T'he Strategy Challenge 1n
SM'I" Solving

Part 11

IL.eo de Moura and Grant Passmore

Probing Formula Measures

diff logic?

no yes
simplex
atom/dim < k

no yes
simplex floyd warshall

Yices LRA Strategy

Sunday, 1 July 12

Probing Formula Measures

atom

orelse(then (failif (diff A

T > k), simplex), floydwarshall)

Fail if condition is not satisfied.
Otherwise, do nothing.

Yices LRA Strategy

Sunday, 1 July 12

Formula Measure Examples

bw: Sum total bit-width of all rational coefficients of polynomials in case.
diff: True if the formula is in the difference logic fragment.
linear: True if all polynomials are linear.

dim: Number of arithmetic constants.

atoms: Number of atoms.
degree: Naximal total multivariate degree of polynomials.

size: Total formula size.

Usetul tactical syntactic sugar:

if(c, t1, t2) = orelse(then(failif(—c),#1),t2)

when(c, t) = if(c, t, skip)

Sunday, 1 July 12

Under/Over Approximations

Under-approximation
unsat answers cannot be trusted

Over-approximation
sat answers cannot be trusted

Sunday, 1 July 12

Under/Over Approximations

Under-approximation
Example: QF NIA model finders
add bounds to unbounded variables (and blast)

Over-approximation
Example: Boolean abstraction

Combining under and over is bad!
sat and unsat answers cannot be trusted.

Sunday, 1 July 12

Under/Over Approximations

‘We want to write tactics that can check whether a
goal is the result of an abstraction or not.

Solution
Associate an precision attribute to each goal.

Sunday, 1 July 12

Parameterised Decision
Engines as lacticals

@ Abstract Partial Cylindrical Algebraic Decomposition (See my
PhD thesis or GiE 'Turing Centenary paper with Paul Jackson)

AP-CAD (tactic) = tactic

then(then(simplify, gaussian), orelse(modelfinder, smt(apcad(icp))))

@ Even full SM'T lazy search loop!

then(preprocess, smt(finalcheck))

Apply “cheap” propagation/pruning steps;
and then apply complete “expensive” procedure

Sunday, 1 July 12

T'he Strategy Challenge

lo build theoretical and practical
tools allowing users to exert strategic
control over core heuristic aspects of

high-performance SM'I" solvers

Sunday, 1 July 12

Caveat Emptor
We shall not...

@ glve a new theoretical framework or rule-based formalism
characterising the class of all SM'I" proot strategies

(as i STRATEGO for rewriting)

@ prove any theorems about the algebraic structure

underlying the class of all SM'I proot strategies (as
in the PROOF MONAD of Kirchner-Munoz)

@ propose a concrete syntax for SM'1" proot
strategies, extending, e.g., the SM'1-LIB standard

All worthy goals, but to attempt them would be premature.

Caveat Emptor
Our goals are more modest and practical...

@ lo bring awareness to the crucial role heuristics play in

high-performance SM'T

@ 'lo convince SM'T solver developers that providing
flexible, principled methods (1.e., a strategy language) for
end-users to exert fine-grained control over heuristic
aspects of their solvers 1s an important undertaking

@ 'lo show how the adaptation of some 1deas of strategy
drawn from the LLGF and Argonne paradigms can go a
long way towards these goals

@ lo stress how important being explicit about heuristic
strategies 1s for scientific reproducibility

Sunday, 1 July 12

Strategies in Action

/.3 LLIA Strategies in Action

/.3 3.0 won QF_LIA at SM'T-COMP’11 with this tactic:

