Lean 4: Bridging Formal Mathematics and
Software Verification

36th International Conference on Computer Aided Verification
July 25th 2024
Leo de Moura

W Senior Principal Applied Scientist - AWS amazon

Chief Architect — Lean FRO

Whatis | V/|\|?

An efficient pure functional programming language and a proof assistant.
Lean is implemented in Lean, and is very extensible.

Main applications:

e Formal Mathematics

e Software/Hardware verification

e Al for Mathematics and code synthesis

e Education

Small trusted kernel, and many external type/proof checkers.

Soonho Kong and | started the project at Microsoft Research in 2013.

Whatis | V/|\|?

Lean is based on dependent type theory

def f (n m : Nat) (xs : BitVec n) (ys : BitVec m) : BitVec (m+n+m) :=
YS ++ XS ++ YS

structure FinNat (n : Nat) where
val : Nat
bounded : val < n

def a : FinNat 3 := {
val := 0
bounded := by decide

Whatis | V/|\|?

Lean is based on dependent type theory

def f (n m : Nat) (xs : BitVec n) (ys : BitVec m) : BitVec (m+n+m) :=
yS ++ XS ++ ysS

structure FinNat (n : Nat) where
val : Nat
bounded : val < n

def a : FinNat 3 := {
val := 4
bounded := by decide

EW IS and IDE for formal methods

Lean is a development environment for formal methods.

Proofs and definitions are machine checkable.

The math community using Lean is growing rapidly. They love the system.

Lean is used in several software verification projects at AWS since 2023.

O 00 N O U

10

12
13
14
15

theorem euclid exists infinite primes (n : N) : 3 p, n = p A Prime p :

let p := minFac (factorial n + 1)
have fl1 : (factorial n + 1) # 1 :=

ne of gt $ succ lt succ' $ factorial pos _
have pp : Prime p :=

min fac prime fl1

have np : n = p := le of not ge fun h =>
have h. : p | factorial n := dvd factorial (min_fac pos) h
have h: p | 1 := (Nat.dvd add iff right h:).2 (min fac dvd)

pp.not dvd one h:
Exists.intro p |

- —/\| and formal mathematics

Mathlib > RingTheory > Finiteness.lean

82 /—— **kNakayama's Lemmaxx. Atiyah-Macdonald 2.5, Eisenbud 4.7, Matsumura 2.2,
83 [Stacks 00DV] (https://stacks.math.columbia.edu/tag/00DV) -/
84 theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type _} [CommRing R] {M : Type _}

85 [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N < I ¢ N)
86 3r:R, r-1€IAVYneEN, ren=(0:M):=by

87 rw [fg_def] at hn

88 rcases hn with (s, hfs, hs)

89 have : 3 r : R, r=1€IAN=< (I span R s).comap (LinearMap.lsmul RM r) A s € N := by
90 refine' (1, _, _, _)

91 - rw [sub_self]

92 exact I.zero_mem

93 « rw [hs]

94 intro n hn

95 rw [mem_comap]

96 change (1 : R) * n €I «N

97 rw [one_smul]

98 exact hin hn

99 + rw [« span_le, hs]

- —\/\|has a rich user-interface

append.lean ® YV M - Lean Infoview X -
build > release > append.lean > @ append_length v append.lean:10:19 IS |)

1 def append (xs ys : List a) : List a := v Tactic state K L v

2 match xs with

3 | [] => ys 1goa|

4 | x :: xs => x :: append xs ys vcase cons

S a : Type u_l

6 theorem append_length (xs ys : List a) ys : List a

7 (append xs ys).length = xs.length + ys.length := by 2 s G

8 induction xs with xs : List a

9 | nil => sim? [appe?d] _ ih : (append xs ys).length = xs.length + ys.length

10 | cons x xs ih =>-simp [append, ih]; omega + (append (x :: xs) ys).length = (x :: xs).length + ys.length
11

Should we trust EW ?

Lean has a small trusted proof checker.

Do | need to trust the checker?

No, you can export your proof, and use external checkers. There are checkers implemented in
Haskell, Scala, Rust, Lean, etc.

You can implement your own checker.

- —\/\| enables decentralized collaboration

Meta-programming Formal Proofs

Users extend Lean using Lean itself You don't need to trust me to use my proofs.

Proof automation You don't need to trust my proof automation to use it.
Visualization tools Hack without fear.

Custom notation

- —\/\| enables decentralized collaboration

Meta-programming Formal Proofs

Users extend Lean using Lean itself You don't need to trust me to use my proofs.

Proof automation You don't need to trust my proof automation to use it.
Visualization tools Hack without fear.

Custom notation

Takeaway: formal proofs address the “Trust Bottleneck”

Documentation

UniversallyClosed
v PrimeSpectrum
Basic
IsOpenComapC
Maximal
Module
Noetherian
» ProjectiveSpectrum
» Sites
AffineScheme
FunctionField
GammaSpecAdjunction
Gluing
GluingOneHypercover
Limits
Noetherian
Openlmmersion
Properties
Pullbacks
Restrict
Scheme
Spec
Stalk
StructureSheaf
» AlgebraicTopology
» Analysis

—/I\| starts Mathlib — 2017

Community

Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal

H Search l Google site search

Main definitions

e MaximalSpectrum R:The maximal spectrum of a commutative ring R, i.e., the set of
all maximal ideals of R.

Implementation notes

The Zariski topology on the maximal spectrum is defined as the subspace topology induced
by the natural inclusion into the prime spectrum to avoid API duplication for zero loci.

theorem MaximalSpectrum.toPrimeSpectrum_range source

Set.range MaximalSpectrum.toPrimeSpectrum =
{x : PrimeSpectrum R | IsClosed {x}}

instance MaximalSpectrum.zariskiTopology source

TopologicalSpace (MaximalSpectrum R)

The Zariski topology on the maximal spectrum of a commutative ring is defined as the
subspace topology induced by the natural inclusion into the prime spectrum.

» Equations

return to top
source

» Imports
» Imported by

MaximalSpectrum.

toPrimeSpectrum_range

MaximalSpectrum.
zariskiTopology

MaximalSpectrum.instT1Space

MaximalSpectrum.

toPrimeSpectrum_continuous

The Lean Mathematical Library

The mathlib Community”
Abstract

This paper describes mathlib, a community-driven effort
to build a unified library of mathematics formalized in the
Lean proof assistant. Among proof assistant libraries, it is
distinguished by its dependently typed foundations, focus
on classical mathematics, extensive hierarchy of structures,
use of large- and small-scale automation, and distributed or-
ganization. We explain the architecture and design decisions
of the library and the social organization that has led to its
development.

Lean 4 development starts in 2018

Sebastian Ullrich and | start Lean 4 in 2018

Main goal: make the system much more extensible and address many limitations
Lean is now a general-purpose and efficient programming language

Implemented in 120+ kLoC of Lean!

Opened up parser and elaborator for complex notations, embedded languages, ...

