
A Decade of Lean: Advancing Proof Automation for Mathematics
and Software Verification

July 31, 2025

Leo de Moura
Senior Principal Applied Scientist, AWS
Chief Architect, Lean FRO

Lean is an open-source programming language and proof assistant that is transforming how
we approach mathematics, software verification, and AI.

Public debut at CADE 2015 – Berlin. System Description and Tutorial.

Lean and its tooling are implemented in Lean. Lean is very extensible.

LSP, Parser, Macro System, Elaborator, Type Checker, Tactic Framework, Proof automation,
Compiler, Build System, Documentation Authoring Tool.

Lean has a small trusted kernel, proofs can be exported and independently checked.

The Lean FRO is a nonprofit dedicated to developing Lean.

https://lean-lang.org/papers/system.pdf
https://leanprover.github.io/presentations/20150803_CADE/

Lean is based on dependent type theory

An example by Kim Morrison:

Full example here.

https://github.com/leanprover/lean4/blob/master/tests/lean/run/grind_indexmap.lean

An example by Kim Morrison:

:

An example by Kim Morrison:

:

Theorem proving in Lean is an interactive game

The “game move” simp, the simplifier, is one of the most popular moves in our game

“You have written my favorite computer game”, Kevin Buzzard

The “game board”

We Listen to Our Users: Classical Mathematics from Day 1

User-driven design philosophy: Classical logic and mathematics as defaults

Our first user was a mathematician: Jeremy Avigad

The math community using Lean is growing rapidly. They love the system

Lean is also a programming language, you can be constructive when it matters.

Practical focus: Verification engineers prioritize getting proofs done over foundational concerns

Mathlib

The Lean Mathematical Library supports a wide range of projects.

It is an open-source collaborative project with over 500 contributors and 1.9M LoC.

“I’m investing time now so that somebody in the future can have that amazing experience”,

Heather Macbeth

Lean is impacting Mathematics

"Lean enables large-scale collaboration by allowing mathematicians to
break down complex proofs into smaller, verifiable components. This
formalization process ensures the correctness of proofs and facilitates
contributions from a broader community. With Lean, we are beginning to
see how AI can accelerate the formalization of mathematics, opening
up new possibilities for research." — Terence Tao

Liquid Tensor Experiment – Peter Scholze

The Equational Theories Project – Terence Tao

Fermat’s Last Theorem – Kevin Buzzard

Carleson’s Theorem – Floris van Doorn

Lean Enables Verified AI for Mathematics and Code

LeanDojo is an open-source project from Caltech, and everything (model, datasets, code) is open.

OpenAI and Meta AI have developed AI assistants for Lean.

Claude 4 is fantastic on Lean code.

Their System Card contains a Lean example.

https://leandojo.org/
https://openai.com/index/formal-math/
https://ai.meta.com/blog/ai-math-theorem-proving/
https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf

The Silver Medal at the IMO 2024

"At Google DeepMind, we used Lean to build AlphaProof, a new reinforcement-learning based system for formal

math reasoning. Lean’s extensibility and verification capabilities were key in enabling the development of

AlphaProof." — Pushmeet Kohli, Vice President, Research Google DeepMind

The Gold Medal at the IMO 2025

Google DeepMind and OpenAI achieved gold medal level using informal reasoning.

ByteDance achieved silver* medal using Lean. (*) They reached gold after the competition.

Harmonic achieved gold medal using Lean.

https://x.com/AlexKontorovich/status/1947852329006350712?t=yAJVaZl_mG3qXDwjR-IaBg&s=19
https://github.com/ByteDance-Seed/Seed-Prover
https://x.com/i/broadcasts/1BdGYqEkOYyGX

Auto-formalization

The process of converting natural language into a formal language like Lean.