" then(preamble, orelse(mf, pb, bounded, smt)

where the preamble, mf, pb and bounded tactics are defined as

preamble = then(simplify, propagate-values, ctx-simplify,
lift-if, gaussian, simplify)

mf = then(failif(not is-ilp), propagate-bounds,
orelse(tryfor(mip, 5000),
tryfor(smt-no-cut(100), 2000),
then(add-bounds(-16, 15), smt),
tryfor(smt-no-cut(200), 5000),
then(add-bounds(-32, 31), smt),

mip))
pb = then(failif(not is-pb), pb2bv, bv2sat, sat)

bounded = then(failif(unbounded),
orelse(tryfor(smt-no-cut(200), 5000),
tryfor(smt-no-cut-no-relevancy(200), 5000),
tryfor(smt-no-cut(300), 15000)))

Sunday, 1 July 12

/.3 LLIA Strategies in Action

To demonstrate the benefits of our approach we run all QF _LIA benchmarks |
using the following variations of the strategy above:

pre = then(preamble, smt)

pre+pb = then(preamble, orelse(pb, smt))
pre+bounded = then(preamble, orelse(bounded, smt))
pre+mf = then(preamble, orelse(mf, smt))

combined = then(preamble, orelse(mf, pb, bounded, smt)

Sunday, 1 July 12

/.3 LLIA Strategies in Action

smt pre pre+pb pre+bounded pre+mf combined

benchmark family failed time (s) failed time (s) failed time (s) failed time (s) failed i failed time (s)
Averest (19) 0 4.0 0 5.9 0 6.0, O 5.9 5.9
bofill sched (652) 1 1530.7 1 1208.3 1 1191.5 1 1205.4 1205.9
calypto (41) 1 20| 1 7.7 1 8.0 1 7.8 7.8
CAV 2009 (600) |190 1315.3 1339.3 1329.71190 1342.7 8208.1
check (5) 0 0.1 0 0.1 0 0.1 0 0.1 0.1
CIRC (51) 17 188.4| 17 239.8| 17 238.2| 17 336.1 158.66
convert (319) 206 1350.5 3060.6 3025.9| O 112.7 112.5
cut lemmas (100) | 48 2504.0| 48 2532.4| 48 2509.2| 48 2543.4 3709.0
dillig (251) 68 1212.0| 68 1237.6 1226.9| 68 1242.5 2763.9
mathsat (121) 0 171.4 150.2 149.9, 0 151.1 150.2
miplib2003 (16)) 53.8) S7.7 424 .4) 109.5 430.5
nec-smt (2780) 147 224149.0 59977.4 8 59929.3 60042.1 60032.9
pb2010 (81) 43 90.3 96.2 - 43 146.3 96.2 2583.1
pidgeons (19) 0 0.3 0.4 : 0 0.3 0.3 0.3
prime-cone (37) 13 9.6 9.5 S 13 9.7 11.0 11.0
rings (294) 48 4994.4 5973.7 . 48 9690.0 6024.6 9548.2
rings pre (294) o7 441.5 1288.7 - 594 1260.9 1274.7 1261.5
RTCL (2) 0 0.1 0.1 . 0 0.1 0.1 0.1
slacks (251) 135 1132.9 550.0 91136 550.8 8969.3 8803.9

total (5938) 978 239153.0 77737.4 5.2|631 78646.5 95872.4|234 98995.2

o

Do

(L JTEN
WoOh OO OW~ITOoO O HKEFHFEO

(o}

Sunday, 1 July 12

RAHD Strategies in Action

RAHD: Real Algebra in High Dimensions v@.6a3 (May, 2011)

designed and programmed by grant o. passmore {g.o0.passmore@sms.ed.ac.uk}
with intellectual contributions from p.b.jackson, b.boyer, g.collins,
j.harrison, h.hong, f.kirchner, j moore, l.de moura, s.owre, n.shankar,
a.tiwari, v.weispfenning and many others. This version is using Maxima
multivariate factorisation & SARAG subresultant PRS + Bernstein bases.

RAHD!> vars x y z w k1 k2 k3 k4 k5 kb6
Current vars: (XY Z W K1 K2 K3 K4 K5 K6).

