
Engineering DPLL(T) + Saturation

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) solvers have proven
highly scalable, efficient and suitable for integrated theory reasoning. The
most efficient SMT solvers rely on refutationally incomplete methods for
incorporating quantifier reasoning. We describe a calculus and a system
that tightly integrates Superposition and DPLL(T). In the calculus, all
non-unit ground clauses are delegated to the DPLL(T) core. The inte-
gration is tight, dependencies on case splits are tracked as hypotheses in
the saturation engine. The hypotheses are discharged during backtrack-
ing. The combination is refutationally complete for first-order logic, and
its implementation is competitive in performance with E-matching based
SMT solvers on problems they are good at.

1 Introduction

SMT solvers based on a DPLL(T) [1] framework have proven highly scalable,
efficient and suitable for integrating theory reasoning. However, for numerous
applications from program analysis and verification, an integration of decision
procedures for the ground fragment is insufficient, as proof obligations often
include quantifiers for capturing frame conditions over loops, summarizing aux-
iliary invariants over heaps, and for supplying axioms of theories that are not
already equipped with ground decision procedures. A well known approach for in-
corporating quantifier reasoning with ground decision procedures is E-matching
algorithm used in the Simplify theorem prover [2]. The E-matching algorithm
works against an E-graph to instantiate quantified variables. Other state-of-the-
art SMT solvers also use E-matching: CVC3 [3], Fx7 [4], Yices [5], and Z3 [6].
Although E-matching is quite effective for some software verification problems,
it suffers from several problems: it is not refutationally complete for first-order
logic, hints (triggers) are usually required, it is sensitive to the syntactic struc-
ture of the formula, and fails to prove formulas that can be easily discharged by
saturation based provers.

Equational theorem provers based on Superposition Calculus are strong at
reasoning with equalities, universally quantified variables, and Horn clauses.
However, these provers do not perform well in the context of software verifi-
cation [7, 3], as they explore a huge search space generated by a large number of
axioms, most of which are irrelevant. The typical software verification problem
consists of a set of axioms and a big (mostly) ground formula encoding the data
and control flow of the program. This formula is usually a deeply nested and-or

tree. Quantified formulas nested in this tree can be extracted by naming them
with fresh propositional variables. These problems typically yield large sets with
huge non-Horn clauses, which are far from the sweet spot for saturation based
provers, but handled well by DPLL(T)-based solvers.

This paper describes a new calculus DPLL(Γ), and an accompanying system,
Z3(SP), that tightly integrates the strength of saturation based provers in equa-
tional reasoning and quantified formulas, with DPLL-based implementations of
SMT solvers that are strong in case-analysis and combining theory solvers. The
new calculus is very flexible and it can simulate different strategies used in other
theorem provers that aim for integrating DPLL and/or theory reasoners as well.

On the technical side, we introduce a key ingredient for this integration;
hypotheses that track dependencies on case splits when the saturation compo-
nent performs its deductions. We first lift standard saturation deduction rules
to the DPLL(Γ) setting by simply propagating hypotheses (Section 3). It is a
somewhat simple, but important, observation that the resulting system is refu-
tationally complete even when ground non-unit clauses are only visible to the
DPLL component (but invisible to the inference rules in the saturation compo-
nent). The lifting becomes less trivial when it comes to using case split literals
or any consequence of case splits in deletion and simplification rules. Section 4
presents a lifting that properly tracks case splits into such rules.

On the system side, we discuss the implementation of an instance of DPLL(Γ)
in the theorem prover Z3. We believe this is the first report of a really tight inte-
gration of DPLL and saturation procedures. Existing systems, to our knowledge,
integrate either a black box SMT solver with a saturation prover, [8], or a black
box saturation solver with an DPLL core, [9], or don’t offer exchanging hypothe-
ses as tightly.

2 Background

We employ basic notions from logic usually assumed in theorem proving. For
notation, the symbol ≃ denotes equality; s, u, t are terms; x, y, z are variables;
f, g, h, a, b, c are constant or function symbols based on arity; p, q, r are predicate
symbols; l is a literal; C and D denote clauses, that is, multi-sets of literals
interpreted as disjunctions; 2 is the empty clause; N is a set of clauses; and σ

is used for substitutions. A term, literal, or clause is said to be ground if it does
not contain variables.

We assume that terms are ordered by a simplification ordering ≺. It is ex-
tended to literals and clauses by a multiset extension. A simplification ordering
is well founded and total on ground terms. The most commonly used simpli-
fication orderings are instances of the recursive path ordering (RPO) and the
Knuth-Bendix ordering (KBO).

An inference rule γ is n + 1-ary relation on clauses, it is written as:

C1 . . . Cn

C

The clauses C1, . . . , Cn are called premises, and C the conclusion of the inference.
If γ is an inference rule, we denote by C(γ) its conclusion, and P(γ) its premises.
An inference system Γ is a set of inference rules. We assume that each inference
rule has a main premise that is “reduced” to the conclusion in the context of
the other (side) premises.

