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ABSTRACT

Symbolic evaluation is the execution of software and
software designs on inputs given as symbolic or explicit
constants along with constraints on these inputs. Effi-
cient symbolic evaluation is now feasible due to recent
advances in efficient decision procedures and symbolic
model checking. Symbolic evaluation can be applied to
partially implemented descriptions and provides wider
coverage and greater assurance than testing and tra-
ditional simulation alone. Unlike full formal verifica-
tion, symbolic evaluation can be used in a partial man-
ner that is more likely to succeed and yield some de-
gree of assurance. Its main advantage is that it can
be used within a smooth spectrum of analyses rang-
ing from refutation based on explicit-state simulation
to full-blown verification.

1 INTRODUCTION

Symbolic evaluation is the execution of a program (or
even a specification) where some or all of the inputs are
given in symbolic form. Symbolic evaluation is a ba-
sic technique in theorem proving and verification. For
example, a greatest-common divisor (GCD) algorithm
returns a common divisor can be verified by symboli-
cally evaluating the GCD operation and showing that
any common divisor for z and y is also a common divi-
sor for y and = — y, for x >y > 0.

Symbolic evaluation has been especially successful for
hardware designs (for example, (Hardin et al. 1998;
Moore 1998)), but it is also effective for the verification
of the correctness of compilation steps, in ensuring the
safety of bytecode, and for checking that certain invari-
ants are preserved. There are many other examples of
the use of symbolic evaluation. For example, an interval
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analysis of a program can be carried out by symbolically
computing the fixed points of the intervals that capture
the range of the numeric variables. A simpler form of
such analysis has been applied to the Ariane-5 launch
control software since the initial debacle. A sorting pro-
gram can be examined over a bounded size array to see
if the output is indeed a sorted permutation of the in-
put. This is obviously weaker than verifying the sorting
program over arrays of arbitrary size, but perhaps more
efficient at uncovering bugs.

Symbolic evaluation includes testing but has some
added advantages. Most importantly, testing provides
only partial coverage and yields very limited confidence
in the correctness of the design, whereas symbolic simu-
lation provides increased coverage since a symbolic eval-
uation covers a substantial range of concrete inputs. In
addition, symbolic simulation does not require a full
implementation and can be driven off a partial imple-
mentation or a high-level specification. It also provides
increased coverage since a symbolic evaluation covers
a substantial range of concrete inputs. Also, symbolic
evaluation can be applied not only in the forward direc-
tion but also in the backward direction for computing
preconditions from postconditions.

Symbolic evaluation is a key component of any useful
verification system, and has been a standard part of the-
orem proving since the work of Boyer and Moore (Boyer
and Moore 1979). Its main advantage is that it is largely
automatic and can be used within a smooth spectrum
of analyses ranging from testing to verification. In con-
trast, formal verification tends to be an all-or-nothing
enterprise that yields few partial results, and is there-
fore not yet an economically viable technique for routine
use.

Symbolic evaluation is very effective for essentially
finite-state programs. For example, symbolic trajectory
evaluation carries out, symbolic simulation of hardware
in a ternary domain of truth values with an unknown
element. Model checking is a well-established technique
for formal verification of reactive systems such as hard-
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ware circuits and communication protocols. Systems
are modeled as state machines and the specification is
expressed in temporal logic. The reachable state space
of a simple protocol, resource control algorithm, or
hardware can be fully explored in symbolic terms, using
a symbolic model checker (Burch et al. 1992; McMil-
lan 1993b). Model checking techniques for reachability
can also be used for some infinite state systems such as
those with timers (Alur et al. 1993), hybrid combina-
tions of discrete and continuous behavior (Alur et al.
1995), and data structures such as queues (Godefroid
and Long 1996) and stacks (Abdulla et al. 1999). Ab-
straction can be used to reduce the symbolic evaluation
of infinite-state systems to finite-state systems through
the use of abstract interpretation (Clarke et al. 1994;
Loiseaux et al. 1995; Saidi and Graf 1997; Saidi and
Shankar 1999).