RAHD!> assert x >= 12 /A x>y /\ (x=y) =1/2 +w
Formula asserted.

RAHD!> assert x > z /\ x"2 + w"3 < (x~y) + k2
Formula asserted.

RAHD !> assert x > k1 /\ k4 k572 /\ k3 > k2 + 2+k4
Formula asserted.

RAHD !> assert kb <= k4”2 + xxy + 3%k2
Formula asserted.

RAHD!> set print-model
Prover option print-model set.

RAHD'> check

sat

model: [X=12,
Y=11,
K5=0,
K1=11,
K2=1153/8,
Z=11,
K3=1161/8,
K4=0,
wW=1/2,
K6=4515/8].

Sunday, 1 July 12

RAHD: Real Algebra in High Dimensions v@.6a3 (May, 2011)

designed and programmed by grant o. passmore {g.o.passmore@sms.ed.ac.uk}
with intellectual contributions from p.b.jackson, b.boyer, g.collins,
j.harrison, h.hong, f.kirchner, j moore, l.de moura, s.owre, n.shankar,
a.tiwari, v.weispfenning and many others. This version is using Maxima
multivariate factorisation & SARAG subresultant PRS + Bernstein bases.

RAHD!> vars a bcde
Current vars: (AB CD E).

RAHD!> assert a*d + cxb + bxd <= 0
Formula asserted.

RAHD!> assert b>=0 /\ c>= 0 /\d>=0/\ e >0
Formula asserted.

RAHD !> assert a2 + axb - b"2 >= 1
Formula asserted.

RAHD!> assert 2%a + b >= 1
Formula asserted.

RAHD!> assert ¢™2 + ¢cxd - d™"2 + 1 <= 0
Formula asserted.

RAHD !> check
unsat |
RAHD:9!u>

Sunday, 1 July 12

This class of experiments begins with the following ¥ RCF formula which was sent to
us by John Harrison in 2008:

Ya Vb Ve Vd

(0<a) A (@<1) A (0<h) A (B<1)A
0<)A(c<)A(0<d) A (d<]))
=

(((1 —a*b*)(1 — cd)(ad — be)(ad — be) +
(2ab)(cd — ab)(1 —ab)(c—d)(c—d) +
(a*b* — c*d*)(1 —cd)(a—b)(a—b)) > 0)

We couldnt prove it using:
QEPCAD-B, Redlog/Rlge, Redlog/
Rlcad, Realpaver, ...

Sunday, 1 July 12

(oal: Retute Ps1 over the Reals

Idea: Maybe /just/ out of reach of CAD

Ja 3b 3¢ 3d
(0<a) A (@a<1) A (0<B) A (B<1)A
0=c)Ales]) A(0=d) A (d<T))
Al
(((1—a*b?)(1 — cd)(ad — bc)(ad — be) +
(2ab)(cd —ab)(1 —ab)(c —d)(c —d) +
(a*b* — c*d*)(1 —cd)(a—b)(a—b)) < 0)

Sunday, 1 July 12

(roal: Retute Ps1 over the Reals

Ja b de dd
D ((0<a) A (@a<1) A(0O<B) A (BST)A
0<e)A (<) A(0<d) A (d<1))

Al
(((1—a®b?)(1 — cd)(ad — be) (ad — be) +
(2ab)(cd —ab)(1 —ab)(c —d)(c —d) +
(@*b* — c?d*)(1 —cd)(a—b)(a—b)) < 0)

Sunday, 1 July 12

(oal: Retute Ps1 over the Reals

ST
((0=a) A (@a<1) A (0<B) A (b<1)A

(0<c) A (c<1)A(0<d) A (d<1])) da 3b 3¢ 3d
A (0<a) AN(@<1)A(0<B)A (BLI)A

(((l—azbz)(l—cd)(ad—bc)(ad—bc) - 0<c)A(c<1)A(0<d) A (d<]))
(2ab)(cd — ab)(1 —ab)(c—d)(c—d) + Ya,< = Al