It is not backward compatible with Lean 3

The Lean Zulip Channel — https://leanprover.zulipchat.com

‘ condensed mathematics = Condensed R-modules Oct 07
V,“ Peter Scholze (oi7et
< . lean-gptf OpenAl gpt-f ke Oct 08
he;! My math understandingis that condensed Ab.{u+1} oughtto be functors from Profinite.{u} to Ab.{u+1} ,and &P P Ep y
then theindex set 3 thatappears will be, for a presheaf F', the disjoint union over all isomorphism classes of objects S Stanislas Polu

of Profinite.{u} of F'(:S).Now in ZFC universes, this disjoint union still lies in the u+1 universe. @Ayush Agrawal | let me check ¢

But what you say above indicates that this is also true, as long as the index set of S"s is still in universe u . Well, itisn't & 1

quite - it's a bit larger, but still much smaller than u+1 interms of ZFC universes.
We had a bit of a backlog

So maybe that it helps to take instead functors from Profinite.{u} to Ab.{u+2} ? Then|'m pretty sure pProfinite. Good think you reached out. Invites are out

{u} liesin Type.{u+1} ,so that disjoint union ofF(S)'s above should liein Type.{u+2} , and this should be good
enough. But! Note that the model is quite stale. We're working on updating it, but don't be surprised if it's not super useful as it
was trained on a rather old snaphost of mathlib

= 1

@ Machine Learning for Theorem Proving > Releasing LeanDojo JUN 27,2023
Cyclotomic field defn
m Kaiyu Yang ® ! Yy T53PM
@ Eric Rodriguez Hi everyone,
I noticed this project so far is working with adjoin_root cyclotomic .l wonderifin .))
better option. | think the second option is better suited to Galois theory (as then the We're excited to release LeanDojo: open-source tools, benchmarks, and models for
easier to generalise to other fields. (it works for all fields with n # 0, whilst I think this learning-based theorem proving in Lean. It provides robust and well-documented
tools for data extraction and interacting with Lean programmatically (supporting both
laanm 2 amAl mme A\ WMIm cimna | mmaPNaia b mmimcderindk lhmimmlainaclom fomian mm kb lil an
® lean4 > Problem when instances are inside a structure JUN 28
& 43 Terence Tao coireo 9:02 PM
new members vVYXyz:AXxzy->(Xx#zzVy#z):= _— Hi, for the PFR project there is a large amount of data and instances that | am trying to
FEF Jia Xuan Ng (0170 place inside a single structure in order not to repeatedly state all that data every

. , . . . time | state a new lemma. | figured out how to invoke individual instances that are
s\ Hieveryone, I'm tryingto proveVxyz:A x#y-> (x#z Vv y#z):= which| believe to be provable.

. T . . - . buried inside the structure when needed, but encountered a problem when invoking
Reason why this is is because | use implication logical equivalences e.g. P -> Q === P V Q such that | derived: .] o .
X#y5-(X#2) >y #2==>x#y>x=2y#zwhich is essentially stating: an instance that depended on another instance, due to a definitional equality

"If xisn't equivalent toy, if x is equivalent to z, then y isn't equivalent to z", which is a tautology.
SHOW MORE

However, | just can't seem to do anything... thank you very much.

<& Yaél Dillies, Kim Morrison, Kevin Buzzard

https://leanprover.zulipchat.com

Lean perfectoid spaces [Ewloyke s

by Kevin Buzzard, Johan Commelin, and Patrick Massot

What is it about?

We explained Peter Scholze's definition of perfectoid spaces to computers, using the Lean theorem
prover, mainly developed at Microsoft Research by Leonardo de Moura. Building on earlier work by
many people, starting from first principles, we arrived at

—— We fix a prime number p
parameter (p : primes)

/—— A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the power bounded subring,
and such that Frobenius is a surjection on the reduction modulo p.-/

structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=

(complete : is_complete_hausdorff R)
(uniform : is_uniform R)
(ramified : 3 w : pseudo_uniformizer R, w™p | p in R°)

(Frobenius : surjective (Frob R°/p))

/_

CLVRS ("complete locally valued ringed space") is a category

whose objects are topological spaces with a sheaf of complete topological rings
and an equivalence class of valuation on each stalk, whose support is the unique
maximal ideal of the stalk; in Wedhorn's notes this category is called 7.

A perfectoid space is an object of CLVRS which is locally isomorphic to Spa(A) with
A a perfectoid ring. Note however that CLVRS is a full subcategory of the category
‘PreValuedRingedSpace’ of topological spaces equipped with a presheaf of topological
rings and a valuation on each stalk, so the isomorphism can be checked in
PreValuedRingedSpace instead, which is what we do.

=/

/—— Condition for an object of CLVRS to be perfectoid: every point should have an open
neighbourhood isomorphic to Spa(A) for some perfectoid ring A.-/
def is_perfectoid (X : CLVRS) : Prop :=
Vx: X, 3 (U : opens X) (A : Huber_pair) [perfectoid_ring Al,
(x € U) A (Spa A = U)

/—— The category of perfectoid spaces.-/
def PerfectoidSpace := {X : CLVRS // is_perfectoid X}

end

a Natural numbers

Valuations

Filters ~ . Uniform spaces
i
mathoverflow
R What are “perfectoid spaces”?
Questions Asked 9 years, 5 months ago Active 1 year, 5 months ago Viewed 49k times
Taas

Here is a completely different kind of answer to this question.
67 Aperfectoid space is a term of type PerfectoidSpace in the Lean theorem prover.

Here's a quote from the source code:

structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=
Y (complete : is_complete_hausdorff R)

The Lean Mathematical Library goes viral — 2020

= WIGEE AACKONANMEL BUSINESS COLIURE GOAR IOEAS SCRENCC SEcemiTY sten 1n Q
WIREERE | ssescarec |

_ SCIENCE 10,13 2020 9808 A%
The Effort to Build the Mathematlcal Library of the Future

2020's Biggest Breakthroughs in Math and Computer Science

1,853,481 views * Dec 23, 2020

Quanta Magazine
336K subscribers

“You can do 14 hours a day in it and not get tired and feel kind of high the whole day,”
Livingston said. “You’re constantly getting positive reinforcement.”

“It will be so cool that it's worth a big-time investment now,” Macbeth said. “I'm investing
time now so that somebody in the future can have that amazing experience.”

Liquid Tensor Experiment

Nov 2020: Peter Scholze posits formalization challenge

“I spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over it. In
the end, we were able to get an argument pinned down on paper, but | think nobody else has
dared to look at the details of this, and so | still have some small lingering doubts.”

Liquid Tensor Experiment

Nov 2020: Peter Scholze posits formalization challenge

May 2021: Johan Commelin announces completed Lean formalization of crucial intermediary
lemma, with only minor corrections

“[T]his was precisely the kind of oversight | was worried about when | asked for the formal
verification. [...] The proof walks a fine line, so if some argument needs constants that are
quite a bit different from what | claimed, it might have collapsed.”

nature

Explore content v Journal information v Publish with us v Subscribe

nature > news > article

NEWS \ 18 June 2021

Mathematicians welcome
computer-assisted proofin‘grand
unification’ theory

Liquid Tensor Experiment

Nov 2020: Peter Scholze posits formalization challenge

May 2021: Johan Commelin announces completed Lean formalization of crucial intermediary
lemma, with only minor corrections

July 2022: Completion of the full challenge in Lean

“The Lean Proof Assistant was really that: an assistant in navigating through the thick
jungle that this proof is. Really, one key problem | had when | was trying to find this proof

was that | was essentially unable to keep all the objects in my RAM, and | think the same problem
occurs when trying to read the proof.” Peter Scholze

Abstract Formalities

Johan Commelin's talk: http://www.fields.utoronto.ca/talks/Abstract-Formalities

Abstraction boundaries in Mathematics.

Formal mathematics as a tool for reducing the cognitive load.

Not just from raw proof complexity, but also
discrepancies between statements and proofs, side conditions, unstated assumptions, ...