Bounded model checking (BMC) can be viewed as a
restricted form of symbolic simulation in that the search
for falsifying traces is restricted to traces of some given
length (Clarke et al. 2001). The BMC problem can effi-
ciently be reduced to a propositional satisfiability prob-
lem, and off-the-shelf propositional satisfiability (SAT)
checkers are used to construct counterexamples from
satisfying assignments. In this way, BMC extends ideas
for using SAT checkers to generate plans (as witnesses
of eventually reaching some goal) (Kautz and Selman
1992). Experience demonstrates that BMC can be ef-
fective for falsification in cases where there exist short
falsifying traces (Clarke et al. 2001; Copty et al. 2001).

In deductive verification, the invariance rule for es-
tablishing invariance properties requires a 1-step sym-
bolic simulation for establishing that a given safety
property (one true of all reachable states) is indeed
preserved on all transitions (Manna and Pnueli 1995).
Application of the invariance rule usually requires cre-
ativity in coming up with a sufficiently strong induc-
tive invariant. It is also nontrivial to detect bugs from
failed induction proofs. Recent generalizations based
on k-step symbolic simulation try to overcome these
limitations (de Moura et al. 2002).

This concludes our brief, and necessarily incomplete,
overview of the landscape of formal verification tech-
niques based on symbolic simulation. These methods
range from refutation and simulation-based methods to
full-blown verification.

In the rest of this paper we explore these validation
techniques and their relative merits in some more de-
tail. As our running example, we formally model a
priority-ceiling real-time scheduler and formally estab-
lish that certain deadlines are always met. For these
experiments, we use SRI’s SAL verification toolbox,
which includes a powerful modeling language for spec-
ifying computational systems in a modular way. The
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Figure 1: SAL Toolbus

SAL framework also integrates a number of validation
and verification tools such as a slicer, an explicit-state
simulator, a BDD-based, symbolic model checker, a
bounded model checker for infinite-state systems based
on a combination of propositional SAT solving and con-
straint solving, and an induction engine that combines
refutation based on BMC with verification based on k-
induction.

2 SYMBOLIC ANALYSIS LABORATORY

We have already seen a catalog of symbolic analysis
techniques. The idea of symbolic analysis is to allow
these techniques to coexist so that the analysis of a
transition system can be carried out by successive ap-
plications of a combination of these techniques. SAL
is such a framework for combining different tools for
abstraction, program analysis, theorem proving, and
model checking toward the calculation of properties
(symbolic analysis) of concurrent systems expressed as
transition systems (Bensalem et al. 2000). SAL pro-
vides a blackboard architecture for symbolic analysis
where a collection of tools interact through a common
intermediate language for transition systems. The in-
dividual analyzers (theorem provers, model checkers,
static analyzers) are driven from this language, and the
analysis results fed back to this intermediate level. This
language also serves as the target for translators that ex-
tract the transition system description for popular pro-
gramming languages such as Esterel, Java, and State-
flow (see Figure 1). An earlier overview of SAL can be
found in (Bensalem et al. 2000), the SAL language is
documented in (Dill et al. 2001), and the rationale be-
hind symbolic analysis is explained in (Shankar 2000).
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The SAL tools are available free of charge for noncom-
mercial use at <sal.csl.sri.com>.

2.1 THE SAL LANGUAGE

A key part of the SAL framework is a language for de-
scribing transition systems. A variety of languages such
as UNITY (Chandy and Misra 1988), SMV (McMil-
lan 1993a), and Reactive Modules (Alur and Henzinger
1996) have been proposed in the literature, which are
suitable for specifying transition systems. SAL has a lot
in common with these languages, but it is also unique in
that it includes a rich set of combinators for specifying
large systems in a modular way.

A module is a self-contained specification of a transi-
tion system in SAL. Such a transition system module
consists of a state type, an initialization condition on
this state type, and a binary transition relation of a spe-
cific form on the state type, and invariant definitions.
The state type is defined by four pairwise disjoint sets
of input, output, global, and local variables. The in-
put and global variables are the observed variables of a
module and the output, global, and local variables are
the controlled variables of the module. Usually, sev-
eral modules are collected in a context. Contexts also
include type and constant declarations.