Lean+AI preprints in May/June 2025
Prover Agent: An Agent-based Framework for Formal Mathematical Proofs, Baba et al

LeanTutor: A Formally-Verified AI Tutor for Mathematical Proofs, Patel et al

Safe: Enhancing Mathematical Reasoning in LLMs, Liu et al

VERINA: Benchmarking Verifiable Code Generation, Ye et al

REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning, Shen et al

Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions, Sun et al

APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning, Ospanov et al

FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models, Yu et

Lean in Software Verification

Cedar – Language for defining permissions as policies – AWS

SampCert – Verified Differential Privacy Primitives – AWS

SymCrypt – Verified Cryptography – Microsoft

Neuron Compiler – AWS

https://github.com/cedar-policy/cedar-spec
https://github.com/leanprover/SampCert
https://www.microsoft.com/en-us/research/blog/rewriting-symcrypt-in-rust-to-modernize-microsofts-cryptographic-library/
https://github.com/leanprover/KLR

CSLib

A Foundation for Computer Science in Lean

A Mathlib for computer science.

Clark Barrett (Stanford University and Amazon)

Swarat Chaudhuri (Google DeepMind and UT Austin)

Leo de Moura (Amazon and Lean FRO)

Jim Grundy (Amazon)

Pushmeet Kholi (Google DeepMind)

CSLib aims to be a foundation for teaching, research, and new verification efforts, including AI-assisted.

https://docs.google.com/presentation/d/1aJFM3EaI4LcppHR_2YFQHiBjUfMMhMKxCeM3BfINi48/edit?slide=id.p

Lean FRO: Shaping the Future of Lean Development

The Lean Focused Research Organization (FRO) is a non-profit dedicated to Lean’s development.

Founded in August 2023, the organization has 20 members.

Its mission is to enhance critical areas: scalability, usability, documentation, and proof automation.

It must reach self-sustainability in August 2028 and become the Lean Foundation.

We are very grateful for all philanthropic support we have received.

Lean FRO: by numbers

21 releases and more than 4,500 pull requests merged in the main repository since its launch in July 2023.

Public roadmaps: https://lean-fro.org/about/roadmap-y2/

Lean project was featured in multiple venues NY Times, Quanta, Scientific American, etc.

https://lean-fro.org/about/roadmap-y2/
https://lean-fro.org/about/roadmap-y2/
https://lean-fro.org/about/roadmap-y2/
https://lean-fro.org/about/roadmap-y2/
https://lean-fro.org/about/roadmap-y2/

Lean is a Development Environment for formal verification

Rich user interface and integrated tooling

Build system, LSP server, and VS Code plugin work seamlessly together

Lake, Lean make, is our cargo

Reservoir (reservoir.lean-lang.org): Our package ecosystem, think crates.io

Real-time feedback: Errors, goals, and hints as you type

https://reservoir.lean-lang.org/
https://reservoir.lean-lang.org/
https://reservoir.lean-lang.org/

Veil: Multi-Modal Verifier for Distributed Protocols

● A shallowly-embedded DSL in Lean
● Bounded model checking and automation via SMT

(using Lean-auto, Lean-SMT)
● Interactive proofs in Lean when automation fails

github.com/verse-lab/veil Pîrlea et al., CAV’25

Proof Automation

Why Proof Automation is Hard in Lean

Dependent Types: more expressive, but harder to automate.

Example: given

Suppose we want to rewrite/simplify

and can easily construct a proof that 2 + i - 1 = i + 1, but the following term is not type correct.

Lean generates custom congruence theorems that “patch” the proof term.

Type Classes

Type classes provide an elegant mechanism for managing ad-hoc polymorphism.

Type Classes

Type Classes

There approx. 1.5K classes and 20K instances in Mathlib.

Type class resolution is backward chaining.

You can view instances as Horn Clauses.

Lean procedure is based on tabled resolution.

Proof automation must be able to detect that different synthesized instances are definitionally equal.

Proof by Reflection

Reify: convert a concrete Lean term into an element of a Lean type.

Denote: convert reified value back into a Lean term.

.

Proof by Reflection

We can transform reified terms.

