables in the guard of transitions,simulation requires online sheduling. SAL-ESMC usesmany of the optimizations for expliit-state simulatorssuh as supertrae redution (Holzmann 1998). Otherpopular tehniques for dealing with the state explosionproblem are partial order and symmetry redution.SAL-ESMC is in partiularly useful in the initialsteps of developing a model, sine it detets many errorsquikly. SAL-ESMC is rarely used for full veri�ation,however, sine even on �nite-state systems, an enumer-ative hek is unlikely to sueed beause the size of thesearhable state spae an be exponential in the size ofthe program state. Still, enumerative model heking isan e�etive debugging or refutation tehnique that anoften detet and display simple ounterexamples whena property fails.SAL-SMC. Given a SAL module of �nite state spaeand an LTL formula, the SAL symboli model hekerdeides whether the orresponding transition system in-deed satis�es the formula. In the tradition of the SMVmodel heker, the �nite transition relation is enodedusing binary deision diagrams (BDDs), and symbolisimulation is realized by �xpoint omputations on theBDD representations. SAL-SMC supports both for-ward and bakward simulation.Symboli model hekers using BDD representationsan sometimes proess state spaes with more than101000 states. The problem, however, is that the sizeof the BDD representations may also explode during�xpoint omputation. In some ases, symboli modelheking may fail to verify a small problem (say, with107 states) beause there is no ompat BDD represen-tation for the underlying transition relation. Therefore,SAL-SMC is usually used for verifying simpli�ed andheavily abstrated models.SAL-BMC. The use of Boolean satis�ability (SAT)solvers for verifying temporal logi properties has beenexplored through a tehnique known as bounded model

heking (BMC) (Clarke et al. 2001). As with sym-boli model heking, the state is enoded in terms ofbooleans. The program is unrolled a bounded num-ber of steps for some bound k, and an LTL propertyis heked for ounterexamples over omputations oflength k. Thus, a BMC problem orresponds to en-oding all bounded simulation problems as a Booleansatis�ability problem. For example, to hek whether aprogram with initial state I and next-state relation Tviolates the invariant ' in the �rst k steps, one heks,using a propositional SAT solver:I(s0)^T (s0; s1)^T (s1; s2)^ : : : ^T (sk�1; sk)^(:'(s0)_ : : : _:'(sk)) .This formula is satis�able if and only if there exists apath of length at most k from the initial state s0, whihviolates the invariant '. This BMC methodology hasbeen extended to BMC for in�nite-state systems bytranslating the problem to a propositional onstraintsatis�ation problem (de Moura et al. 2002; de Mouraand Rue� 2002). The onstraints involved might be lin-ear arithmeti onstraints, equalities over uninterpretedfuntion symbols, array and bitvetor onstraints, orany ombination thereof. Given a SAL spei�ationwith data types suh as integers and arrays, an LTLformula with onstraints on these datatypes, and anupper bound k, SAL-BMC deides whether there is aounterexample of length up to k to the hypotheses thata (possibly in�nite) transition system satis�es its tem-poral spei�ation. The orresponding onstraint satis-fation problems are solved using the ICS deision pro-edures (Filliâtre et al. 2001). In this way, SAL-BMC isappliable for in�nite-state veri�ation problems, and ithas been applied for ontinuous-time systems and spe-ial ases of hybrid systems (Sorea 2002).It has been demonstrated that BMC an be more ef-fetive in falsifying hypotheses than traditional modelheking (Clarke et al. 2001; Copty et al. 2001).Bounded model heking is therefore often used for refu-tation, where one systematially searhes for ounterex-amples whose length is bounded by some integer k. Thebound k is inreased until a bug is found, or some pre-omputed ompleteness threshold or diameter (namely,the longest of all the shortest path to any reahablestate) is reahed. Unfortunately, the omputation ofompleteness thresholds is usually prohibitively expen-sive and these thresholds may be too large to e�etivelyexplore the assoiated bounded searh spae. In addi-tion, suh ompleteness thresholds do not even exist formany in�nite-state systems.SAL-IND. The SAL indution tool ombines refuta-tion based on bounded model heking tehniques with