A proof of a clause C from the set of clauses N with respect to an inference
system Γ is sequence of clauses C1, . . . , Cn, where Cn = C and each clause Ci is
either an element of N or the conclusion of an inference rule γ of Γ , where the
set of premises is a subset of {C1, . . . , Ci−1}. A proof of the empty clause 2 is
said to be a refutation. An inference system Γ is refutationally complete if there
is a refutation by Γ from any unsatisfiable set of clauses. A set of clauses N is
saturated with respect to Γ if the conclusion of any inference by Γ from N is an
element of N . Let I be a mapping, called a model functor, that assigns to each
set of ground clauses N not containing the empty clause an interpretation IN ,
called the candidate model. If IN is a model for N , then N is clearly satisfiable.
Otherwise, some clause C in N is false in IN (i.e., C is a counterexample for IN),
then N must contain a minimal counterexample with respect to ≺. An inference
system has the reduction property for counterexamples, if for all sets N of clauses
and minimal counterexamples C for IN in N , there is an inference in Γ from
N with main premise C, side premises that are true in IN , and conclusion D

that is a smaller counterexample for IN than C. A clause C is called redundant
with respect to a set of clauses N if there exists C1, . . . , Cn in N such that
C1, . . . , Cn |= C and Ci ≺ C for all i ∈ [1, n]. A set of clauses N is saturated
up to redundancy with respect to Γ if the conclusion of any inference by Γ

with non redundant premises from N is redundant. If Γ is an inference system
that satisfies the reduction property for counterexamples, and N a set of clauses
saturated up to redundancy, then N is unsatisfiable if, and only if, it contains
the empty clause [10].

2.1 Superposition Calculus

The superposition calculus (SP) [11] is a rewriting-based inference system which
is refutationally complete for first-order logic with equality. It is based on a sim-
plification order on terms. Figure 1 contains the SP inference rules. The inference
rules restrict generating inferences to positions in maximal terms of maximal lit-
erals. More constraints can be imposed, if a clause C contains negative literals,
then it is possible to restrict generating inferences to arbitrarily selected negative
literals [11].

3 DPLL(Γ)

We will adapt the proof calculus for DPLL(Γ) from an exposition of DPLL(T)
as an abstract transition system [1]. DPLL(Γ) is parameterized by a set of
inference rules Γ . States of the transition system are of the form M ||F , where
M is a sequence of decided and implied literals, and F a set of hypothetical
clauses. Intuitively, M represents a partial assignment to ground literals and
their justifications. During conflict resolution, we also use states of the form

Equality Resolution

s 6≃ t ∨ C

σ(C)
if σ = mgu(s, t), for all l ∈ C, σ(s 6≃ t) 6≺ l

Equality Factoring

s ≃ t ∨ u ≃ v ∨ C

σ(t 6≃ v ∨ u ≃ v ∨ C)
if


σ = mgu(s, u), σ(s) 6� σ(t),
for all l ∈ (u ≃ v ∨ C), σ(s ≃ t) 6≺ l

Superposition Right

s ≃ t ∨ C u[s′] ≃ v ∨ D

σ(u[t] ≃ v ∨ C ∨ D)
if

8

>><

>>:

σ = mgu(s, s′), s′ is not a variable,
σ(s) 6� σ(t), σ(u[s′]) 6� σ(v),
for all l ∈ C, σ(s ≃ t) 6� l

for all l ∈ D, σ(u[s′] ≃ v) 6� l

Superposition Left

s ≃ t ∨ C u[s′] 6≃ v ∨ D

σ(u[t] 6≃ v ∨ C ∨ D)
if

8

>><

>>:

σ = mgu(s, s′), s′ is not a variable,
σ(s) 6� σ(t), σ(u[s′]) 6� σ(v),
for all l ∈ C, σ(s ≃ t) 6� l

for all l ∈ D, σ(u[s′] 6≃ v) 6� l

Fig. 1. Superposition Calculus: Inference Rules

M ||F ||C, where C is a ground clause. A decided literal represents a guess, and
an implied literal lC a literal l that was implied by a clause C. A decided or
implied literal in M is said to be an assigned literal. No assigned literal occurs
twice in M nor does it occur negated in M . If neither l or l̄ occurs in M , then
l is said to be undefined in M . We use lits(M) to denote the set of assigned
literals. We write M |=P C to indicate that M propositionally satisfies the
clause C. If C is the clause l1 ∨ . . . ∨ ln, then ¬C is the formula ¬l1 ∧ . . . ∧ ¬ln.
A hypothetical clause is denoted by H ⊲ C, where H is a set of assigned ground
literals (hypotheses) and C is a general clause. The set of hypotheses should be
interpreted as a conjunction, and a hypothetical clause (l1∧ . . .∧ ln)⊲(l′1∨ . . . l′m)
should be interpreted as ¬l1 ∨ . . . ∨ ¬ln ∨ l′1 ∨ . . . ∨ l′m. The basic idea is to
allow the inference rules in Γ to use the assigned literals in M as premises, and
hypothetical clauses is an artifact to track the dependencies on these assigned
literals. We say the conclusions produced by Γ are hypothetical because they
may depend on guessed (decided) literals. We use clauses(F) to denote the set
{C | H ⊲ C ∈ F}, and clauses(M ||F) to denote clauses(F) ∪ lits(M). We also
write C instead of ∅ ⊲ C.