And, prove properties about these transformations.

Proof by Reflection

Example:

Lean’s proof automation generates the proof term.

Does Lean Have Hammers?

The Lean community is also actively developing automation.

LeanHammer: an automated reasoning tool for Lean which brings together multiple proof search and
reconstruction techniques and combine them into one tool. CMU

Duper: a superposition theorem prover written in Lean for proof reconstruction.

Lean-SMT: An SMT tactic for discharging proof goals in Lean UFMG, Stanford, University of Iowa

Lean-Auto: Interface between Lean and automated provers. Yicheng Qian (CMU and Stanford).

Lean-auto is based on a monomorphization procedure from dependent type theory to higher-order
logic and a deep embedding of higher-order logic into dependent type theory. It is capable of handling
dependently-typed and/or universe-polymorphic input terms.

https://github.com/JOSHCLUNE/LeanHammer
https://github.com/leanprover-community/duper
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto

bv_decide: an efficient verified bit-blaster

Developed primarily by Henrik Boving (Lean FRO)

Based on a verified LRAT proof checker developed by Josh Clune during internship at AWS.

Uses LRAT proof producing SAT solvers: Cadical

Simplify => Reflect => Bit-blast => AIG => CNF => SAT-solver => LRAT Proof => Verified checker

Implemented in Lean.

bv_decide: an efficient verified bit-blaster

bv_decide: an efficient verified bit-blaster

Many other tactics implement this idiom: simp?, aesop?, etc.

“Blasting” popcount with bv_decide

“Blasting” popcount with bv_decide

What is grind?
New proof automation (Lean v4.22) developed by Kim Morrison and me.

A proof-automation tactic inspired by modern SMT solvers. Think of it as a virtual whiteboard:

Discovers new equalities, inequalities, etc.

Writes facts on the board and merges equivalent terms

Multiple engines cooperate on the same workspace

Cooperating Engines:

Congruence closure; E-matching; Constraint propagation; Guided case analysis

Satellite theory solvers (linear integer arithmetic, commutative rings, linear arithmetic)

Supports dependent types, type-class system, and dependent pattern matching

Produces ordinary Lean proof terms for every fact.

What grind is NOT

Not designed for combinatorially explosive search spaces:

Large-n pigeonhole instances

Graph-coloring reductions

High-order N-queens boards

200-variable Sudoku with Boolean constraints

Why? These require thousands/millions of case-splits that overwhelm grind's branching search

Key takeaway: grind excels at cooperative reasoning with multiple engines, but struggles with
brute-force combinatorial problems.

For massive case-analysis, use bv_decide

grind: Design Principles

Native to Dependent Type Theory: No translation to first-order or higher-order logic needed.

Solves trivial goals automatically.

Fast startup time: No server startup, no external tool dependencies, no translations

Rich diagnostics: When it fails, it tells you why.

Configurable via Type Classes.

Provide grind? similarly to bv_decide? and aesop?

Stdlib and Mathlib pre-annotated.

grind: Model-based theory solvers

For linear arithmetic (linarith) and linear integer arithmetic (cutsat).

linarith is parametrized by a Module over the integers. It supports preorders, partial orders, and linear orders.

“I'm interested in developing some API for linearly ordered vector spaces, in order to easily handle manipulations
of asymptotic orders” – Terence Tao on the Lean Zulip

OrderedVectorSpace implements IntModule, LinearOrder, IntModule.IsOrdered.

grind: Model-based theory solvers

cutsat is parametrized by the ToInt type class used to embed types such as Int32, BitVec 64 into the
integers.

grind: Model-based theory solvers

grind: commutative rings and fields

Support for commutative rings and fields uses Grobner basis.

Parametrized by the type classes: CommRing, CommSemiring, NoNatZeroDivisors, Field, AddRightCancel,
and IsCharP

grind: E-matching

E-matching is a heuristic for instantiating theorems. It is used in many SMT solvers.