The scheduler module below, for example, receives
a command as input and, depending on the values of
the local variables, it decides on the next value of the
output variable turn.

scheduler: MODULE = [ 1]
BEGIN
LOCAL clock : ClockRange
LOCAL dispatch : ARRAY JobIdx OF ClockRange
LOCAL job_state : JobState
OUTPUT turn : Turn
LOCAL rsrc : RSRC

INPUT cmd : Command
INITIALIZATION
TRANSITION

END

The definition of datatypes such as ClockRange and
Command, the initial settings of variables, and transi-
tions in terms of guarded commands are omitted here
(for a more detailed description, see Figure 3).
Parametric modules allow the use of logical (state-
independent) and type parameterization in the defini-
tion of modules. Most importantly, modules in SAL can
be combined both synchronously and asynchronously.

The SAL language has been developed in collaboration with
Stanford, Berkeley, Verimag, and SRI International.

System

— Job State
— PcP

command

Figure 2: PCP Architecture

In the synchronous form of composition, modules re-
act to inputs in zero time, as with combinational cir-
cuitry in hardware. Absence of causal loops in syn-
chronous systems is ensured by generating proof obliga-
tions, rather than by more restrictive syntactic methods
as in other languages. Asynchronously composed mod-
ules that are driven by independent clocks are mod-
eled by means of interleaving the atomic transitions
of the individual modules. SAL allows for mixtures
of synchronous and asynchronous module composition.
For example, it is natural to model a scheduler syn-
chronously (1) composed with a set of jobs running
asynchronously [] as depicted in Figure 2.

2.2 THE SAL VALIDATION TOOLBUS

The core of the SAL validation tools is a scriptable state
space exploration toolkit for traversing state spaces as-
sociated with SAL specifications. Using the APT of this
toolkit, model checkers, simulators, static debuggers,
symbolic simulators, and other state explorations can
be encoded as Scheme scripts. For efficiency, these ex-
tensions are then compiled and linked with the SAL
kernel.

SAL validation tools are not necessarily required to
support the complete SAL language, as there is a staged
translation of SAL into simpler fragments by source to
source transformations (see Figure 1). These trans-
formations include expression simplification, Skolem-
ization of universally quantified expressions, and the
expansion of module combinators. Finite-state SAL
specifications, for example, are compiled into a Boolean
transition system (circuit, net list) by converting state
variables into bitvectors and abstractly interpreting op-
erators in terms of bitvector expressions. The selection
of verification tools below is a snapshot of the currently
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available ones, but new verification tools can be added
to the SAL toolbus due to its open-ended nature.

SAL-ESMC. Given a SAL module and a linear tem-
poral logic (LTL) formula, the SAL explicit-state model
checker translates the LTL formula into a SAL mod-
ule for representing the associated Bichi automaton,
which is then used as a synchronous oberserver for the
system under consideration. Now, the given state space
is explored for violations of the specified temporal logic
formula, and a counterezample in the form of an exe-
cution path leading to such a violation, is constructed.
In this way, ESMC can be seen as a standard simula-
tor, but for the richness of the SAL language, which
includes primed variables in the guard of transitions,
simulation requires online scheduling. SAL-ESMC uses
many of the optimizations for explicit-state simulators
such as supertrace reduction (Holzmann 1998). Other
popular techniques for dealing with the state explosion
problem are partial order and symmetry reduction.

SAL-ESMC is in particularly useful in the initial
steps of developing a model, since it detects many errors
quickly. SAL-ESMC is rarely used for full verification,
however, since even on finite-state systems, an enumer-
ative check is unlikely to succeed because the size of the
searchable state space can be exponential in the size of
the program state. Still, enumerative model checking is
an effective debugging or refutation technique that can
often detect and display simple counterexamples when
a property fails.

SAL-SMC. Given a SAL module of finite state space
and an LTL formula, the SAL symbolic model checker
decides whether the corresponding transition system in-
deed satisfies the formula. In the tradition of the SMV
model checker, the finite transition relation is encoded
using binary decision diagrams (BDDs), and symbolic
simulation is realized by fixpoint computations on the
BDD representations. SAL-SMC supports both for-
ward and backward simulation.