The interface with the inference system Γ is realized in the following way:
assume γ is an inference rule with n premises, {H1 ⊲ C1, . . . , Hm ⊲ Cm} is a set
of hypothetical clauses in F , {lm+1, . . . , ln} is a set of assigned literals in M ,
and H(γ) denotes the set H1 ∪ . . .∪Hm ∪ {lm+1, . . . , ln}, then the inference rule
γ is applied to the set of premises P(γ) = {C1, . . . , Cm, lm+1, . . . , ln}, and the
conclusion C(γ) is added to F as the hypothetical clause H(γ) ⊲ C(γ). Note that
the hypotheses of the clauses Hi ⊲ Ci are hidden from the inference rules in Γ .

Definition 1. The basic DPLL(Γ) system consists of the following rules:

Decide

M ||F =⇒M l ||F if







l is ground,
l or l̄ occurs in F,

l is undefined in M.

UnitPropagate

M ||F, H ⊲ (C ∨ l) =⇒M lH⊲(C∨l) ||F, H ⊲ (C ∨ l) if







l is ground,
M |=P ¬C,

l is undefined in M.

Deduce

M ||F =⇒M ||F, H(γ) ⊲ C(γ) if







γ ∈ Γ,

P(γ) ⊆ clauses(M ||F),
C(γ) 6∈ clauses(F)

HypothesisElim

M ||F, (H ∧ l) ⊲ C =⇒M ||F, H ⊲ (C ∨ ¬l)
Conflict

M ||F, H ⊲ C =⇒M ||F, H ⊲ C || ¬H ∨ C if M |=P ¬C

Explain

M ||F ||C ∨ l̄ =⇒M ||F || ¬H ∨ D ∨ C if lH⊲(D∨l) ∈ M,

Learn

M ||F ||C =⇒M ||F, C ||C if C 6∈ clauses(F)
Backjump

M l′ M ′ ||F ||C ∨ l =⇒M lC∨l ||F
′ if







M |=P ¬C,

l is undefined in M,

F ′ = {H ⊲ C ∈ F | H ∩ lits(l′ M ′) = ∅}
Unsat

M ||F ||2 =⇒ unsat

We say a hypothetical clause H ⊲ C is in conflict if all literals in C have
a complementary assignment. The rule Conflict converts a hypothetical conflict
clause H ⊲ C into a regular clause by negating its hypotheses, and puts the
DPLL(Γ) system in conflict resolution mode. The Explain rule unfolds literals
from conflict clauses that were produced by unit propagation. Any clause derived
by Explain can be learned, and added to F , because they are logical consequences
of the original set of clauses. The rule Backjump can be used to transition the
DPLL(Γ) system back from conflict resolution to search mode, it unassigns at
least one decided literal (l′ in the rule definition). All hypothetical clauses H ⊲C

which contain hypotheses that will be unassigned by the Backjump rule are
deleted.

Figure 2 contains an example that illustrates DPLL(Γ) instantiated with a Γ

that contains only the binary resolution and factoring rules. In this example, we
annotate each application of the Deduce rule with the premises for the binary
resolution inference rule. In this example, the rule HypothesisElim is used to
replace the clause q(a) ⊲ ¬q(y) ∨ r(a, y) with ¬q(a) ∨ ¬q(y) ∨ r(a, y) to prevent
it from being deleted during backjumping.

Consider the following initial set of clauses:

F = {p(a) ∨ p(b), ¬p(b) ∨ p(c), ¬p(a) ∨ q(a), ¬p(a) ∨ q(b),

¬r(x, b), ¬q(x) ∨ ¬q(y) ∨ r(x, y), p(x) ∨ q(x), ¬q(a) ∨ ¬p(b)}

||F
=⇒ Decide

p(c) ||F
=⇒ Decide

p(c) p(a) ||F
=⇒ UnitPropagate

p(c) p(a) q(a)¬p(a)∨q(a) ||F
=⇒ Deduce resolution q(a) with ¬q(x) ∨ ¬q(y) ∨ r(x, y)

p(c) p(a) q(a)¬p(a)∨q(a) ||F, q(a) ⊲ ¬q(y) ∨ r(a, y)
=⇒ UnitPropagate

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F, q(a) ⊲ ¬q(y) ∨ r(a, y)
=⇒ Deduce resolution q(b) with ¬q(y) ∨ r(a, y)

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F, q(a) ⊲ ¬q(y) ∨ r(a, y), q(a) ∧ q(b) ⊲ r(a, b)
=⇒ HypothesisElim

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) || F, ¬q(a) ∨ ¬q(y) ∨ r(a, y), q(a) ∧ q(b) ⊲ r(a, b)
| {z }

F ′

=⇒ Deduce resolution ¬r(x, b) with r(a, b)
p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F

′, q(a) ∧ q(b) ⊲ 2

=⇒ Conflict

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F
′, q(a) ∧ q(b) ⊲ 2 || ¬q(a) ∨ ¬q(b)

=⇒ Explain

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F
′, q(a) ∧ q(b) ⊲ 2 || ¬p(a) ∨ ¬q(b)

=⇒ Explain

p(c) p(a) q(a)¬p(a)∨q(a) q(b)¬p(a)∨q(b) ||F
′, q(a) ∧ q(b) ⊲ 2 || ¬p(a)