Rue� and de Mouraveri�ation based on a generalized indution rule, alledk-indution (de Moura et al. 2003). This rule �rst re-quires demonstrating the invariane of a safety propertyin the �rst k states of any exeution. Consequently, er-ror traes of length k are deteted. This indution rulealso generalizes the usual invariane rule in that it re-quires showing that if the property under onsiderationholds in every state of every exeution of length k, thenevery suessor state also satis�es '. As in BMC, thebound k is inreased until either a violation is detetedin the �rst k states of an exeution or the property athand is shown to be k-indutive. In the ideal ase ofattempting to prove orretness of an indutive prop-erty (that is, a property preserved on all transitions),1-indution suÆes and iteration up to a, possibly large,omplete threshold, as in BMC, is avoided. Althoughk-indution is omplete for �nite systems, in pratie,it usually works only for small values of k < 20.Whenever k-indution fails to prove a property, thereis a ounterexample of length k + 1 suh that the �rstk states satisfy ' and the last state does not satisfy'. If the �rst state of this trae is reahable, then' is refuted. Otherwise, the ounterexample is la-beled spurious. By assuming the �rst state of thistrae to be unreahable, a spurious ounterexampleis used automatially to obtain a strengthened invari-ant. Many in�nite-state systems an only be provenwith k-indution enrihed with invariant strengthening,whereas for �nite systems and many ontinuous-timesystems the use of strengthening is an optimization inthat it dereases the minimal k for whih a k-indutionproof sueeds (de Moura et al. 2003).3 MODELING THE PRIORITY-CEILINGPROTOCOLWe report on our work and experiene in modelingand validating Dutertre's version (Dutertre 2000) of thepriority-eiling protool (PCP) using SAL. The PCPprotool is partiularly interesting, sine sheduling isa ritial omponent of real-time system that are beingused in safety-ritial appliations suh as IntegratedModular Avionis (IMA), and many real-world shed-ulers suh as Honeywell's DEOS are based on simpler,but supposedly better understood, versions of PCPsuh as the highest loker protool. In suh a ontext,one must obtain strong guarantees of orretness, andrigorous development and veri�ation methods are re-quired.Real-time sheduling involves the alloation of re-soures and time intervals to tasks in suh a way thatertain timeliness performane requirements are met.A sheduling problem is given in terms of a set of peri-odi tasks with given period length, priority, and budget,

and a orresponding real-time sheduler needs to ensurethat every task onsumes its budget of proessing timeon a shared proessor in eah of its periods. Aess toother shared resoures suh as ommon I/O hannels isontrolled by semaphores for ensuring mutual exlusiveaess to eah of these resoures. When synhroniza-tion primitives, suh as semaphores, are used, there is aproblem alled priority inversion whih auses low pri-ority jobs to prevent higher priority jobs from running.For instane, a job j an be bloked when trying to loka semaphore S if a job k of lower priority has loked Sbefore j was dispathed. As a result, a job j of toppriority an be unable to exeute and a job k of lowerpriority than j an beome ative. This phenomenonmay blok j for long periods of time, sine other jobs,with priority greater than k, may prevent k to exeuteand onsequently to unlok S. So, the high-priorityjob j an then be delayed by the low-priority job kthat loks S but also by any job of intermediate prior-ity that might preempt k. Sine high-priority jobs areusually the most urgent and may have tight deadlines,suh unrestrited priority inversion an be disastrous.In the Priority Ceiling Protool, the following approahis used: eah semaphore S is assigned a �xed eilingwhih is equal to the highest priority among the jobsthat need aess to S, and a job j exeuting lok (S) isgranted aess to S if the priority of j is stritly higherthat the eiling of any semaphore loked by a job otherthan j. Otherwise, j beomes bloked and S is notalloated to j.The sheduler and eah of the jobs are representedas SAL modules. Eah ative job nondeterministiallyhooses to either lok or unlok a semaphore or to per-form some loal step omputation (Figure 2). Thus,the ations of a job an be modeled using the abstratdata type Command below. 2Command: TYPE = DATATYPEmd_lok(arg: Semaphore),md_unlok(arg: Semaphore),md_unlok_all,md_stepENDGiven the identi�er of the urrently ative proess, theurrent on�guration RSRC of the semaphores, and thelok value, the PCP sheduler piks an exeutable jobof highest preedene whih is not bloked, and ontrolsjob seletion through the turn variable. The skeletonof the SAL module for speifying this sheduler an befound in Figure 3. This module has loal variables fora disrete lok (with a suÆiently large upper bounddepending on the job on�guration), the urrent dis-path times, and the urrent job states. At eah loktik, it reeives a ommand from the urrently ativejob and updates the resoures rsr depending on this