It is matching modulo equalities.

grind diagnostics at your fingertips

grind diagnostics at your fingertips

grind diagnostics at your fingertips

grind: Roadmap

Performance improvements.

Theory solver for AC operators.

Nonlinear inequality support.

Improved theory propagation.

How can I contribute?

Help building Mathlib.

Want to engage with the vibrant Lean community? Join our Zulip channel.

Interested in ML kernels? Contribute to the KLR project.

Want to contribute to a large formalization project? Join the FLT formalization project.

Start your own open-source Lean project! Your package will be available on our registry Reservoir.

Start using Lean online: live.lean-lang.org

Support the Lean FRO: Funding, partnerships, or simply advocating the project.

http://github.com/leanprover-community/mathlib4
https://leanprover.zulipchat.com/
https://github.com/leanprover/KLR
https://github.com/ImperialCollegeLondon/FLT
https://reservoir.lean-lang.org/
http://live.lean-lang.org/
http://live.lean-lang.org/
http://live.lean-lang.org/

Conclusion

Lean is an efficient programming language and proof assistant.

Lean is very extensible and is implemented in Lean.

Lean proofs are maintainable, stable, and transparent.

Progress is accelerating with the Lean FRO: module system, new compiler, new proof automation, etc.

The Mathlib community is changing how math is done.

It is not just about proving but also understanding complex objects and proofs, getting new insights, and

navigating through the “thick jungles” that are beyond our cognitive abilities.

Software

Mathematics AI

L N

AE

Thank You

https://leanprover.zulipchat.com/
x: @leanprover
LinkedIn: Lean FRO
Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

Extra Slides

Lean Enables Decentralized Collaboration

Lean is Extensible

Users extend Lean using Lean itself.

Lean is implemented in Lean.

You can make it your own.

You can create your own moves.

Machine-Checkable Proofs

You don’t need to trust me to use my proofs.

You don’t need to trust my automation to use it.

Code without fear.

Protocol Verification in Lean

“No other interactive theorem prover captured my attention for so long.” Igor Konnov

Specifying and simulating two-phase commit in Lean4

Proving consistency of two-phase commit in Lean4

Proving completeness of an eventually perfect failure detector in Lean4

“Of course, this is all done through “monads”, but they are relatively easy to use in Lean — even if you are
not quite ready to buy into the FP propaganda. As a bonus point, this simulator is really fast.” Igor Konnov

https://protocols-made-fun.com/lean/2025/04/25/lean-two-phase.html
https://protocols-made-fun.com/lean/2025/04/25/lean-two-phase.html
https://protocols-made-fun.com/lean/2025/04/25/lean-two-phase.html
https://protocols-made-fun.com/lean/2025/05/10/lean-two-phase-proofs.html
https://protocols-made-fun.com/lean/2025/05/10/lean-two-phase-proofs.html
https://protocols-made-fun.com/lean/2025/05/10/lean-two-phase-proofs.html
https://protocols-made-fun.com/lean/2025/06/10/lean-epfd-completeness.html
https://lean-lang.org/functional_programming_in_lean/monads.html
https://protocols-made-fun.com/lean/2025/04/25/lean-two-phase.html

Lean Extensions in Aeneas – the Rust verification framework @ Microsoft

You don’t need to learn a new programming language to extend Lean

grind: E-matching and Dependent Type Theory

Automating Quantum Algebra

Here is a concrete example from quantum algebra. It comes from a classification result involving quantum
SO(3) categories. Specifically, the condition that certain relations among trivalent graphs imply a constraint
on the parameters d, t, and c:

From: “Categories generated by a trivalent vertex”, Morrison, Peters, and Snyder

Automating Quantum Algebra

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

grind can handle this kind of reasoning automatically, in milliseconds.

"if-normalization” challenge by Leino, Merz, and Shankar

"if-normalization” challenge by Leino, Merz, and Shankar

Interactive tactic suggestion tool: the try? tactic

It tries many different tactics, guesses induction principle, and is extensible