(a*b* — 2d?)(1—cd)(a—b)(a—b)) < 0) (((1 —a*b*)(1 —cd)(ad — bc)(ad — be) +

(2ab)(cd — ab)(1 —ab)(c —d)(c—d) +

(@*b* —c*d*)(1 —cd)(a—b)(a—b)) < 0)

Sunday, 1 July 12

(oal: Retute Ps1 over the Reals

3b 3¢ 3d
(0<b)A(B<]A

P KCEDRNCED RN CEDRYCES)

Nk
(((1=cd) (be)? +
(0—c?d*)(1 —cd)b*) < 0)

Sunday, 1 July 12

(oal: Retute Ps1 over the Reals

=b 3¢ 3d
(0<b) A (B<1)A
0<c)A(e<1) A(0<d) A (d<1))

Yo = .
A
(((1=cd) (be)? +
(0—c?d*)(1 —cd)b*) < 0)

What about the other (strict inequality) branch?

Ja 3b 3¢ 3d
(O<a) A(@a<1)A(0<b) A(BLI])A
0<c)A(e<1) A(0<d) A (d<1))

A

(((1 —a*b*)(1 — cd)(ad — bc)(ad — be) +
(2ab)(cd — ab)(1 —ab)(c —d)(c—d) +
(@*b* —c?d*)(1 —cd)(a—b)(a—b)) < 0)

Sunday, 1 July 12

(oal: Retute Ps1 over the Reals

3b 3¢ 3d
(0<b) A (B<1)A
) (0<c)A(c<1)A(0<d) A (d<1))
Wa.:z /\ *
(((1=cd) (be)? +
(0—c?d*)(1 - cd)b?)

What about inequality) branch?

Jda 3b 3c Za

(0<a) A(@<1)A(0<b)A(B<LI])A
0<e)A(e<1) A(0<d) A (d<1))
A

(((1 —a*b*)(1 — cd)(ad — bc)(ad — be) +
(2ab)(cd —ab)(1 —ab)(c —d)(c—d) +
(@*b* —c?d*)(1 —cd)(a—b)(a—b)) < 0)

Sunday, 1 July 12

an explore strategy interactively...

> el [spltt-ineqs(atom := 3)]
> x_]l IC
=1 [when {(cid = 8) [demod-lin; run stable-sinp; gepcod]]
(spltt-inegs(oton := @)]
guc
1 [when (cid = 8) [denod-<lin;: run stable-sinp; qepcad]]
11> el [split-tnegs(atom := 9)]
QuUC
el [when (cid = @) [denod=lin; run stable-sinp; qepcad]]
el [split-tnegs{otom := B)]
'l;‘ll'.'
el [when (cid = @) [denod=1in; run stoble~simp: qepcad]]
> el [split-tneqs{otonm := 8]
- "'_]l. -
1> el [when (cid = @) [deémod=1tn; run stable~simp; Qeépcod))
1> el [split—-1neqs{oton = @))
11> cguc
LAl> el [when (cild = 8) [dénmod~1in; run stable-sinp; qepcod(open? := 1));
1'> el [split-1neqs(atom = Q)]
11> cguc
A.11> el [when {(ctd = B) [denmod-1in; run stable-sinp; qepcod{open? := 1)])
1.1.1.1.1.1.1'> el [qepcod(open? := 1]
RAMD:3.2'> el [when (cid aradl) Y AKD -0 .01 .11 e uwp
RAND:@.8!> open: refutotion up to Case 1 of Gool

Printing all of the open coses for goal RARD:0.0.1.21.1.1.1. 11u> wp
Trickled refutotion up to Case 1

RAND:0.0.1.1.1.1.11u> wp
Trickled refutotion up to

P AND:8.8.1.1.1.11u> uwp
Trickled refutotion up

RAND:0.8.1.1.11u> wp
Trickled refutotion up

RAKD:0.90.1.11u> wp
Trickivd refutution up

Trickled refutotion up
CUNCNOWN
RAND:Q.@lu> up
Trickled refutotion up o Lase @
awolrting r

FAND:@lu> stotus

Goalkey: @,
J

Unknown Coses:

Deciston: unsaot.