2. Formalization and abstraction boundaries

3. Specifications managing refactors; unexpected gems

Eﬁx\/r\;::tcgclf(r)(:vn; l[:;Tr(lfr:)erties of Breen—Deligne resolutions UnexpeCted Win: JOhan,S team Slmpllfled the prOOf
without fully understanding it.

Ib Discovered easier object with similar behaviour

2a Key statements written down without proofs
after stubbing out definitions (example: Ext)

2b Several definitions and lemmas were tweaked

2¢ After the dust settled, distribute work on the proofs

3 Sometimes large proofs or libraries
still had to be refactored (yes, it was painful)

http://www.fields.utoronto.ca/talks/Abstract-Formalities

Mathlib is ported to Lean 4 — 2023

Leonardo de Moura (He/Him) - You ees
Senior Principal Applied Scientist at AWS, and Chief Architect ...
- 1mo - @

| am thrilled to announce that the Mathlib (https://Inkd.in/gx6eh4aG)
port to Lean 4 has been successfully completed this weekend. It is truly
remarkable that over 1 million lines of formal mathematics have been
successfully migrated. Once again, the community has amazed me and
surpassed all my expectations. This achievement also aligns with the
10th anniversary of my initial commit to Lean on July 15, 2013. Patrick
Massot has graciously shared a delightful video commemorating this
significant milestone, which can be viewed here:
https://Inkd.in/gjVr72t8.

Takeaway: the power of the community

Lean 4 overview for Mathlib users - Patrick Massot

youtube.com

o
(@]
5
Q
£
(@]
(@)
)
-
2
(@)
()
i -
T
W
&)
o pui
e
n
© punl
)
©
S
wn
O 2
b S
o &8 ¢
- S 2
c =
= O
O

310

156453

81788

B athib3 [mathiib4

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

—\/]\ is impacting how mathematics is done

Thomas’ Bloom result; https://b-mehta.github.io/unit-fractions/

Unit fractions

by Thomas F. Bloom and Bhavik Mehta

Blueprint GitHub

What is it about?

The goal of this project is to formalize the main result of the preprint ‘On a density conjecture about
unit fractions’ using the Lean theorem prover, mainly developed at Microsoft Research by Leonardo

de Moura. This project structure is adapted from the infrastructure created by Patrick Massot for the
Sphere Eversion project.

Timothy Gowers

Very excited that Thomas Bloom and Bhavik Mehta have done this. | think
it's the first time that a serious contemporary result in "mainstream"
mathematics doesn't have to be checked by a referee, because it has been
checked formally. Maybe the sign of things to come ... 1/

@ Kevin Buzzard

Happy to report that Bloom went on to learn Lean this year and,
together with Bhavik Mehta, has now formalised his proof in Lean b-
mehta.github.io/unit-fractions/ (including formalising the Hardy-
Littlewood circle method), finishing before he got a referee's report for
the paper ;-)

https://b-mehta.github.io/unit-fractions/

- —\/|\| is impacting how mathematics is done

e 1 Terence Tao <.7.) B\

& @tao@mathstodon.xyz s: N>R

As a consequence of my #Lean4 formalization project | have found hi: n > 2

a small (but non-trivial) bug in my paper! While in the course of h2 : attainable n s
formalizing the arguments in page 6 of hi' : 2 < 1n
arxiv.org/pdf/2310.05328.pdf , | discovered that the expression 9 < tn - 3

%log nf—ﬁl that appears in those arguments actually diverges in

the case n = 3,k = 2! Fortunately this is an issue that is only ¥ Messages (1)
present for small values of m, for which one can argue directly (with
a worse constant), so | can fix the argument by changing some of
the numerical constants on this page (the arguments here still work
fine for n > 8, and the small n case can be handled by cruder
methods). Vcase h

Enclosed is the specific point where the formalization failed; Lean 0o 3

asked me to establish 0 < n — 3, but the hypothesis | had was s: N->R

only that m > 2, and so the "linarith" tactic could not obtain a hi: n > 2
contradiction from the negation of 0 < n — 3. h2 : attainable n s
hi' : 2 < ™n

ar: 9 2 ™ - 3

linarith failed to find a contradiction

I'll add a footnote in the new version to the effect that the
argument in the previous version of the paper was slightly incorrect,
as was discovered after trying to formalize it in Lean. ar False

2023 was a great year for| —

Q €he New Aork Eimes

Terence Tao

A.l. and Chatbots > CanA.| Be Fooled? Testing a Tutorbot Chatbot PromptstoTry A.l’s Literary Skills ~ What Are the Dangers of A.l.? @tao@mathstodon S

Leo de Moura surveyed the features and use cases for Lean 4. |
knew it primarily as a formal proof assistant, but it also allows for

A.I. IS Coming for Mathematics, T'OO less intuitive applications, such as truly massive mathematical

o collaborations on which individual contributions do not need to be
For thousands of years, mathematicians have adapted to the

reviewed or trusted because they are all verified by Lean. Or to give
a precise definition of an extremely complex mathematical object,
such as a perfectoid space.

latest advances in logic and reasoning. Are they ready for artificial
intelligence?

% Give this article Pssd N

When Computers Write Proofs, What's the Point of Mathematicians?

youtube.com

2023 was a great year for | \/\|

Daniel J. Bernstein
@djb@cr.yp.to

Formally verified theorems about decoding Goppa codes:
cr.yp.to/2023/leangoppa-202307... This is using the Lean
theorem prover; I'll try formalizing the same theorems in HOL
Light for comparison. This is a step towards full verification of
fast software for the McEliece cryptosystem.

'A%, Graydon Hoare

2,,,, “(ss @graydon@types.pl

| fairly often find myself in conversations with people who wish
Rust had more advanced types. And | always say it's pretty much
at its cognitive-load and compatibility induced design limit, and if
you want to go further you should try building a newer language.

And many people find this answer disappointing because starting
a language is a long hard task especially if it's to be a
sophisticated one. And so people ask for a candidate project
they might join and help instead.'/And my best suggestion for a
while now has been Lean 4. | think it's really about the best thing
going in terms of powerful research languages. Just a
remarkable achievement on many many axes.

The Lean FRO - 2023

A non-profit organization dedicated to the development of Lean launched in July of 2023.
Missions:

e Address scalability, usability, and proof automation in Lean.
e Support formal mathematics.
e Achieve self-sustainability in 5 years.

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and Richard Merkin

lean-fro.org

https://lean-fro.org

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research.

convergentresearch.org

71\ CONVERGENT
§' RESEARCH

Large-Scale Effort

Corporation

A member of the Schmidt Futures Network

Industrial
R&D Lab

Mid-Stage
Startup

Open-Source
Software

Academic

Consortia

Tightly,
Coordinated,
Focused Team

Produces
Public Goods,
Not Private Returns

Academic
Co-Authors

Individual
Academic
Researcher(s)

Early Startup

https://www.convergentresearch.org/
https://www.convergentresearch.org/

The Lean FRO

Team

Leo de Moura (AWS) Sebastian Ullrich Corinna Calhoun Henrik Boving Joachim Breitner
Chief Architect, Co-Founder Head of Engineering, Co- Chief Operating Officer Research Software Engineer Principal Research Software
Founder Engineer
‘ l 2 4 :
David Thrane Christiansen Johan Commelin Markus Himmel Marc Huisinga Mac Malone
Senior Research Software Mathematical Research Tech Lead Research Software Engineer Research Software Engineer
Engineer Engineer
Kyle Miller Kim Morrison Sofia Rodrigues
Research Software Engineer Senior Research Software Research Software Engineer
Engineer