Symbolic model checkers using BDD representations
can sometimes process state spaces with more than
101990 states. The problem, however, is that the size
of the BDD representations may also explode during
fixpoint computation. In some cases, symbolic model
checking may fail to verify a small problem (say, with
107 states) because there is no compact BDD represen-
tation for the underlying transition relation. Therefore,
SAL-SMC is usually used for verifying simplified and
heavily abstracted models.

SAL-BMC. The use of Boolean satisfiability (SAT)
solvers for verifying temporal logic properties has been
explored through a technique known as bounded model

checking (BMC) (Clarke et al. 2001). As with sym-
bolic model checking, the state is encoded in terms of
booleans. The program is unrolled a bounded num-
ber of steps for some bound k, and an LTL property
is checked for counterexamples over computations of
length k. Thus, a BMC problem corresponds to en-
coding all bounded simulation problems as a Boolean
satisfiability problem. For example, to check whether a
program with initial state I and next-state relation T
violates the invariant ¢ in the first k£ steps, one checks,
using a propositional SAT solver:

I(Sg)/\
T(s0,81) ANT(s1,82) N ... NT(sg_1,8k) A
(mp(s0) V ... Voip(se))

This formula is satisfiable if and only if there exists a
path of length at most k& from the initial state sq, which
violates the invariant ¢. This BMC methodology has
been extended to BMC for infinite-state systems by
translating the problem to a propositional constraint
satisfication problem (de Moura et al. 2002; de Moura
and Ruef3 2002). The constraints involved might be lin-
ear arithmetic constraints, equalities over uninterpreted
function symbols, array and bitvector constraints, or
any combination thereof. Given a SAL specification
with data types such as integers and arrays, an LTL
formula with constraints on these datatypes, and an
upper bound k, SAL-BMC decides whether there is a
counterexample of length up to k to the hypotheses that
a (possibly infinite) transition system satisfies its tem-
poral specification. The corresponding constraint satis-
faction problems are solved using the ICS decision pro-
cedures (Filliatre et al. 2001). In this way, SAL-BMC is
applicable for infinite-state verification problems, and it
has been applied for continuous-time systems and spe-
cial cases of hybrid systems (Sorea 2002).

It has been demonstrated that BMC can be more ef-
fective in falsifying hypotheses than traditional model
checking (Clarke et al. 2001; Copty et al. 2001).
Bounded model checking is therefore often used for refu-
tation, where one systematically searches for counterex-
amples whose length is bounded by some integer k. The
bound k is increased until a bug is found, or some pre-
computed completeness threshold or diameter (namely,
the longest of all the shortest path to any reachable
state) is reached. Unfortunately, the computation of
completeness thresholds is usually prohibitively expen-
sive and these thresholds may be too large to effectively
explore the associated bounded search space. In addi-
tion, such completeness thresholds do not even exist for
many infinite-state systems.

SAL-IND. The SAL induction tool combines refuta-
tion based on bounded model checking techniques with
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verification based on a generalized induction rule, called
k-induction (de Moura et al. 2003). This rule first re-
quires demonstrating the invariance of a safety property
in the first k states of any execution. Consequently, er-
ror traces of length & are detected. This induction rule
also generalizes the usual invariance rule in that it re-
quires showing that if the property under consideration
holds in every state of every execution of length &, then
every successor state also satisfies . As in BMC, the
bound £ is increased until either a violation is detected
in the first k states of an execution or the property at
hand is shown to be k-inductive. In the ideal case of
attempting to prove correctness of an inductive prop-
erty (that is, a property preserved on all transitions),
1-induction suffices and iteration up to a, possibly large,
complete threshold, as in BMC, is avoided. Although
k-induction is complete for finite systems, in practice,
it usually works only for small values of & < 20.