=⇒ Backjump

¬p(a)¬p(a) ||F, ¬q(a) ∨ ¬q(y) ∨ r(a, y)
=⇒ UnitPropagate

¬p(a)¬p(a) p(b)p(a)∨p(b) ||F, ¬q(a) ∨ ¬q(y) ∨ r(a, y)
=⇒ Deduce resolution ¬p(a) with p(x)∨ q(x)

¬p(a)¬p(a) p(b)p(a)∨p(b) || F, ¬q(a) ∨ ¬q(y) ∨ r(a, y), ¬p(a) ⊲ q(a)
| {z }

F ′′

=⇒ UnitPropagate

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)⊲q(a) ||F
′′

=⇒ Conflict

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)⊲q(a) ||F
′′ || ¬q(a) ∨ ¬p(b)

=⇒ Explain

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)⊲q(a) ||F
′′ || p(a) ∨ ¬p(b)

=⇒ Explain

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)⊲q(a) ||F
′′ || p(a)

=⇒ Explain

¬p(a)¬p(a) p(b)p(a)∨p(b) q(a)¬p(a)⊲q(a) ||F
′′ ||2

=⇒ Unsat

unsat

Fig. 2. DPLL(Γ): example

3.1 Soundness and Completeness

We assume that the set of inference rules Γ is sound and refutationally complete.
Then, it is an easy observation that all transition rules in DPLL(Γ) preserve sat-
isfiability. In particular, all clauses added by conflict resolution are consequences
of the original set of clauses F .

Theorem 1 (Soundness). DPLL(Γ) is sound.

From any unsatisfiable set of clauses, a fair application of the transition rules
in DPLL(Γ) will eventually generate the unsat state. This is a direct consequence
of the refutational completeness of Γ . That is, Deduce alone can be used to derive
the empty clause without using any hypothesis.

Theorem 2 (Completeness). DPLL(Γ) is refutationally complete.

Unrestricted use of the Deduce rule described in Defintion 1 is not very effec-
tive, because it allows the inference rules in Γ to use arbitrary ground clauses
as premises. We here introduce a refinement of Deduce, called Deduce♯, which
applies on fewer cases than Deduce, but still maintains refutational complete-
ness. In Deduce♯, the set of premises for inference rules in Γ are restricted to
non-ground clauses and ground unit clauses. That is, P(γ) ⊆ premises(M ||F),
where we define nug(N) to be the subset of non unit ground clauses of a set of
clauses N , and premises(M ||F) = (clauses(F) \nug(clauses(F)))∪ lits(M). The
refined rule is then:

Deduce♯

M ||F =⇒ M ||F, H(γ) ⊲ C(γ) if

{

γ ∈ Γ, P(γ) ⊆ premises(M ||F),
C(γ) 6∈ clauses(F)

The idea is to use DPLL to handle all case-analysis due to ground clauses. The
refined system is called DPLL(Γ)♯. A state M ||F of DPLL(Γ)♯ is said to be
saturated if any ground literal in F is assigned in M , there is no ground clause
C in clauses(F) such that M |=P ¬C, and if the conclusion of any inference by
Γ from premises(M ||F) is an element of clauses(F).

Theorem 3. If M ||F is a saturated state of DPLL(Γ)♯ for an initial set of
clauses N and Γ has the reduction property for counterexamples, then N is
satisfiable.

Proof. Since all transitions preserve satisfiability, we just need to show that
clauses(F) ∪ lits(M) is satisfiable. The set of clauses clauses(F) ∪ lits(M) is not
saturated with respect to Γ because clauses in nug(clauses(F)) were not used as
premises for its inference rules, but the set is saturated up to redundancy. Any
clause C in nug(clauses(F)) is redundant because there is a literal l of C that is
in lits(M), and clearly l |= C and l ≺ C. Since Γ has the reduction property for
counterexamples, the set clauses(F) ∪ lits(M) is satisfiable.

We assign a proof depth to any clause in clauses(F) and literal in lits(M).
Intuitively, the proof depth of a clause C indicates the depth of the derivation
needed to produce C. More precisely, all clauses in the original set of clauses
have proof depth 0. If a clause C is produced using the Deduce rule, and n is the
maximum proof depth of the premises, then the proof depth of C is n + 1. The
proof depth of a literal lC in M is equals to the proof depth of C. If l is a decided
literal, and n is the minimum proof depth of the clauses in F that contain l, then
the proof depth of l is n. We say DPLL(Γ)♯ is k-bounded if Deduce♯ is restricted
to premises with proof depth < k. Note that, the number of ground literals that
can be produced in a k-bounded run of DPLL(Γ)♯ is finite.

Theorem 4. A k-bounded DPLL(Γ)♯ always terminates.

A similar result can be obtained by bounding the term depth. The theorem
above is also true for DPLL(Γ). In another variation of DPLL(Γ), the restriction
on Deduce♯ used in DPLL(Γ)♯ is disabled after k steps. This variation is also
refutationally complete, since all transition rules preserve satisfiability and Γ is
refutationally complete.

3.2 Additional Rules

SMT solvers implement efficient theory reasoning for conjunctions of ground lit-
erals. One of the main motivations of DPLL(Γ) is to use these efficient theory
solvers in conjunction with arbitrary inference systems. Theory reasoning is in-
corporated in DPLL(Γ) using transition rules similar to the one described in [1].
We use F |=T G to denote the fact that F entails G in theory T .