Board of Directors

Adam Marblestone (Convergent Research)
Leo de Moura (AWS)
Jeremy Avigad (CMU)

Strategic Advisory Board

Simone Severini (AWS)

Alex Kontorovich (Rutgers University)
Lars Bergstrom (Google)

Leo de Moura (AWS)

Corinna Calhoun (Lean FRO)

28

https://www.ucl.ac.uk/~ucapsse/
https://sites.math.rutgers.edu/~alexk/
https://lars.com/
https://leodemoura.github.io/about
https://www.linkedin.com/in/corinnacalhoun/
https://www.convergentresearch.org/adam-marblestone
https://leodemoura.github.io/about
http://www.andrew.cmu.edu/user/avigad

2024 has been great so far

‘A-Teamy’ of Math Proves a Critical Link B ——,,, =
e 40 AMS Colloquium Lectures: Lecture | -A
Between Addition and Sets

Machine Assisted Proof

Terence Tao, University of California, Los Angeles

= A team of four prominent mathematicians, including two Fields

Introduced by Bryna Kra, Northwestern University

medalists, proved a conjecture described as a “holy grail of additive
combinatorics.” Within a month, a loose collaboration verified it with a

computer-assisted proof.

AMERICA

A MS MATH[M:TI AL

DeepMind has formalized a theoretical result related to Al safety in @ Alex Kontorovich & @AlexKontorovich - Feb 1
Lean. Paper: https://Inkd.in/d6GVwWFSU

Terry Tao and | are pleased to announce the "Prime Number Theorem and
Code: https:/[/Inkd.in/d64ntAj5. ...See more

Beyond" project, which you can find here:

github.com/AlexKontorovic...

google-deepmind/ =Y
debate @

- =
—
——— [N Koy

Formalizing stochastic doubly-efficient debate

A1 ®o v 76 ¥ 9 O

Contributor Issues Stars Forks

2024 has been great so far

SCI : : Nethermind + Follow -
AM Sign Up for Our Daily Newsletter a Anima Anandkumar m . st ! 14,667 followers

Sr. Director of Al Research at NVIDIA and Bren Professor at Ca... w-®
2mo - @ Introducing Clear: the complete framework for interactive theorem proving in
JUNE 8,2024 | 12 MIN READ S -
Launching Lean Co-pilot for Al-human collaboration to write formal web3. A formal verification tool for Solidity smart contracts that expresses any
- - o , ‘ - , A ¥ el . . .
Al Will Become Mathematicians’ ‘Co-Pilot mathematical proofs that are 100% accurate. We use LLMs to on-paper verification into mechanized proofs.

. A . suggest proof tactics in Lean and also allow humans to int ...see more) . . .
Fields Medalist Terence Tao explains how proof checkers and Al programs Read moren oUrblogipostitpE NN INOZCRw

are dramatically changing mathematics Clear under the hood 1

© Ensures stronger guarantees and greater expressivity (leveraging ITP & hard
BY CHRISTOPH DROSSER |ea Nn- d Oj O/
previously possible

formal methods)
LeanCopilot
) Allows extraction into Lean 4, using interactive theorem proving and Mathlib

© Splits the task of verifying contracts into simpler sub-problems, enabling
proof reuse and compositionality = achieving scalable verification not
LLMs as Copilots for Theorem Proving in Lean to verify complex smart contracts

To ensure the highest level of certainty in the correctness of our model, we're

running our specification against EVM execution conformance tests.
A 5 Ox! 4 Y 609 % 35 O

Contributors Issues Discussions Stars Forks #ethereum #solidity #formalverification #maths #blockchain #security
#cryptosecurity #innovation #hacker #yul #evm

@ CLEVR

Prove Anything*
About Your Solidity
Smart Contract

NETHERMIND

{1 SECURITY

Oxford Mathematics P
London Public Lecture "c?:'

OXFORD
WEDNESDAY 17.07.24 | 6.15-7.30 PM Mathemafica

Insttute

Science Museum, London

The Potential for Al

in Science and Mathematics
./CI'L'IIL‘C '121()

Oxtord
Mathematics

Al’'s unpredictability is not problem for maths because we can use theorem provers to verify
Al-generated content

Lean and Mathlib are enabling experts from different backgrounds to work collaboratively.

“It’s like solving a puzzle, like thinking at a different level [...] it makes you see the essence
of why something really works and gives you this extra level of internal security” Terence
Tao

Only The Beginning

Perfectoid Spaces, Buzzard, Commelin, and Massot 2019

Sphere Eversion, Massot, Nash, and van Doorn, 2020-2022

Liquid Tensor Experiment (LTE), Commelin et al., 2021-2022

Fermat’s Last Theorem for regular primes, Brasca et al., 2021-2023

Unit Fractions, Bloom and Mehta, 2022

Consistency of Quine's New Foundations, Wilshaw and Dillies, 2022-2024
Polynomial Freiman-Ruzsa Conjecture (PFR), Tao and Dillies, 2023

Prime Number Theorem And Beyond, Kontorovich and Tao, 2024-ongoing
Carleson Project, van Doorn, 2024-ongoing

Fermat’s Last Theorem (FLT), Buzzard, 2024-ongoing, community estimates it will take +1M LoC

Lean Blueprint

Developed by Patrick Massot
Connects informal and formal mathematics

Used in many Lean projects: LTE, Sphere Eversion, PFR, FLT, Prime Number
Theorem and Beyond

https://github.com/PatrickMassot/leanblueprint

https://github.com/PatrickMassot/leanblueprint

Lean Blueprint

PFR

Lemma 8.2. (Constructing good variables, I')v’

One has

k < 8+ n(d[X7; Ta|Ts] — d[X7; X1]) + n(d[X3; To|Ts] — d[X3; Xa)).
Proof v

We apply Lemma 3.23 with (4, B) = (T4, T3) there. Since T} + Ty = T3, the
conclusion is that

> P[Ts = t]d[(T1|Ts = t3); (T5|Ts = t3)]
t3
< 3L[T : Ty) + 2H[T3] — H[T] — H[T3].
The right-hand side in (1) can be rearranged as

2(H[Ty] + H[T,] + H[T3]) — 3H[Ty, T3]
= 2(H[T1] + H[T3] + H[T3]) — H[T1, T3] — H[T3, T3] — H[T1, T3] = 6,

using the fact (from Lemma 2.2) that all three terms H[T5, Tj] are equal to
H[Ty, T, Ts] and hence to each other. We also have

ZP[Ts = t3](d[X7; (T1|Ts = t3)] — d[X]; X1])

= d[X?); T1|T3) — d[X7; X1]

Lean Blueprint

PFR
Lemma 8.2. (Constructing good variables, I')v# & LauN » theorem construct_good_prelim’ source

One has

k S) + ﬂ(d[X?;T1|T3] - d[X?aXll) s n(d[XS;T2|T3] - d[Xg’X2]) (h_min : tau_minimizes p X1 Xz)
Proof v (hT : Ty + T2 + Tz = 0) (hT1 : Measurable Ti) (hT2 : Measurable T2)
(hTs : Measurable Tsz) :
We apply Lemma 3.23 with (4, B) = (T4, T3) there. Since T} + Ty = T3, the d[X: # X2] <
conclusion is that I[T1 : Ta] # I[T2 3 Ta] + I[Ts : Ta] +
p.n * (d[p.Xu1 # Ta | T3] = d[p.Xu1 # X1] + (d[p.Xuz # T2 | T3] = d[p.Xuz # Xz]))
ZP[T3 — t3]d[(T1|T3 — t3); (T2|T3 — t3)] For any T}, T, T3 adding up to 0, then k is at most
ts 8+ n(d[X{; T1|Ts] — d[XT; X1]) + n(d[X3; T2 |Ty] — d[X3; X))

= 3]I[T1 ; Tz] = 2H[T3] B H[TI] B H[Tz] where § = I[T1 : T2;p) + I[T2 : T3;u] + I[T'3 : Ta;p).

