The Strategy Challenge in
SMT Solving (part I)
IWS 2012, Manchester, UK
Leonardo de Moura (Microsoft Research) and Grant Passmore (University of Cambridge)

Satisfiability Modulo Theories (SMT)

A Satisfiability Checker

 with built-in support for useful theoriesMcrastr
Research

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } \boxed{f r e a d}(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Uninterpreted
 Functions

Main challenges

e Scalability (huge formulas)

- Complexity
- Undecidability
- Quantified formulas
e Nonlinear arithmetic

Microsoft ${ }^{*}$
Research

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) \quad p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)
$$

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

Assignment
Solver

$$
\begin{aligned}
& \text { ASSIgnment } \\
& p_{1}, p_{2}, \neg p_{3}, p_{4} \square \begin{array}{l}
x \geq 0, y=x+1 \\
\neg(y>2), y<1
\end{array}
\end{aligned}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT
Assignment
Solver

$$
p_{1}, p_{2}, \neg p_{3}, p_{4} \square \square \begin{aligned}
& x \geq 0, y=x+1 \\
& \neg(y>2), y<1
\end{aligned}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$
Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

New Lemma

$\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}$$\quad$| Unsatisfiable |
| :--- |
| $x \geq 0, y=x+1, y<1$ |

Theory Solver

Research

Orchestrating Decision Engines

Combining Engines

Current SMT solvers provide a combination of different engines

Combining Engines

Configuring SAT/SMT Solvers: "state-of-the-art"

Z3 has approx. 300 options

Opening the "Black Box"

Actual feedback provided by Z3 users:

"Could you send me your CNF converter?"
"I want to implement my own search strategy."
"I want to include these rewriting rules in Z3." "I want to apply a substitution to term t."
"I want to compute the set of implied equalities."

The Strategy Challenge

To build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high performance SMT solvers.

What is a strategy?

Theorem proving as an exercise of combinatorial search

Strategies are adaptations of general search mechanisms which reduce the search space by tailoring its exploration to a particular class of formulas.

The Need for "Strategies"

Different Strategies for Different Domains.

The Need for "Strategies"

Different Strategies for Different Domains.

From timeout to 0.05 secs...

Example in Quantified Bit-Vector Logic (QBVF)

Join work with C. Wintersteiger and Y. Hamadi FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: $I[x]$ and $T\left[x, x^{\prime}\right]$
$\forall x, x^{\prime} . I[x] \wedge T^{k}\left[x, x^{\prime}\right] \rightarrow \exists y, y^{\prime} . I[y] \wedge T^{k-1}\left[y, y^{\prime}\right]$
Ranking function synthesis.

Hardware Fixpoint Checks

Ranking Function Synthesis

Why is Z 3 so fast in these benchmarks?

Z3 is using different engines:

 rewriting, simplification, model checking, SAT, ...Z3 is using a customized strategy.

We could do it because we have access to the source code.

The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines. Users should be able to define their own strategies.

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Proofs for subgoals

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Tacticals aka Combinators

SMT Tactic

SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
{ unsat proof
tactic = goal }->\mathrm{ trt
```


SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
    unsat proof
        unknown goal sequence }\times\mathrm{ modelconv }\times\mathrm{ proofconv
        fail
tactic = goal }->\mathrm{ trt
end-game tactics: never return unknown(sb, mc, pc)
```


SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
        unsat proof
        unknown goal sequence }\times\mathrm{ modelconv }\times\mathrm{ proofconv
        fail
tactic = goal }->\mathrm{ trt
                    non-branching tactics:
                sb is a sigleton in
                            unknown(sb, mc, pc)
```


Trivial goals

Empty goal [] is trivially satisfiable

False goal [..., false, ...] is trivially unsatisfiable
basic : tactic

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic: elim-vars

Proof

 builder$$
[(b+1<0 \vee b+1>0), b>3]
$$

Model builder

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic:
elim-vars
$M, M(a)=M(b)+1$

Proof builder

$$
[(b+1<0 \vee b+1>0), b>3]
$$

Model builder

M

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic: split-or

Proof builder

$$
\begin{aligned}
& {[a=b+1, a<0, b>3]} \\
& {[a=b+1, a>0, b>3]}
\end{aligned}
$$

Model builder

SMT Tactics

simplify
nnf
cnf
tseitin
lift-if
bitblast
gb
vts
propagate-bounds
propagate-values
split-ineqs
split-eqs
rewrite
p-cad
sat
solve-eqs

SMT Tacticals

then : $($ tactic \times tactic $) \rightarrow$ tactic
then $\left(t_{1}, t_{2}\right)$ applies t_{1} to the given goal and t_{2} to every subgoal produced by t_{1}. then $*:($ tactic \times tactic sequence $) \rightarrow$ tactic
then $*\left(t_{1},\left[t_{2_{1}}, \ldots, t_{2_{n}}\right]\right)$ applies t_{1} to the given goal, producing subgoals g_{1}, \ldots, g_{m}. If $n \neq m$, the tactic fails. Otherwise, it applies $t_{2_{i}}$ to every goal g_{i}.
orelse : $($ tactic \times tactic $) \rightarrow$ tactic
orelse $\left(t_{1}, t_{2}\right)$ first applies t_{1} to the given goal, if it fails then returns the result of t_{2} applied to the given goal.
par : tactic \times tactic $) \rightarrow$ tactic
$\operatorname{par}\left(t_{1}, t_{2}\right)$ excutes t_{1} and t_{2} in parallel.

SMT Tacticals

then $(\operatorname{skip}, t)=\operatorname{then}(t, \operatorname{skip})=t$

$$
\operatorname{orelse}(\text { fail }, t)=\operatorname{orelse}(t, \text { fail })=t
$$

SMT Tacticals

repeat : tactic \rightarrow tactic
Keep applying the given tactic until no subgoal is modified by it. repeatupto : tactic \times nat \rightarrow tactic

Keep applying the given tactic until no subgoal is modified by it, or the maximum number of iterations is reached.
tryfor : tactic \times seconds \rightarrow tactic
tryfor (t, k) returns the value computed by tactic t applied to the given goal if this value is computed within k seconds, otherwise it fails.

Strategies online

http://rise4fun.com/z3/tutorial/strategies (SMT 2.0)

http://rise4fun.com/z3py/tutorial/strategies (Python)

(4) http://rise4fun.com/Z3Py/tutoria ρ - 底 $\mathrm{C} \times$ rise4fun \times Google

$$
\begin{aligned}
& \text { Z3Py - } \\
& \text { strategies }
\end{aligned}
$$

```
x, y = Reals('x y')
g = Goal()
g.add(x > 0, y > 0, x == y + 2)
print g
t1 = Tactic('simplify')
t2 = Tactic('solve-eqs')
t = Then(t1, t2)
print t(g)
```


Strategies

```
1. Introduction
2. Tactics
3. Probes
4. tutorials
```