T-Propagate

M ||F =⇒M l(¬l1∨...∨¬ln∨l) ||F if















l is ground and occurs in F,

l is undefined in M,

l1, . . . , ln ∈ lits(M)
l1, . . . , ln |=T l,

T-Conflict

M ||F =⇒M ||F || ¬l1 ∨ . . . ∨ ¬ln if

{

l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T false

4 Contraction Inferences

Most modern saturation theorem provers spend a considerable amount of time
simplifying and eliminating redundant clauses. Most of them contain simplifying
and deleting inferences. We say these are contraction inferences. Although these
inferences are not necessary for completeness, they are very important in prac-
tice. This section discusses how contraction inferences can be incorporated into
DPLL(Γ). We distinguish between contraction inferences taking 1 premise, such
as deletion of duplicate and resolved literals, tautology deletion, and destructive
equality resolution, and rules that take additional clauses besides the one being
simplified or eliminated (e.g., subsumption). Assume the contraction rules in a

saturation system are described as γd1
, γs1

, γd, and γs. Common to these rules
is they take a set of clauses F, C and either delete C, producing F or simplify
C to C′, producing F, C′. We call C the main premise, and other premises are
called side premises. Thus, we will here be lifting rules of the form to DPLL(Γ):

F, C
γd1

(C)
F

F, C, C2, . . . , Cn
γd(C, C2, . . . , Cn), n ≥ 2

F, C2, . . . , Cn

F, C
γs1

(C, C′)
F, C′

F, C, C2, . . . , Cn
γs(C, C2, . . . , Cn, C′), n ≥ 2

F, C′, C2, . . . , Cn

Contraction rules Any contraction inference γd1
or γs1

that contains only one
premise can be easily incorporated into DPLL(Γ). Given a hypothetical clause
H ⊲ C, the contraction rules are just applied to C. For contraction rules with
more than one premise (e.g., subsumption), special treatment is needed. For
example, consider the following state:

p(a) || p(a) ⊲ p(b), p(b) ∨ p(c), p(a) ∨ p(b)

In this state, the clause p(b) subsumes the clause p(b) ∨ p(c), but it is not
safe to delete p(b) ∨ p(c) because the subsumer has a hypothesis. That is, after
backjumping decision literal p(a), p(a) ⊲ p(b) will be deleted and p(b) ∨ p(c) will
not be subsumed anymore. A näıve solution consists in using the HypothesisElim

to transform hypothetical clauses H⊲C into regular clauses ¬H∨C. This solution
is not satisfactory because important contraction rules, such as demodulation,
have premises that must be unit clauses. Moreover, HypothesisElim also has the
unfortunate side-effect of eliminating relationships between different hypotheses.
For example, in the following state:

p(a) p(b)¬p(a)∨p(b) || p(a) ⊲ p(c), p(b) ⊲ p(c) ∨ p(d)

it is safe to use the clause p(c) to subsume p(c)∨p(d) because p(a)⊲p(c) and p(b)⊲
p(c) ∨ p(d) will be deleted at the same time during backjumping. To formalize
this approach, we assign a scope level to any assigned literal in M . The scope
level of a literal l (level(l)) in M l M ′ equals to the number of decision literals
in M l. For example, in the following state:

p(a)p(a) p(b) p(c)¬p(b)∨p(c) p(d) || . . .

The scope levels of p(a), p(b), p(c) and p(d) are 0, 1, 1 and 2, respectively. The
level of a set of literals is the supremum level, thus for a set H , level(H) =
max{level(l) | l ∈ H}. Clearly, if literal l occurs after literal l′ in M , then
level(l) ≥ level(l′). In the Backjump rule we go from a state M l′ M ′ ||F ||C ∨ l

to a state M lC∨l ||F ′, and we say the scope level level(l′) was backjumped.
We now have the sufficient background to formulate how deletion rules with

multiple premises can be lifted in DPLL(Γ). Thus, we seek to lift γd to a main
clause of the form H⊲C, and side clauses H2⊲C2, . . . , Hm⊲Cm, lm+1, . . . , ln taken
from F and lits(M). The hypothesis of the main clause is H and the hypotheses

used in the side clauses are H2∪. . .∪Hm∪{lm+1, . . . , ln} (called H ′ for short). So
assume the premise for deletion holds, that is γd(C, C2, . . . , Cm, lm+1, . . . , ln). If
level(H) ≥ level(H ′), we claim it is safe to delete the main clause H⊲C. This is so
as backjumping will never delete side premises before removing the main premise.
Thus, it is not possible to backjump to a state where one of the side premises was
deleted from F or M , but a main premise from H is still alive: a deleted clause
would not be redundant in the new state. In contrast, if level(H) < level(H ′),
then it is only safe to disable the clause H ⊲ C until level(H ′) is backjumped.

A disabled clause is not deleted, but is not used as a premise for any inference
rule until it is re-enabled. To realize this new refinement, we maintain one array
of disabled clauses for every scope level. Clauses that are disabled are not deleted,
but moved to the array at the scope level of H ′. Clauses are moved from the
array of disabled clauses back to the set of main clauses F when backjumping
pops scope levels. We annotate disabled clauses as [H ⊲ C]k, where k is the level
at which the clause can be re-enabled.