The right-hand side in (1) can be rearranged as

2(H[T1] + H[T3] + H[T3]) — 3H[Ty, T3]
= 2(HI[Ty] + H[T3] + H[T3]) — H[T1, T3] — H[T3, T3] — H[T1, T3] = 6,

using the fact (from Lemma 2.2) that all three terms H[Tj, Tj] are equal to
H[Ty, T, T5] and hence to each other. We also have

> P[T; = t3)(d[XY; (Ta|Ts = t3)] — d[X{; X1])

= d[X?); T1|T3) — d[X7; X1]

Lean Blueprint

PFR

Lemma 8.2. (Constructing good variables, I'v# s LawN

One has

k < &+ n(d[X7; Ta|Ts] — d[X7; X1]) +n(d[X3; T2 |Ts] — d[X3; Xa]).
Proof v

We apply Lemma 3.23 with (A, B) = (T4, T?) there. Since T} + T» = T3, the
conclusion is that

D P[Ty = t5]d[(T|Ts = t3); (To|Ts = t3)]
t3
< 3I[T : Ty) + 2H[T3] — H[T] — H[T3].
The right-hand side in (1) can be rearranged as

2(H[Ty] + H[T,] + H[T3]) — 3H[Ty, T3]
= 2(HI[Ty] + H[T3] + H[T3]) — H[T1, T3] — H[T3, T3] — H[T1, T3] = 6,

using the fact (from Lemma 2.2) that all three terms H[Tj, Tj] are equal to
H[Ty, T, T5] and hence to each other. We also have

ZP[Ta = t3](d[X7; (T1|Ts = t3)] — d[X]; X1])

= d[X?); T1|T3) — d[X7; X1]

A 4

| 320

321
322
323
324
325
326
327
328
329
330
331"
332
333
334
335
336
337
338
339
340

theorem construct_good_prelim'

source

(h_min : tau_minimizes p X1 Xz)
(hT : T2 + T2 + Ts = 0) (hT1 : Measurable Ti) (hT2 : Measurable T:)
(hTs : Measurable Tsz) :
d[X1 # X2] <
I[T1 : Tz] + I[Tz : Ts] + I[T: : T1] +
lemma construct_good_prelim' : k = 6 + p.n * c[T: | Ta # T2 | T3] := by

let suml : R := (Measure.map Tz P)[fun t » d[T1; P[|Ts -2' {t}] # T2; P[|Ts -1' {t}]]]
let sum2 : R := (Measure.map Tz P)[fun t » d[p.Xe1; P # T1; P[|Ts -2' {t}]] - dlp.Xe1 # X11]
let sum3 : R := (Measure.map Tz P)[fun t » d[p.Xe2; P # T2; P[|Ts -*' {t}]] - dlp.Xo2 # Xz21]
let sum4 : R := (Measure.map Tz P)[fun t » wl[Ta; P[|Ts -2' {t}] # T2; P[|Ts -2' {t}]]]
have h2Ts : Tz = T1 + T2 := by

calc T3 =T1 + T2 + Tz - T3z := by rw [hT, zero_subl; simp

_=T1 + T2 := by rw [add_sub_cancel]

have hP : IsProbabilityMeasure (Measure.map Tz P) := isProbabilityMeasure_map hTs.aemeasurable
—— control suml with entropic BSG
have hl : suml < & := by

have hl : suml = 3 % I[T1 : T2] + 2 % H[T3] - H[T1] - H[T2] := by

subst h2Ts; exact ent_bsg hT: hT:
have h2 : H[(T2, Ts3)] = H[(T1, T2)]
- rw [h2Ts, entropy_add_right', entropy_comm] <;> assumption
have h3 : H[(T1, T2)] = H[(Ts3, T1)]
- rw [h2Ts, entropy_add_left, entropy_comm] <;> assumption
simp_rw [mutualInfo_def] at hl +; linarith
-— rewrite sum2 and sum3 as Rusza distances
have h2 : sum2 = d[p.Xe1 # T1 | T3] - d[p.Xe1 # Xi1] := by

Takeaway:
Formal Proofs enable Crowd-Sourced Mathematics

Contributors 29

+ 15 contributors

“The beauty of the system: you do not have to understand the whole proof of FLT in order to
contribute. The blueprint breaks down the proof into many many small lemmas, and if you can
formalise a proof of just one of those lemmas then | am eagerly awaiting your pull request.”

Kevin Buzzard on the FLT Project

https://leanprover-community.github.io/blog/posts/FLT-announcement/
https://leanprover-community.github.io/blog/posts/FLT-announcement/
https://leanprover-community.github.io/blog/posts/FLT-announcement/

Lean Game Server

https://adam.math.hhu.de/

4 ™
Natural Number Game

The classical introduction game for Lean.

In this game you recreate the natural numbers N from the Peano
axioms, learning the basics about theorem proving in Lean.

This is a good first introduction to Lean!

Prerequisites

Worlds 9
Levels 79
Language |

N—

-
Set Theory Game

A game about set theory.

In this game you will learn the basics of theorem proving in Lean
by proving theorems about unions, intersections, and
complements of sets.

Prerequisites

Worlds 8
Levels 51
Language B

https://adam.math.hhu.de/

Takeaway: Extensibility

Mathlib is not just math, but many Lean extensions too
Users extend Lean using Lean itself
Users can browse and access Lean data-structures: Math as data

We wrote Lean 4 in Lean to ensure the system is very extensible

elab "ring" : tactic => do
let g ~ getMainTarget
match g.getAppFnArgs with
| (Eq, #[ty, e1, ez]) =>

let ((ex', p1), (ez2', pz2)) « RingM.run ty $ do (-~ eval e1, « eval e2)
if « isDefEq e1' ez' then

let p « mkEqTrans p: (« mkEqQSymm p:2)

ensureHasNoMVars p

assignExprMvar (< getMainGoal) p

replaceMainGoal []
else

throwError "failed \n{< ei1'.pp}\n{- ez2'.pp}'

| => throwError "failed: not an equality'’

Visualizing Lean 4 Proofs in Blender

David Renshaw - https://github.com/dwrensha/animate-lean-proofs

A tool for turning Lean proofs into Blender animations

YouTube video

proot

suffices 0 < f O from (f_nonpos 0).antisymm this

case inr

f:R>R

hf ¢+ ¥ {(xt : R), T & fx-x%xfx+f (fx)
f_nonpos : ¥ (x : R), 0

f_of_neg : VY X < 0, ¥

h : 00

FfO0=0

ammann

I]
ab:N
r(a+b)r22=ar2+bArA2+2xa=bh

https://github.com/dwrensha/animate-lean-proofs
https://www.youtube.com/watch?v=KuxFWwwlEtc&list=LL

SciLean: Scientific Computing Assistant

Tomas Skrivan - https://github.com/lecopivo/ScilLean

Framework for scientific computing such as solving differential equations, optimization or machine
learning written in Lean