Whenever k-induction fails to prove a property, there
is a counterexample of length k& + 1 such that the first
k states satisfy ¢ and the last state does not satisfy
. If the first state of this trace is reachable, then
@ is refuted. Otherwise, the counterexample is la-
beled spurious. By assuming the first state of this
trace to be unreachable, a spurious counterexample
is used automatically to obtain a strengthened invari-
ant. Many infinite-state systems can only be proven
with k-induction enriched with invariant strengthening,
whereas for finite systems and many continuous-time
systems the use of strengthening is an optimization in
that it decreases the minimal k for which a k-induction
proof succeeds (de Moura et al. 2003).

3 MODELING THE PRIORITY-CEILING
PROTOCOL

We report on our work and experience in modeling
and validating Dutertre’s version (Dutertre 2000) of the
priority-ceiling protocol (PCP) using SAL. The PCP
protocol is particularly interesting, since scheduling is
a critical component of real-time system that are being
used in safety-critical applications such as Integrated
Modular Avionics (IMA), and many real-world sched-
ulers such as Honeywell’s DEOS are based on simpler,
but supposedly better understood, versions of PCP
such as the highest locker protocol. In such a context,
one must obtain strong guarantees of correctness, and
rigorous development and verification methods are re-
quired.

Real-time scheduling involves the allocation of re-
sources and time intervals to tasks in such a way that
certain timeliness performance requirements are met.
A scheduling problem is given in terms of a set of peri-
odic tasks with given period length, priority, and budget,

and a corresponding real-time scheduler needs to ensure
that every task consumes its budget of processing time
on a shared processor in each of its periods. Access to
other shared resources such as common I/O channels is
controlled by semaphores for ensuring mutual exclusive
access to each of these resources. When synchroniza-
tion primitives, such as semaphores, are used, there is a
problem called priority inversion which causes low pri-
ority jobs to prevent higher priority jobs from running.
For instance, a job j can be blocked when trying to lock
a semaphore S if a job k of lower priority has locked S
before j was dispatched. As a result, a job j of top
priority can be unable to execute and a job k of lower
priority than j can become active. This phenomenon
may block j for long periods of time, since other jobs,
with priority greater than k, may prevent k to execute
and consequently to unlock S. So, the high-priority
job j can then be delayed by the low-priority job k
that locks S but also by any job of intermediate prior-
ity that might preempt k. Since high-priority jobs are
usually the most urgent and may have tight deadlines,
such unrestricted priority inversion can be disastrous.
In the Priority Ceiling Protocol, the following approach
is used: each semaphore S is assigned a fixed ceiling
which is equal to the highest priority among the jobs
that need access to S, and a job j executing lock(S) is
granted access to S if the priority of 7 is strictly higher
that the ceiling of any semaphore locked by a job other
than j. Otherwise, j becomes blocked and S is not
allocated to j.

The scheduler and each of the jobs are represented
as SAL modules. Each active job nondeterministically
chooses to either lock or unlock a semaphore or to per-
form some local step computation (Figure 2). Thus,
the actions of a job can be modeled using the abstract
data type Command below.

Command: TYPE = DATATYPE [ 2 ]
cmd_lock(arg: Semaphore),
cmd_unlock(arg: Semaphore),
cmd_unlock_all,
cmd_step

END

Given the identifier of the currently active process, the
current, configuration RSRC of the semaphores, and the
clock value, the PCP scheduler picks an executable job
of highest precedence which is not blocked, and controls
job selection through the turn variable. The skeleton
of the SAL module for specifying this scheduler can be
found in Figure 3. This module has local variables for
a discrete clock (with a sufficiently large upper bound
depending on the job configuration), the current dis-
patch times, and the current job states. At each clock
tick, it receives a command from the currently active
job and updates the resources rsrc depending on this
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scheduler: MODULE = [ 3 ]
BEGIN
LOCAL clock : ClockRange
LOCAL dispatch : ARRAY JobIdx OF ClockRange
LOCAL job_state : JobState

OUTPUT turn : Turn
LOCAL rsrc : RSRC

INPUT cmd : Command
INITIALIZATION
clock = 0;
dispatch = [[j : JobIdx] 0];
job_state = [[j : JobIdx] 0];

rsrc = rsrcCtx!initial_rsrc;
turn = idle_turn
TRANSITION
clock’ = adjust(clock + 1);
job_state’ =
[[j : JobIdx]
IF sleeping?(j, job_state) AND
dispatch[j] = clock
THEN 1
ELSIF turn?(turn, j) THEN
IF end_of_budget?(j, job_state) THEN O
ELSE job_state[j] + 1 ENDIF
ELSE job_state[j] ENDIF 1;
dispatch’ = ...
rsrc’ = ...