Rue� and de Moura3sheduler: MODULE =BEGINLOCAL lok : ClokRangeLOCAL dispath : ARRAY JobIdx OF ClokRangeLOCAL job_state : JobStateOUTPUT turn : TurnLOCAL rsr : RSRCINPUT md : CommandINITIALIZATIONlok = 0;dispath = [[j : JobIdx℄ 0℄;job_state = [[j : JobIdx℄ 0℄;rsr = rsrCtx!initial_rsr;turn = idle_turnTRANSITIONlok' = adjust(lok + 1);job_state' =[[j : JobIdx℄IF sleeping?(j, job_state) ANDdispath[j℄ = lokTHEN 1ELSIF turn?(turn, j) THENIF end_of_budget?(j, job_state) THEN 0ELSE job_state[j℄ + 1 ENDIFELSE job_state[j℄ ENDIF ℄;dispath' = : : :rsr' = : : :[([℄(j : JobIdx ):eligible?(j, rsr, job_state')--> turn' = job_turn(j))[℄ELSE --> turn' = idle_turn℄END Figure 3: PCP Sheduler in SALommand. Furthermore, the lok is inremented, andthe state of eah job is updated. Now, an eligible job jis seleted to be ative, depending on the old value ofthe resoures and the new (!) state of the jobs. The [j:JobIdx℄ onstrut in this spei�ation denotes simul-taneous array updates, and [℄ denotes asynhronousomposition.The use of parametri transition systems in SAL al-low us to investigate di�erent task sets by simply in-stantiating the sheduler model without hanging spe-i�ations. In partiular, the PCP model is parameter-ized with respet to the number of tasks, the number ofsemaphores, and the spei�s for eah task. In this way,the PCP model an be reused for di�erent shedulingproblems by means of simple instantiation of parame-ters.

Although time is progressing inde�nitely, the result-ing system, for a given on�guration, is essentially�nite-state. Indeed, for the assumed periodiity of pro-esses it suÆes to onsider time only up to the leastommon multiple of the task periods. Thus, we anrestrit ourselves to the SAL validation tools for �nite-state systems.4 VALIDATING TIME PARTITIONINGTime-partitioning is a ruial property for hard real-time shedulers, partiularly those in whih appliationof di�erent ritialities run on the same proessor. In atime-partitioned operating system, the sheduler is re-sponsible for ensuring that the ations of one job annot a�et other jobs guaranteed aess to CPU exeu-tion time. We say that a deadline has been missed forjob j if the lok is at a period boundary for job j butthe job j has not been put into sleeping mode. Theorresponding theorem deadline missed, expressed inLTL, formalizes that this ondition is never been vio-lated. 4dl_missed?(dispath : ARRAY JobIdx OF ClokRange,job_state : JobState,lok : ClokRange): BOOLEAN= (EXISTS (j : JobIdx) :dispath[j℄ = lok ANDNOT sleeping?(j, job_state));deadline_missed : THEOREMsystem |-G(NOT(dl_missed?(dispath, job_state, lok)));Similarly important, at eah lok tik, there should beat least one job ready to exeute. 5deadlok?(job_state:JobState,t:Turn):BOOLEAN =idle_turn?(t) AND(EXISTS (j: JobIdx) :ready_to_exeute?(j, job_state));deadlok_free : THEOREMsystem |- G(NOT deadlok?(job_state, turn));We prove these properties for the three sheduling on-�gurations in Figure 4 using various SAL veri�ationtools.Con�guration 1 has three jobs with the givenpriorities, periods, budgets, and semaphores as givenin Figure 4. This on�guration leads to a shedulingproblem with 209; 737; 024 reahable states. This num-ber is learly beyond the apabilities of expliit-statemodel heking, but the deadlok property is easily



Rue� and de MouraCon�guration 1.job priority period budget semaphores1 100 8 3 f1; 3g2 50 12 4 f1; 2g3 25 20 5 f1; 2; 3gCon�guration 2.job priority period budget semaphores1 100 28 4 f1; 3g2 50 16 4 f1; 2g3 25 16 4 f1; 2; 3gCon�guration 3.job priority period budget semaphores1 100 10 3 f1g2 75 16 4 f2g3 50 8 7 f1; 3g4 50 12 6 f1; 2g5 25 20 5 f1; 2; 3gFigure 4: Con�gurationsproved with symboli model heking (both forwardand bakward reahability) and indution of depthk = 1.SAL-SMC (forward) 76:21 ses(bakward) 4:24 sesSAL-IND (k = 1) 6:4 sesFor this property, a proof using SAL-BMC withoutindution is muh harder than with SAL-IND, sinethe diameter of the system to be explored is 194. Forthe indutiveness of the property under onsidera-tion, however, exploration of depth 1 suÆes. Thetimeliness property does not hold for on�guration 1,and ounterexamples of length 16 are easily generatedusing forward symboli model heking and boundedmodel heking.SAL-SMC (forward) 7:64 ses(bakward) timeoutSAL-IND 7:7 sesCon�guration 2 only generates 4; 992 reahablestates and the diameter is 112. Again, it is straightfor-ward to establish deadlok-freeness using either modelheking or indution.