Lean 4 as a scripting language in Houdini May 15

Q.;'?: Tomas Skrivan
':E;"? Some more fun with Hamiltonian systems:
https://www.youtube.com/watch?v=qcEShFPgYkg&ab_channel=Lecopivo

Macros in Lean are really cool, | can now annotate function arguments and automatically generate functions derivatives
and proofs of smoothness. The Hamiltonian definition for the above system is defined as:

def LennardJones (& minEnergy : R) (radius : R) (x : RA(3:N)) : R :=
let x' := 11/radius * xi*{-6, &}
4 * minEnergy * x' x (x' - 1)

argument x [Fact (�)]
isSmooth, diff, hasAdjDiff, adjDiff

https://github.com/lecopivo/SciLean

ProofWidgets

Wojciech Nawrocki and Ed Ayers

ProofWidgets > Demos > RbTree.lean

119 catch _ => pure .blue

120 return .node color (« go 1) («~ Widget.ppExprTagged a) (< go r)
121 else if empty? e then

122 return .empty

123 else

124 return .var (< Widget.ppExprTagged e)

125

126 @[expr_presenter]
127 def RBTree.presenter : ExprPresenter where

128 userName := "Red-black tree"
129 present e := do

130 let some t « drawTree? e

131 | throwError "not a tree :("
132 return t

133

134 /-! # Example -/

135

136 open RBTree RBColour in
137 example {a : Type} (x y z : a) (a b cd : RBTree a)

138 (h: =3 ewf, a=node red ew f) :

139 balance black (node red a x (node red by c)) zd =
140 node red (node black a x b) y (node black c z d) := by
141 withPanelWidgets [SelectionPanel]

142 match a with

143 | .empty => simp [balancel

144 | node black .. => simp [balancel

145 | node red .. =>

146 conv => unfold balance; simp_match

147 exact False.elim <| h (_, _, _, rfl)

148

VRbTree.lean:147:6 L= |)
v Tactic state € I Y
1goal

a: Type

Xey ZzE o

abcdlf: _root_.RBTree a

at: «

rt: _root_.RBTree a

h: -3 ewf, node red 1+ at rt = node red e w f

+ node red (node black 1+ at rt) x (node black (node red by
c) zd) =

v Selected expressions

Red-black tree v

at b C d

v All Messages (0) 1l

No messages.

Lean enables Al for math

Large language models are incredibly powerful,

E

Show that there are infinitely many integers between two distinct integers.

To show there are infinitely many integers between two distinct integers, let's assume the

contrary and see if we reach a contradiction.

Assumption: There are a finite number of integers between two distinct integers a and b,

where a < b.

If our assumption is true, then there exists a largest integer m such that a < m < b. Now,
consider the integer m + 1. Clearly, m < m + 1 < b. This means m + 1 is another
integer between a and b, which contradicts our assumption that m was the largest integer

between a and b.

Hence, our assumption that there are a finite number of integers between two distinct

integers a and b is false.

Therefore, there are infinitely many integers between any two distinct integers a and b.

but they “hallucinate.”

Lean enables Al for math

OpenAl - GPTf - Solving (Some) Formal Math Olympiad Problems with Lean

(abc:
(he :

)

: 0 a O <bAAO<C)
(h1 : C a+b)
(h2 : D a c)

(hs : a b+¢cC):
a*2 x (b+c-a)+b2x(c+a-b>b)+c*2x(a+b-)

<s3*xaxbxc¢C:=

nlarith is a tactic (aka proof automation procedure)

Lean enables Al for math

Meta - HyperTree Proof Search for Neural Theorem Proving

)

File

Edit Selection View Go Run Terminal Help
basiclean 1M ® hausdorff.lean W E D
T aos unelir em a;:_;u:_‘fv_pu>_u:_pu> (mn o
409 iff.intro
410 begin
411 intro h,
412 cases m with m,
413 {simp [zero_add] at h, exact or.inr h},.4
414 exact or.inl (succ_pos _)
415 end
416 begin
417 intro h, cases h with mp np,
418 ’
419 end
420
421 lemma add_eq one_iff : V {a b : N}, a+b =
422 | © 0 := dec_trivial
423 | 1 e = dec_trivial
424 | (a+2) _ = by rw add_right_comm; exact
425 | _ (b+1) := by rw [« add_assoc]; simp on
426
427 theorem le_add_one_iff {i j : N} : 1 £ j + 1
428 (A h,
429 match nat.eq_or_lt_of_le h with

PR

' CH. TN 2 Jo

AL ALLAL

o basic.lean - mathlib [WSL: Ubuntu] - Visual Studio C... ([J & [IJ 03

Lean Infoview

¥basic.lean:418:4 = 11 O

widget

[

@

¥Tactic state

2 goals filter: no filter

case or.inl
mn

mp : @ <m

FO<m+n

case or.inr
man

np : @<n
FO@<m+n

Tactic suggestions with prefix:
apply add_pos_left mp
exact add_pos_left mp n
rw [nat.add_comm]

apply nat.add_pos_left
induction n with n ih
apply add_pos_left
induction n

induction n with n ihio

FZRY Al

LeanAide — Autoformalization

https://github.com/siddhartha-gadqil/LeanAide

LeanTimes.lean PnP2023/Extras/LeanTimes.lean O (2 "B <O ® @0 --

You, 5 days ago | 1 author (You)
import Mathlib
import LeanAide

s

/- There are infinitely many odd numbers -/1

/- Every prime number is either

o

or odd -/

Lean Infoview

¥ LeanTimes.lean:4:43
No info found.
» All Messages (0)

https://github.com/siddhartha-gadgil/LeanAide

Harmonic.fun — Mathematical Superintelligence

https://harmonic.fun/

Building Al that is
truthful, with verifiably
correct and interpretable
outputs

Changing the way
mathematics is learned and
taught in schools

Accelerating the advent
of verified software
synthesis in safety-critical
domains

Solving open problems in
mathematics, science, and
beyond

https://harmonic.fun/

A quick Lean tour

SSFT 2024 summer school — David Christiansen — https://github.com/david-christiansen/ssft24

inductive Expr where /-- Boolean conjunction -/
| const (i : BitVec 32) syntax:35 exp:35 " && " exp:36 : exp
| var (name : String) /-- Boolean disjunction -/
| un Cop : Expr.UnOp) (e : Expr) syntax:35 exp:35 " || " exp:36 : exp
| bin (op : Expr.BinOp) (el e2 : Expr) /-- Parens -/

deriving Repr, DecidableEq syntax "(" exp ")" : exp

/-- Escape to Lean -/
syntax:max "~" term:max : exp

syntax:min "expr " "{ " exp " }" : term

open Lean in
macro_rules
| “(expr{$x:ident}) => " (Expr.var $(quote x.getId.toString))
| "~ (expr{$n:num}) => " (Expr.const $(quote n.getNat))
| “(expr{$el && $e2}) => " (Expr.bin .and (expr{$el}) (expr{$e2}))
| ~(expr{$el || $e2}) => “(Expr.bin .or (expr{$el}) (expr{$e2}))

https://github.com/david-christiansen/ssft24

A quick Lean tour

inductive Stmt where
| skip
| seq (stmtl stmt2 : Stmt)
| assign (name : String) (val : Expr)
| if (cond : Expr) (ifTrue ifFalse : Stmt)
| while (cond : Expr) (body : Stmt)
deriving Repr, DecidableEq

syntax:min "imp" ppHardSpace "{" ppLine stmt ppDedent(ppLine "}") : term

def fact : Stmt := imp {
out := 1;
while (n > 0) {
out := out * n;
n :=n-1;