Contraction rules summary We can now summarize how the contraction
rules lift to DPLL(Γ). In the contraction rules below, assume H2 ⊲C2, . . . , Hm ⊲

Cm ∈ F, lm+1, . . . , ln ∈ lits(M), and H ′ = H2 ∪ . . . ∪ Hm ∪ {lm+1, . . . , ln}.

Delete

M ||F, H ⊲ C =⇒M ||F if

{

γd(C, C2, . . . , ln), n ≥ 2
level(H) ≥ level(H ′)

Disable

M ||F, H ⊲ C =⇒M ||F, [H ⊲ C]level(H′) if

{

γd(C, C2, . . . , ln), n ≥ 2
level(H) < level(H ′)

Simplify

M ||F, H ⊲ C =⇒M ||F, (H ∪ H ′) ⊲ C′ if γs(C, C2, . . . , ln, C′), n ≥ 2

We also use Delete1 and Simplify1 as special cases (without side conditions) of
the general rules for γd1

and γs1
.

5 System Architecture

We implemented DPLL(Γ) (and DPLL(Γ)♯) in the Z3 theorem prover [6] by
instantiating the calculus with the SP inference rules. Z3 is a state of the art
SMT solver which previously used E-matching exclusively for handling quantified
formulas. It integrates a modern DPLL-based SAT solver, a core theory solver
that handles ground equalities over uninterpreted functions, and satellite solvers
(for arithmetic, bit-vectors, arrays, etc). The new system is called Z3(SP). It
uses perfectly shared expressions as its main data structure. This data structure
is implemented in the standard way using hash-consing. These expressions are
used by the DPLL(T) and SP engines.

DPLL(T) engine. The rules Decide, UnitPropagate, Conflict, Explain, Learn,
Backjump, and Unsat are realized by the DPLL-based SAT solver in Z3(SP)’s
core. During exploration of a particular branch of the search tree, several of the
assigned literals are not relevant. Relevancy propagation [12] keeps track of which

truth assignments in M are essential for determining satisfiability of a formula.
In our implementation, we use a small refinement where only literals that are
marked as relevant have their truth assignment propagated to theory solvers and
are made available as premises to the Deduce rule. The rules T-Propagate and T-

Conflict are implemented by the congruence closure core and satellite solvers. The
congruence closure core processes the assigned literals in M . Atoms range over
equalities and theory specific atomic formulas, such as arithmetical inequalities.
Equalities asserted in M are propagated by the congruence closure core using
a data structure that we will call an E-graph following [2]. Each expression is
associated with an E-node that contains the extra fields used to implement the
Union-find algorithm, congruence closure, and track references to theory specific
data structures. When two expressions are merged, the merge is propagated as
an equality to the relevant theory solvers. The core also propagates the effects
of the theory solvers, such as inferred equalities that are produced and atoms
assigned to true or false. The theory solvers may also produce new ground clauses
in the case of non-convex theories. These ground clauses are propagated to F .

SP engine. The rules Deduce, Deduce♯, Delete, Disable and Simplify are imple-
mented by the new SP engine. It contains a superset of the SP rules described in
Figure 1, that includes contraction rules such as: forward/backward rewriting,
forward/backward subsumption, tautology deletion, destructive equality reso-
lution and equality subsumption. Z3(SP) implements Knuth-Bendix ordering
(KBO) and lexicographical path ordering (LPO). Substitution trees [13] is the
main indexing data structure used in the SP engine. It is used to implement most
of the inference rules: forward/backward rewriting, superposition right/left, bi-
nary resolution, and unit-forward subsumption. Feature vector indexing [14] is
used to implement non-unit forward and backward subsumption. Several infer-
ence rules assume that premises have no variables in common. For performance
reasons, we do not explicitly rename variables, but use expression offsets like the
Darwin theorem prover [15]. Like most saturation theorem provers, we store in
each clause the set of parent clauses (premises) used to infer it. Thus, the set of
hypotheses of an inferred clause is only computed during conflict resolution by
following the pointers to parent clauses. This is an effective optimization because
most of the inferred clauses are never used during conflict resolution.

Rewriting with ground equations. Due to the nature of our benchmarks
and DPLL(Γ), most of the equations used for forward rewriting are ground. It
is wasteful to use substitution trees as an indexing data structure in this case.
When rewriting a term t, for every subterm s of t we need to check if there is
an equation s′ ≃ u such that s is an instance of s′. With substitution trees, this
operation may consume O(n) time where n is the size of s. If the equations are
ground, we can store the equations as a mapping G, where s 7→ u ∈ G if s ≃ u

is ground and u ≺ s. We can check in constant time if an expression s is a key
in the mapping G, because we use perfectly shared terms.

Ground equations. Ground equations are processed by the congruence closure
core and SP engine. To avoid duplication of work, we convert the E-graph into a

canonical set of ground rewrite rules using the algorithm described in [16]. This
algorithm is attractive in our context because its first step consists of executing
a congruence closure algorithm.