[
([1(j : JobIdx ):
eligible?(j, rsrc, job_state’)
--> turn’ = job_turn(j))
[]
ELSE --> turn’ = idle_turn
]
END

Figure 3: PCP Scheduler in SAL

command. Furthermore, the clock is incremented, and
the state of each job is updated. Now, an eligible job j
is selected to be active, depending on the old value of
the resources and the new (!) state of the jobs. The [j:
JobIdx] construct in this specification denotes simul-
taneous array updates, and [] denotes asynchronous
composition.

The use of parametric transition systems in SAL al-
low us to investigate different task sets by simply in-
stantiating the scheduler model without changing spec-
ifications. In particular, the PCP model is parameter-
ized with respect to the number of tasks, the number of
semaphores, and the specifics for each task. In this way,
the PCP model can be reused for different scheduling
problems by means of simple instantiation of parame-
ters.

Although time is progressing indefinitely, the result-
ing system, for a given configuration, is essentially
finite-state. Indeed, for the assumed periodicity of pro-
cesses it suffices to consider time only up to the least
common multiple of the task periods. Thus, we can
restrict ourselves to the SAL validation tools for finite-
state systems.

4 VALIDATING TIME PARTITIONING

Time-partitioning is a crucial property for hard real-
time schedulers, particularly those in which application
of different criticalities run on the same processor. In a
time-partitioned operating system, the scheduler is re-
sponsible for ensuring that the actions of one job can
not affect other jobs guaranteed access to CPU execu-
tion time. We say that a deadline has been missed for
job j if the clock is at a period boundary for job j but
the job j has not been put into sleeping mode. The
corresponding theorem deadline missed, expressed in
LTL, formalizes that this condition is never been vio-
lated.

dl_missed?( 4 |

dispatch : ARRAY JobIdx OF ClockRange,
job_state : JobState,
clock : ClockRange): BOOLEAN

(EXISTS (j : JobIdx)
dispatch[j] = clock AND
NOT sleeping?(j, job_state));
deadline_missed : THEOREM
system |-
G(NOT(dl_missed?(dispatch, job_state, clock)));

Similarly important, at each clock tick, there should be
at least one job ready to execute.

deadlock?(job_state:JobState,t:Turn) :BOOLEAN Ejl_‘
idle_turn?(t) AND
(EXISTS (j: JobIdx)
ready_to_execute?(j, job_state));

deadlock_free : THEOREM
system |- G(NOT deadlock?(job_state, turmn));

We prove these properties for the three scheduling con-
figurations in Figure 4 using various SAL verification
tools.

Configuration 1 has three jobs with the given
priorities, periods, budgets, and semaphores as given
in Figure 4. This configuration leads to a scheduling
problem with 209, 737, 024 reachable states. This num-
ber is clearly beyond the capabilities of explicit-state
model checking, but the deadlock property is easily
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Configuration 1.

job | priority | period | budget | semaphores
1 100 8 3 {1,3}
2 50 12 4 {1,2}
3 25 20 5 {1,2,3}

Configuration 2.

job | priority | period | budget | semaphores

1 100 28 4 {1,3}
2 50 16 1 {12}
3 25 16 4 {1,2,3}

Configuration 3.

job | priority | period | budget | semaphores
1 100 10 3 {1}
2 75 16 4 {2}
3 20 8 7 {1,3}
4 50 12 6 {1,2}
5 25 20 5 {1,2,3}

Figure 4: Configurations

proved with symbolic model checking (both forward
and backward reachability) and induction of depth
k=1

SAL-SMC (forward) 76.21 secs
(backward) 4.24 secs
SAL-IND (k=1) 6.4 secs

For this property, a proof using SAL-BMC without
induction is much harder than with SAL-IND, since
the diameter of the system to be explored is 194. For
the inductiveness of the property under considera-
tion, however, exploration of depth 1 suffices. The
timeliness property does not hold for configuration 1,
and counterexamples of length 16 are easily generated
using forward symbolic model checking and bounded
model checking.