A quick Lean tour

/- def optimize : Stmt > Stmt
Optimizes an expression by folding constants. | imp {skip;} => imp {skip;}
-/ | imp {~s1 ~s2} =>
def optimize : Expr > Expr match sl.optimize, s2.optimize with
| .const i => .const i | imp {skip;}, s2' => s2'
| .var x => .var X | s1', imp {skip:;} => s1'
| .un op e => | s1', s2' => imp {~sl' ~s2'}
match optimize e with | imp {if (~c) {~s1} else {~s2}} =>
| .const i => let c¢' := c.optimize
if let some v := op.apply i then .const v match c¢' with
else .un op (.const i) | .const O => s2.optimize
| e' => .un op e' | .const _ => sl.optimize
| .bin op el e2 => | _ =>
match optimize el, optimize e2 with let s1' := sl.optimize
| .const i, .const i' => let s2' := s2.optimize
if let some v := op.apply i i' then .const v if s1' = s2' then
else .bin op (.const i) (.const i') s1'

| el', e2' => .bin op el' e2' else imp {if (~c') {~sl.optimize} else {~s2.optimize}}

A quick Lean tour

inductive BigStep : Env > Stmt > Env > Prop where theorem optimize_ok : BigStep p s p' = BigStep p s.optimize p' := by
| skip : intro h
BigStep p (imp {skip;}) p

induction h with simp only [optimize]

| Z?QS; : iost , | «skip» => constructor
1 9 1 L] 9 . .
1gstep p sl p 1g>teép p- s2 P | seq s1 s2 ihl ih2 =>

BigStep p (imp{ ~sl1 ~s2}) p'' split

| assign :
next eq2 =>

e.eval p = some v .
BigStep p (imp {~x := ~e;}) (p.set x v) rwW [eq?] at 1hl .
cases 1hl; apply 1h2

| ifTrue :
Truthy (c.eval p) - BigStep p sl p' - next eql eq2 =>
BigStep p (imp {if (~c) {~s1} else {~s2}}) p' rw [eql] at ih2

| ifFalse : cases ih2; apply ih1l
Falsy (c.eval p) > BigStep p s2 p' > next =>

BigStep p (imp {if (~c) {~s1} else {~s2}}) p' apply BigStep.seq ihl ih2

A quick Lean tour

def run (p : Env) (s : Stmt) : Nat > Option Env theorem run'_correct : run p s n = some p' > BigStep p s p' := by
| ® => none intro term
| n +1 =>

match s with
| imp {skip;} =>
some p
| imp {~s1 ~s2} => do
let p' € run p sl n
run p' s2 n
| imp {~x := ~e;} => do
let v € e.eval p
pure (p.set x v)
| imp {if (~c) {~s1} else {~s2}} => do
let v € c.eval p
if v = 0 then
run p s2 n
else
run p sl n

A quick Lean tour

def popcount : Stmt := imp { def pop_spec (x : BitVec 32)
X 1= x - ((x >>> 1) &&& 0x55555555); go x 0 32
1= (x &&& 0x33333333) + ((x >>> 2) &&& 0x33333333); """

: BitVec 32 :=

X
: BitVec 32 : BitVec 32 i : Nat
X 1= (X + (X >>> 4)) && OxBFOFOFOF: go (x : BitVec 32) (pop : Bitvec 32) (i : Nat)
match 1 with
X := x + (x >>> 8); | 8 => pop
X 1= x + (x >>> 16); | i +1 =>
X = X &&& Ox0000003F; let pop := pop + (x &&& 1#32)
} go (x >>> 1#32) pop i

theorem popcount_correct :
3 p, (run (Env.init x) popcount 8) = some p A p "x" = pop_spec X

:= by

: BitVec 32 :

simp [run, popcount, Expr.eval, Expr.BinOp.apply, Env.set, Value, pop_spec, pop_spec.go]

bv_decide

A quick Lean tour

Imp.lean > {} Imp.Stmt > @ popcount_correct ¥ Tactic state ¢ |1 Y
502 theorem popcount_correct : 1goal
51 3 p, (run (Env.init x) popcount 8) = some p 2 Ve
2 simp [run, popcount, Expr.eval, Expr.BinOp.appl |\ ((y - (x »>»> 1 88& 1431655765#32) 88& 858993459#32) + ((x - (x >»> 1 88&
53 bv_decide 1431655765#32)) >>> 2 88& 858993459#32) +
o4 ((x - (x >>> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >>> 1 88& 1431655765#32)) >>> 2 88& 8589934594#32)) >>>
4 88&

252645135#32) +
((x - (x >> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >>> 1 &8& 1431655765#32)) >>> 2 88& 858993459#32) +
((x - (x >>> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >>> 1 &8& 1431655765#32)) >>> 2 88& 858993459#32)) >>>
4 88&
252645135#32) >>>
8 +
(((x - (x >>> 1 88& 1431655765#32) &88& 858993459#32) +
1 ((x - (x >> 1 88& 1431655765#32)) >>> 2 88& 858993459#32) +
((x - (x >>> 1 8&8& 1431655765#32) 88& 858993459#32) +
((x - (x >>> 1 &8& 1431655765#32)) >>> 2 88& 858993459#32)) >>>

4 &8&
252645135#32) +
] ((x - (x >> 1 88& 1431655765#32) 8&8& 858993459#32) +

((x - (x >>> 1 88& 1431655765#32)) >>> 2 88& 858993459#32) +
((x - (x >> 1 88& 1431655765#32) 88& 858993459#32) +
((x - (x >>> 1 88& 1431655765#32)) >>> 2 88& 858993459#32)) >>>
4 88&
252645135#32) >>>
8) >
16 &8&
63#32 =
(x 88& 1#32) + (x >>> 1 &8& 1#32) + (x >>> 2 &8& 1#32) + (x >>> 3 &8& 1#32) + (x >>
4 88& 1#32) +

LeanSAT — A verified bit-blaster

e Henrik Boving, Josh Clune, Siddharth Bhat, and Alex Keizer

e Uses LRAT proof producing SAT solvers: Cadical

e SAT tactics: sat decide, sat decide?, sat check <lrat-proof>

e Bit-vector tactics: bv_decide, bv decide?, bv check <lrat-proof>

e Simplify => Reflect => Bit-blast => AIG => CNF => SAT-solver => LRAT Proof => Verified checker
e Implemented in Lean

/_

Close a goal by:

1. Turning it into a BitVec problem.

2. Using bitblasting to turn that into a SAT problem.

3. Running an external SAT solver on it and obtaining an LRAT proof from it.
4. Verifying the LRAT proof using proof by reflection.

syntax (name := bvDecideSyntax) "bv_decide" : tactic
55

LeanSAT — A verified bit-blaster

def _root_.Lean.MVarId.bvDecide (g : MVarId) (cfg : TacticContext) : MetaM Result := do

let (g?, simpTrace) ¢ g.bvNormalize

let some g := g? | return (simpTrace, none)
let lratCert ¢ g.bvUnsat cfg

return (simpTrace, some lratCert)

def _root_.Lean.MVarId.bvUnsat (g : MVarId) (cfg : TacticContext) : MetaM LratCert
let unsatProver : UnsatProver := fun bvExpr atomsAssignment => do
withTraceNode “bv (fun _ => return "Preparing LRAT reflection term") do
lratBitblaster cfg bvExpr atomsAssignment
g.closeWithBVReflection unsatProver

def lratBitblaster (cfg : TacticContext) (bv : BVLogicalExpr)
(atomsAssignment : Std.HashMap Nat Expr) : MetaM UnsatProver.Result := do
let entry €«
withTraceNode “bv (fun _ => return "Bitblasting BVLogicalExpr to AIG") do
-- lazyPure to prevent compiler lifting
I10.lazyPure (fun _ => bv.bitblast)
let aigSize := entry.aig.decls.size
trace[bv] s!"AIG has {aigSize} nodes."