SAL-SMC (forward) 9; 46 ses(bakward) 8:24 sesSAL-IND (k = 1) 4:15 sesSymboli model heking using forward traversal provesthe timeliness property. Both bakward simulation andindution fail, but at least, bounded model hekingestablishes the property up to the diameter.SAL-SMC (forward) 9:68 ses(bakward) timeoutSAL-BMC (upto k = 112) 24:83 sesIn general, however, the diameter of a system is diÆultto ompute, and therefore it is unlear when to stop in-reasing the bound k in BMC. k-indution fails for thisproblem, sine it has to be iterated up to the reurrenediameter (the length of the longest ayli path), whihusually is muh larger than the diameter. In ontrast,SAL-ESMC proves this property almost immediately.Con�guration 3 generates a rather huge problemspae with 329; 924; 301; 744 reahable states and thediameter of the system is 437. Again, all symbolimethods establish deadlok-freeness, but this timesymboli forward traversal is less eÆient than boththe other methods.SAL-SMC (forward) 7055:6 ses(bakward) 16:54 sesSAL-IND (k = 1) 8:49 sesTime-partitioning fails for this on�guration, and bothforward symboli model heking and k indutionprodue a ounterexample of length 8.SAL-SMC (forward) 17:32 ses(bakward) timeoutSAL-IND 11:38 sesAltogether, the best hoie of veri�ation tehniqueusually depends on the harateristis of the problem athand, and eah veri�ation tehnique has its partiularweaknesses and strengths. However, they are omple-mentary in that when one is weak the other is strong.5 CONCLUSIONSHighly eÆient symboli evaluation tehnology an beused to apply the whole spetrum of analysis of pro-grams and spei�ations from testing and debugging toveri�ation. We believe that the relevant tehnologyonsisting of deision proedures and onstraint prop-agation has progressed to a point where it an be em-ployed eÆiently for symboli evaluation. A major ad-vantage of symboli simulation is that it sales smoothlyfrom expliit-state exploration to indutive veri�ation.



Rue� and de MouraSymboli simulation in k-indution proofs, as developedin the SAL framework, for example, ombines refuta-tion and veri�ation-based methods in a natural anduseful way.We have desribed a graded sequene of integratedformal analysis tehnologies in SAL, based on symbolisimulation, and demonstrated their e�etiveness. Inthe early life yle of a model, testing, debugging, andexpliit-state exploration seem to be partiularly e�e-tive for validation, whereas more heavy-weight veri�a-tion tools are applied at later life yles.Compared to testing, symboli simulation providesinreased overage and is appliable to partial modelsand high-level designs. On the other hand, symbolisimulation is often restrited too rather shallow explo-ration of state spaes ompared to, say, random sim-ulation. Combinations of expliit with symboli-stateexploration should make it possible to not only drasti-ally inrease overage of expliit-state simulation butalso to use loalized symboli simulation to drive sim-ulations to territory in the state spae that would oth-erwise remain unexplored. Muh more intriate om-binations seem to be possible. For example, the statespae is divided into expliitly and symbolially repre-sented set of sets, and simulation onsists of a hybrid ofexpliit searh and onstraint solving. Symboli simu-lation an also be used to generate \heap" invariants,whih themselves are used to restrit the searh spaefor expliit exploration.There is muh more to a omputational system thanmerely orretness, sine it should also provide er-tain quality of servie. In the priority-eiling protool,for example, an upper bound on the maximum time aproess is bloked should be established. In some ini-tial experiments, we developed SAL sripts based onexpliit-state model heking for omputing suh max-imum bloking time, but many more tehniques fromtraditional simulation, in partiular probabilisti meth-ods, need to be inorporated.ACKNOWLEDGMENTS. Many of the ideas andtehniques presented here have been developed in loseooperation with our ollegues S. Owre, J. Rushby, andN. Shankar.REFERENCESAbdulla, P. A., A. Annihini, S. Bensalem, A. Bouaj-jani, P. Habermehl, and Y. Lakhneh. 1999, July.Veri�ation of in�nite-state systems by ombiningabstration and reahability analysis. See Halb-wahs and Peled (1999), 146{159. 2
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