E-matching for theories. Although the new system is refutationally complete
for first-order logic with equality, it fails to prove formulas containing theory
reasoning that could be proved using E-matching. For example, consider the
following simple unsatisfiable set of formulas:

¬(f(a) > 2), f(x) > 5

DPLL(Γ) fails to prove the unsatisfiability of this set because 2 does not unify
with 5. On the other hand, the E-matching engine selects f(x) as a pattern
(trigger), instantiates the quantified formula f(x) > 5 with the substitution
[x 7→ a], and the arithmetic solver detects the inconsistency. Thus, we still use
the E-matching engine in Z3(SP). E-matching can be described as:

E-matching

M ||F, H ⊲ C[t]=⇒ M ||F, H ⊲ C[t], σ(H ⊲ C[t]) if







E |= σ(t) ≃ s, where
s is a ground term in M,

E = {s1 ≃ r1, . . . , sn ≃ rn} ⊆ M

Definitions. In software verification, more precisely in Spec♯ [17] and VCC
(Verified C Complier), the verification problems contain a substantial number
of definitions of the form: p(x̄) ⇔ C[x̄]. Moreover, most of these definitions are
irrelevant for a given problem. Assuming C[x̄] is a clause l1[x̄] ∨ . . . ∨ ln[x̄], the
definition is translated into the following set of clauses Ds = {¬p(x̄) ∨ l1[x̄] ∨
. . .∨ ln[x̄], p(x̄)∨¬l1[x̄], . . . , p(x̄)∨¬ln[x̄]}. We avoid the overhead of processing
irrelevant definitions by using a term ordering that makes the literal containing
p(x̄) maximal in the clauses Ds.

Search heuristic. A good search heuristic is crucial for a theorem prover. Our
default heuristic consists in eagerly applying UnitPropagate, T-Propagate, Conflict

and T-Conflict. Before each Decide, we apply k times E-matching and Deduce.
The value k is small if there are unassigned ground clauses in F . The E-matching

rule is mainly applied to quantified clauses that contains theory symbols. The
rule Deduce is implemented using a variant of the given-clause algorithm, where
the SP engine state has two sets of clauses: P processed and U unprocessed.
Similarly to E [18], the clause selection strategy can use an arbitrary number of
priority queues.

Candidate models. Software verification tools such as Spec♯ and VCC expect
the theorem prover to provide a model for satisfiable formulas. Realistically, the
theorem prover produces only candidate (potential) models. In Z3(SP), M is
used to produce the candidate model, and a notion of k-saturation is used. We
say a formula is k-maybe-sat, if all ground literals in M are assigned, and Deduce

cannot produce any new non redundant clause with proof depth < k.

5.1 Evaluation

Benchmarks. We considered three sets of benchmarks: NASA [7], ESC/Java,
and Spec♯ [17]. The NASA benchmarks are easy even for SMT solvers based
on E-matching. In the 2007 SMT competition1 the selected NASA benchmarks
were all solved in less than one sec by all competitors. The Simplify theorem
prover fails on some of these benchmarks because they do not contain hints
(triggers), and Simplify uses a very conservative trigger selection heuristic. The
ESC/Java and Spec♯ benchmarks are similar in nature, and are substantially
more challenging than the NASA benchmarks2. These benchmarks contain hints
for provers based on E-matching. These hints can be used also by the SP engine
to guide the literal selection strategy. If the trigger (hint) is contained in a
negative literal l, we simply select l for generating inferences. Surprisingly, a
substantial subset of the axioms can be handled using this approach. When the
trigger is contained in a positive literal, Z3(SP) tries to make it maximal. This
heuristic is particularly effective with the frame axioms automatically generated
by Spec♯:

C[a, a′, x, y] ∨ read(a, x, y) = read(a′, x, y)

where C[a, a′, x, y] contains 10 literals, and specifies which locations of the heap
were not modified. In Spec♯, the heap is represented as a bidimensional array.
The Spec♯ benchmarks contain the transitivity and monotonicity axioms:

¬p(x, y) ∨ ¬p(y, z) ∨ p(x, z), ¬p(x, y) ∨ p(f(x), f(y))

These axioms are used to model Spec♯’s type system. Each benchmark contains
several ground literals of the form p(s, t). The transitivity axiom can be eas-
ily “tamed” by selecting one of its negative literals. Unfortunately, this simple
approach does not work with the monotonicity axiom. An infinite sequence of
irrelevant clauses is produced by the SP engine. In contrast, these axioms can
be easily handled by solvers based on E-matching. At this point, we do not have
a satisfactory solution for this problem besides giving preference to clauses with
small proof depth. We plan to support ordered chaining [19] in the future.

Inconsistent axioms. A recurrent problem that was faced by Z3 users was sets
of axioms that were unintentionally inconsistent. An E-matching based solver
usually fails to detect the inconsistency. Even worse, in some cases, small modi-
fications in the formula allowed the prover to transition from failure to success
and vice-versa. The following unsatisfiable set of formulas were extracted from
one of these problematic benchmarks:

a 6= b, ¬p(x, c) ∨ p(x, b), ¬p(x, y) ∨ x = y, p(x, c)

1 http://www.smtcomp.org
2 All benchmarks are available at: http://www.smtlib.org.

Z3 runtime logs for NASA’s and Spec♯’s benchmarks can be found at:
http://research.microsoft.com/users/leonardo/IJCAR2008.

