The Strategy Challenge in SMT Solving (part I) IWS 2012, Manchester, UK

Leonardo de Moura (Microsoft Research) and Grant Passmore (University of Cambridge)

A Satisfiability Checker with built-in support for useful theories

b + 2 = c and $f(read(write(a,b,3), c-2) \neq f(c-b+1))$

b + 2 = c and $f(read(write(a,b,3), c-2) \neq f(c-b+1))$

Arithmetic

b + 2 = c and $f(read(write(a,b,3), c-2) \neq f(c-b+1))$

Array Theory

b + 2 = c and $f(read(write(a,b,3), c-2) \neq f(c-b+1))$

Uninterpreted Functions

Main challenges

- Scalability (huge formulas)
- Complexity
- Undecidability
- Quantified formulas
- Nonlinear arithmetic

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4) \qquad p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1), \\ p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \ (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1), \\ & p_3 \equiv (y > 2), \ p_4 \equiv (y < 1) \end{array}$$

SAT Solver

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \, (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \, p_2 \equiv (y = x + 1), \\ & & p_3 \equiv (y > 2), \, p_4 \equiv (y < 1) \end{array}$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$
Abstract (aka "naming" atoms

$$p_{1}, p_{2}, (p_{3} \lor p_{4}) \qquad p_{1} \equiv (x \ge 0), p_{2} \equiv (y = x + 1),$$

$$p_{3} \equiv (y > 2), p_{4} \equiv (y < 1)$$
Assignment
Assignment

$$p_{1}, p_{2}, \neg p_{3}, p_{4} \longrightarrow x \ge 0, y = x + 1,$$

$$\neg (y > 2), y < 1$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

Unsatisfiable Theory $x \ge 0, y = x + 1, y < 1$ Solver

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$

$$p_{1}, p_{2}, (p_{3} \lor p_{4}) \qquad p_{1} \equiv (x \ge 0), p_{2} \equiv (y = x + 1), \\p_{3} \equiv (y > 2), p_{4} \equiv (y < 1)$$

$$p_{3} \equiv (y > 2), p_{4} \equiv (y < 1)$$

$$p_{1}, p_{2}, \neg p_{3}, p_{4} \qquad x \ge 0, y = x + 1, \\\neg (y > 2), y < 1$$

New Lemma $\neg p_1 \lor \neg p_2 \lor \neg p_4$ Unsatisfiable $x \ge 0, y = x + 1, y < 1$ Theory Solver

Orchestrating Decision Engines

Combining Engines

Current SMT solvers provide a combination of different engines

Combining Engines

Configuring SAT/SMT Solvers: "state-of-the-art"

Opening the "Black Box"

Actual feedback provided by Z3 users:

"Could you send me your CNF converter?"
"I want to implement my own search strategy."
"I want to include these rewriting rules in Z3."
"I want to apply a substitution to term t."
"I want to compute the set of implied equalities."

The Strategy Challenge

To build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high performance SMT solvers.

What is a strategy?

Theorem proving as an exercise of combinatorial search

Strategies are adaptations of general search mechanisms which reduce the search space by tailoring its exploration to a particular class of formulas.

The Need for "Strategies"

Different Strategies for Different Domains.

The Need for "Strategies"

Different Strategies for Different Domains.

From timeout to 0.05 secs...

Example in Quantified Bit-Vector Logic (QBVF)

Join work with C. Wintersteiger and Y. Hamadi FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks. Given: I[x] and T[x, x'] $\forall x, x' . I[x] \land T^k[x, x'] \rightarrow \exists y, y' . I[y] \land T^{k-1}[y, y']$

Ranking function synthesis.

Hardware Fixpoint Checks

Z3

Ranking Function Synthesis

Z3

Why is Z3 so fast in these benchmarks?

Z3 is using different engines: rewriting, simplification, model checking, SAT, ...

Z3 is using a customized **strategy**.

We could do it because we have access to the source code.

SMT solvers are collections of little engines.

They should provide access to these engines. Users should be able to define their own strategies.

Proofs for subgoals

Tacticals aka Combinators

SMT Tactic

 $goal = formula \ sequence \times \ attribute \ sequence$

SMT Tactic

 $goal = formula \ sequence \times \ attribute \ sequence$

 $proof conv = proof sequence \rightarrow proof$ $modelconv = model \times nat \rightarrow model$ = sat model trtunsat proof unknown goal sequence \times modelconv \times proofconv fail tactic $= goal \rightarrow trt$ end-game tactics: never return unknown(sb, mc, pc)

SMT Tactic

 $goal = formula \ sequence \times \ attribute \ sequence$

 $proof conv = proof sequence \rightarrow proof$ $modelconv = model \times nat \rightarrow model$ = sat model trtunsat proof unknown goal sequence \times modelconv \times proofconv fail tactic $= goal \rightarrow trt$ non-branching tactics: sb is a sigleton in unknown(sb, mc, pc)

Empty goal [] is trivially satisfiable False goal [..., false, ...] is trivially unsatisfiable

basic : tactic

SMT Tactic example

SMT Tactic example

SMT Tactic example

SMT Tactics

simplify nnf cnf tseitin lift-if bitblast gb vts

propagate-bounds propagate-values split-ineqs split-eqs rewrite p-cad sat solve-eqs

SMT Tacticals

then : $(tactic \times tactic) \rightarrow tactic$

then (t_1, t_2) applies t_1 to the given goal and t_2 to every subgoal produced by t_1 . then*: $(tactic \times tactic \ sequence) \rightarrow tactic$

then* $(t_1, [t_{2_1}, ..., t_{2_n}])$ applies t_1 to the given goal, producing subgoals $g_1, ..., g_m$. If $n \neq m$, the tactic fails. Otherwise, it applies t_{2_i} to every goal g_i .

```
orelse : (tactic \times tactic) \rightarrow tactic
```

orelse (t_1, t_2) first applies t_1 to the given goal, if it fails then returns the result of t_2 applied to the given goal.

 $par: (tactic \times tactic) \rightarrow tactic$

 $par(t_1, t_2)$ excutes t_1 and t_2 in parallel.

SMT Tacticals

then(skip, t) = then(t, skip) = t

$$orelse(fail, t) = orelse(t, fail) = t$$

SMT Tacticals

 $\texttt{repeat}: tactic \rightarrow tactic$

Keep applying the given tactic until no subgoal is modified by it.

$\texttt{repeatupto}: tactic \times nat \rightarrow tactic$

Keep applying the given tactic until no subgoal is modified by it, or the maximum number of iterations is reached.

 $\texttt{tryfor}: tactic \times seconds \rightarrow tactic$

tryfor(t, k) returns the value computed by tactic t applied to the given goal if this value is computed within k seconds, otherwise it fails.

Strategies online

http://rise4fun.com/z3/tutorial/strategies (SMT 2.0)

http://rise4fun.com/z3py/tutorial/strategies (Python)