SAL-SMC (forward) 7.64 secs
(backward) timeout
SAL-IND 7.7 secs

Configuration 2 only generates 4,992 reachable
states and the diameter is 112. Again, it is straightfor-
ward to establish deadlock-freeness using either model
checking or induction.

SAL-SMC (forward) 9,46 secs
(backward) 8.24 secs

SAL-IND (k=1) 4.15 secs

Symbolic model checking using forward traversal proves
the timeliness property. Both backward simulation and
induction fail, but at least, bounded model checking
establishes the property up to the diameter.

SAL-SMC  (forward) 9.68 secs
(backward) timeout

SAL-BMC (upto k = 112) 24.83 secs

In general, however, the diameter of a system is difficult
to compute, and therefore it is unclear when to stop in-
creasing the bound & in BMC. k-induction fails for this
problem, since it has to be iterated up to the recurrence
diameter (the length of the longest acyclic path), which
usually is much larger than the diameter. In contrast,
SAL-ESMC proves this property almost immediately.

Configuration 3 generates a rather huge problem
space with 329,924,301, 744 reachable states and the
diameter of the system is 437. Again, all symbolic
methods establish deadlock-freeness, but this time
symbolic forward traversal is less efficient than both
the other methods.

SAL-SMC (forward) 7055.6 secs
(backward) 16.54 secs

SAL-IND (k=1) 8.49 secs

Time-partitioning fails for this configuration, and both
forward symbolic model checking and %k induction
produce a counterexample of length 8.

SAL-SMC (forward) 17.32 secs
(backward) timeout

SAL-IND 11.38 secs

Altogether, the best choice of verification technique
usually depends on the characteristics of the problem at
hand, and each verification technique has its particular
weaknesses and strengths. However, they are comple-
mentary in that when one is weak the other is strong.

5 CONCLUSIONS

Highly efficient symbolic evaluation technology can be
used to apply the whole spectrum of analysis of pro-
grams and specifications from testing and debugging to
verification. We believe that the relevant technology
consisting of decision procedures and constraint prop-
agation has progressed to a point where it can be em-
ployed efficiently for symbolic evaluation. A major ad-
vantage of symbolic simulation is that it scales smoothly
from explicit-state exploration to inductive verification.
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Symbolic simulation in k-induction proofs, as developed
in the SAL framework, for example, combines refuta-
tion and verification-based methods in a natural and
useful way.

We have described a graded sequence of integrated
formal analysis technologies in SAL, based on symbolic
simulation, and demonstrated their effectiveness. In
the early life cycle of a model, testing, debugging, and
explicit-state exploration seem to be particularly effec-
tive for validation, whereas more heavy-weight verifica-
tion tools are applied at later life cycles.

Compared to testing, symbolic simulation provides
increased coverage and is applicable to partial models
and high-level designs. On the other hand, symbolic
simulation is often restricted too rather shallow explo-
ration of state spaces compared to, say, random sim-
ulation. Combinations of explicit with symbolic-state
exploration should make it possible to not only drasti-
cally increase coverage of explicit-state simulation but
also to use localized symbolic simulation to drive sim-
ulations to territory in the state space that would oth-
erwise remain unexplored. Much more intricate com-
binations seem to be possible. For example, the state
space is divided into explicitly and symbolically repre-
sented set of sets, and simulation consists of a hybrid of
explicit search and constraint solving. Symbolic simu-
lation can also be used to generate “cheap” invariants,
which themselves are used to restrict the search space
for explicit exploration.

There is much more to a computational system than
merely correctness, since it should also provide cer-
tain quality of service. In the priority-ceiling protocol,
for example, an upper bound on the maximum time a
process is blocked should be established. In some ini-
tial experiments, we developed SAL scripts based on
explicit-state model checking for computing such max-
imum blocking time, but many more techniques from
traditional simulation, in particular probabilistic meth-
ods, need to be incorporated.
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