The inconsistency is not detected by E-matching because there is no ground
literal using the predicate p. Now, assume the formula also contains the clause
q(a) ∨ p(a, b). If the prover decides to satisfy this clause by assigning q(a), then
p(a, b) is ignored by the E-matching engine and the prover fails. On the other
hand, if p(a, b) is selected by the prover, then it is used for instantiation and the
proof succeeds. In contrast, Z3(SP) can easily detect the inconsistency.

6 Related Work

HaRVey-FOL [9] combines Boolean solving with the equational theorem prover
E. Its main application is software verification. The Boolean solver is used to
handle the control flow of software systems, E allows haRVey to provide sup-
port for a wide range of theories formalizing data-structures. The integration is
also loose in this case, for example, a non-unit ground clause produced by E is
not processed by the Boolean solver. SPASS+T [8] integrates an arbitrary SMT
solver with the SPASS [20] saturation theorem prover. The SMT solver is used
to handle arithmetic and free functions. The integration is loose, SPASS uses its
deduction rules to produce new formulas as usual, and the ground formulas are
propagated to the SMT solver. The ground formulas are processed by both sys-
tems. Moreover, the clause splitting available in SPASS cannot be used because
SPASS+T has no control over the (black box) SMT solver backtracking search.
SMELS [21], to our best understanding, is a method for incorporating theory
reasoning in efficient DPLL + congruence closure solvers. The ground clauses
are sent to the DPLL solver. The congruence closure algorithm calculates all
reduced (dis)equalities. A Superposition procedure then performs an inference
rule, which is called Justified Superposition, between these (dis)equalities and
the nonground clauses. The resulting ground clauses are provided to the DPLL
engine.

SPASS [20] theorem prover supports splitting. The idea is to combine the β-
rule found in tableau calculi with a saturation based prover. Their formalization
relies on the use of labels [22], The main idea is to label clauses with the split
levels they depend on. In contrast, the main advantage of the approach used
in DPLL(Γ) is better integration with the conflict resolution techniques (i.e.,
backjumping and lemma learning) used in DPLL-based SAT solvers. In [23], an
alternative approach to case analysis for saturation theorem provers is described.
The main idea is to introduce new special propositional symbols. This approach
has two main disadvantages with respect to DPLL(Γ): the generated clauses can
not be directly used for reductions, and efficient conflict resolution techniques
used in DPLL-based solvers cannot be directly applied.

7 Conclusion

We have introduced a calculus that tightly integrates inference rules used in
saturation based provers with the DPLL(T) calculus. The combination is refu-
tationally complete for first-order logic. The calculus is particulary attractive
for software verification because all non-unit ground clauses can be delegated

to DPLL(T). We believe this work also provides a better and more flexible
infrastructure for implementing the rewrite-based approach for decision proce-
dures [24]. The DPLL(Γ) calculus was implemented in the Z3(SP) theorem
prover, and the main design decisions were discussed.

References

1. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53 (2006) 937–977

2. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52 (2005) 365–473

3. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: CADE-21. LNCS (2007)

4. Moskal, M., Lopuszanski, J., Kiniry, J.R.: E-matching for fun and profit. In:
Satisfiability Modulo Theories Workshop. (2007)

5. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
CAV’06. LNCS 4144, Springer-Verlag (2006) 81–94

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 08. (2008)
7. Denney, E., Fischer, B., Schumann, J.: Using automated theorem provers to certify

auto-generated aerospace software. In: IJCAR’04. Volume 3097 of LNCS. (2004)
8. Prevosto, V., Waldmann, U.: SPASS+T. In: ESCoR Workshop. (2006)
9. Deharbe, D., Ranise, S.: Satisfiability solving for software verification. Interna-

tional Journal on Software Tools Technology Transfer (2008) to appear.
10. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-

mated Reasoning. MIT Press (2001) 19–99
11. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In Robinson,

A., Voronkov, A., eds.: Handbook of Automated Reasoning. MIT Press (2001)
12. de Moura, L., Bjørner, N.: Relevancy Propagation . Technical Report MSR-TR-

2007-140, Microsoft Research (2007)
13. Graf, P.: Substitution tree indexing. In: RTA ’95. (1995)
14. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing.

In: ESFOR Workshop. (2004)
15. Baumgartner, P., Fuchs, A., Tinelli, C.: Darwin: A theorem prover for the model

evolution calculus. In: ESFOR Workshop. (2004)
16. Gallier, J., Narendran, P., Plaisted, D., Raatz, S., Snyder, W.: An algorithm for

finding canonical sets of ground rewrite rules in polynomial time. J. ACM 40

(1993)
17. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec♯ programming system: An

overview. In: CASSIS’04. LNCS 3362, Springer (2005) 49–69
18. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15 (2002) 111–126
19. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of

transitive relations. J. ACM 45 (1998) 1007–1049
20. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topic, D.:

SPASS version 2.0. In: CADE-18. Volume 2392 of LNAI. (2002)
21. Lynch, C.: SMELS: Satisfiability Modulo Equality with Lazy Superposition (2007)

Presented at the Dagsthul Seminar on Deduction and Decision Procedures.
22. Fietzke, A.: Labelled splitting. Master’s thesis, Saarland University (2007)
23. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI. (2001)
24. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based

satisfiability procedures. ACM Transactions on Computational Logic (To appear)