:= M.run do

56

LeanSAT — A verified bit-blaster

def verifyBVExpr (bv : BVLogicalExpr) (cert : LratCert) : Bool :=
verifyCert (LratFormula.ofCnf (AIG.toCNF bv.bitblast.relabelNat)) cert

theorem unsat_of_verifyBVExpr_eq_true (bv : BVLogicalExpr) (c : LratCert)
(h : verifyBVExpr bv c = true) : bv.unsat := by
apply BVLogicalExpr.unsat_of_bitblast
rw [¢ AIG.Entrypoint.relabelNat_unsat_iff]

rw [¢ AIG.toCNF_equisat]
apply verifyCert_correct
rw [verifyBVExpr] at h
assumption

theorem verifyCert_correct
intro ¢ b hl
dsimp[verifyCert] at hl

: V¥ cnf cert, verifyCert (LratFormula.ofCnf cnf) cert

true 2 cnf.unsat :

by

o7

LeanSAT — A verified bit-blaster

theorem simple (x : BitVec 64) : x + x = 2 * X := by

%

Quick Fix
Try this: bv_check "Arith.lean-simple-43-2.Irat"

58

Proof search and replay-ability

theorem simple (x : BitVec 64) : x + x = 2 * X := by

%

Quick Fix
Try this: bv_check "Arith.lean-simple-43-2.Irat"

!

theorem simple (x : BitVec 64) : X + X = 2 * X := by
bv_check "Arith.lean-simple-43-2.1lrat"

Many other tactics implement this idiom: simp?, aesop?, etc.

59

Lean at AWS

e Automated Reasoning Group
“The Business of Proof”

e Open-source projects

O

O

O

O

Cedar — https://github.com/cedar-policy/cedar-spec
SampCert — https://github.com/leanprover/SampCert
LNSym — https://github.com/leanprover/LNSym
AlLean — coming soon

e Blog post at Amazon.Science coming soon.
e Many more projects coming soon.

60

https://www.youtube.com/watch?v=PaPoujuUOkM
https://github.com/cedar-policy/cedar-spec
https://github.com/leanprover/SampCert
https://github.com/leanprover/LNSym

Cedar

https://www.cedarpolicy.com/

6 cEDAR Overview Learn V¥ Policy playground Integrations () Cedar SDK [4

FAST, SCALABLE ACCESS CONTROL

Cedar is a language for defining permissions as policies, which describe who should have access to what. It is also a specification for
evaluating those policies. Use Cedar policies to control what each user of your application is permitted to do and what resources
they may access.

Try it out in playground

May 10, 2023: Amazon Web Services announces the Open-Source release of the Cedar SDK. Learn more

https://github.com/cedar-policy/cedar-spec

def isAuthorized (req : Request) (entities : Entities) (policies : Policies) : Response :=
let forbids := satisfiedPolicies .forbid policies req entities
let permits := satisfiedPolicies .permit policies req entities
let erroringPolicies := errorPolicies policies req entities
if forbids.isEmpty && !permits.isEmpty
then { decision := .allow, determiningPolicies := permits, erroringPolicies }
else { decision .deny, determiningPolicies forbids, erroringPolicies }

https://github.com/cedar-policy/cedar-spec
https://www.cedarpolicy.com/

Cedar

Random input

generation

Proofs of design properties

Test input
* request
* data

* policies

Production

Allow/deny

&

Allow/deny
diagnostics

Evidence that
production
implementation
matches model

Takeaway: “We've found Lean to be a great tool for verified software development. You get a
full-featured programming language, fast proof checker and runtime, and a familiar way to build
both models and proofs”

Cedar

To learn more about Cedar:
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

dWsS

About AWS ContactUs Supportvy My Account~ Sign In Create an AWS Account
\/7

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

AWS Blog Home Blogs ~ Editions v

AWS Open Source Blog

Lean Into Verified Software Development

Resources
by Kesha Hietala and Emina Torlak | on 08 APR 2024 | in Amazon Verified Permissions, Open Source, Security, Identity, &

Compliance, Technical How-to | Permalink | ® Comments | # Share Open Source at AWS

Projects on GitHub

e -

: Kesha Hietala on Emina Torlak

https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

SampCert

SampCert is an open-source library of formally verified differential-privacy primitives used by
the AWS Clean Rooms Differential Privacy service for its fast and sound sampling algorithms

SampCert provides the only verified implementation of the discrete Gaussian sampler and the
primitives of zero concentrated differential privacy

2x faster than the unverified previous implementation

The verification of code addressing practical problems in data privacy depends on the
formalization of mathematical concepts from Fourier analysis to number theory and topology.

Led by Jean-Baptiste Tristan

AWS Clean Rooms
Differential Privacy

Protect the privacy of your users with mathematically backed
controls in a few steps

https://github.com/leanprover/SampCert
https://aws.amazon.com/clean-rooms/differential-privacy/
https://docs.aws.amazon.com/clean-rooms/latest/userguide/differential-privacy.html
https://arxiv.org/abs/2004.00010
https://arxiv.org/abs/1605.02065

LNSym

LNSym is a symbolic simulator for Armv8 machine-code programs
Led by Shilpi Goel
Open-source and under active development: https://github.com/leanprover/LNSym

Focus: automated reasoning of cryptographic machine-code programs

It uses Lean as

e A specification language to model the Arm instruction semantics and cryptographic protocols
e Atheorem prover for reasoning

Takeaways

e Lean programs are executable and efficient: conformance testing

e Automation: SAT, verified bit-blaster, and domain specific tactics implemented in Lean

e Interactive prover when automation fails

https://github.com/leanprover/LNSym

AlLean — Al for Math and Math for Al

AlLean is exploring the relationship between LLMs and formal mathematics in collaboration with
the Technology Innovation Institute (TII).

Led by Soonho Kong
Al for Math

e LLMs for enhancing proof automation

e User assistance
Math for Al
e Extracting training data from Lean proofs

e Correct by construction synthetic datasets

https://www.tii.ae/

To learn more about Lean

Check out our website: https://lean-lang.org/

Follow Lean announcements on Twitter and Mastodon

Try out Lean online: https://live.lean-lang.org/

Check out the community website: https://leanprover-community.github.io/

Courses: https://leanprover-community.github.io/teaching/courses.html

Engage with the Lean community on the Lean Zulip Channel.

https://lean-lang.org/
https://twitter.com/leanprover
https://functional.cafe/@leanprover
https://live.lean-lang.org/
https://leanprover-community.github.io/
https://leanprover-community.github.io/teaching/courses.html
https://leanprover.zulipchat.com/

Conclusion

e Leanis an efficient programming language and proof assistant
e Machine checkable proofs eliminate the trust bottleneck

e Lean enables decentralized collaboration

e Leanis very extensible:
o Users extend Lean using Lean itself without fear of introducing unsoundness

e The Mathlib community is changing how math is done
e Lean proofs are maintainable, stable, and transparent
e The FRO model has been instrumental in supporting Lean

It is not just about proving but also understanding complex objects and proofs, getting new
insights, and navigating through the “thick jungles” that are beyond our cognitive abilities.