Sunday, 1 July 12

an explore strategy interactively...

RAND:@.0!' > ol

RAND:@.2!> open

Mrinting all

Sunday, 1 July 12

RAND:0 .0

Trickled

RAKD:0.9.1

Tricklivwy

Trickled

(ARD:9.9

Trickled

- 3)]

{when {cid = 8) [dewod-lin; run stable-sinp; gepcod]]

-

(spltt-1neqs(aton := @)]

[when (cid = 8) [demod~lin;: run stable-sinp; gepcad]]
[split-tnegs(oton := 9)]

el [when (cid = @) [denod=lin; run stoble-simp; qepcad]]
1.1.1!'> el [split-tnegs{otom := 9))
-Quc
el [when (<cid = @) [denod=1in; run stoble~simp: qepcad]]
Y. 1.11> el [split-ineqs{otom := 0)]
. 11> cquc
1> el [when (cid = @) [deémod=1tn; run stable~simp; Qepcod))
el [split-1neqs{oton := @)
cguc
» &1 [when (cld = B) [dénmod~1in; run stableée~sinp; qepcodopen?
> ¢l [split-1neqs(atom = Q)]
> cguc
11> el [when {cLad B) [denmod~1in; run stable-sinp; qepcod{open’
> ¢l [qepcadl ;
Al wp
to Case 1

up
refutotion up

1.1.11u> wp
refutotion up

Alu» wp

refutution up

refutotion up

uw up
refutotion up

FAND:@lu> ctotus

Goalkey:
Inknown

a

coses]

Deciston: unsaot.

1>])

= 1)])

Can explore strategy interactively...

RAHD!> opens

Printing all of the open 1 cases for goal @.

A) (== A1) (<=0 B) (x=B1) (<=0 C(C) (<x=C1)(x=00D)
1)

(* (-1 ™AA (BB (-1 CD))
(*(-(*AD(*BO)(-CAD (B
(***20B)CCD)™AB) (-1 ABY
(* (=CD) (-CDNNM

AN BB O DD 1O
(* (-AB) (-AB))
9)) CUNKNOWN)

1 case in goalset {goal @) awaiting refutation.
RAHDI> e [demod-1in; run stable-simp;
[1f {dim <= 3) [qgepcad]
[split-ineqsCatom := 0); qepcadCopen? := 1)1]]
RAHD:@!u> status

Goalkey: @,
Unknown cases: @ of 1.

Decision: unsat.

Sunday, 1 July 12

(Can explore strategy interactively...

F&HU' - opens

Printing all of the open 1 cases for goal @.

RAMD:@.8!> el [when (c1d = |
RAHD:3.8!> pc @
gl]

Printing cose @ for gool 8

cad]]

encadll

(=08 (<= |
>

y B
“ :0‘)" ..‘

RAMD:@.2! > @]
RAMD:@.8!> og

Printing all

L cose 1n poolset Cpol RARU.O1U-

RAMD: 2. 0! >
Goalkey:

Unknown

Decision: unsat.

Sunday, 1 July 12

RAHD Strategies in Action

defstrat calculemus-0
(split-inegs (max-splits := 12); simp-zrhs; run stable-simp; demod-lin;
run stable-simp; simp-real-null; fert-tsos; univ-sturm-inegs;
satur-lin; triv-ideals; run stable-simp; rcr-inegs; run stable-simp;
fert-tsos; run stable-simp; simp-zrhs; int-dom-zpb; rcr-inegs;

gepcad(open? := 1); gepcad].

defstrat calculemus-1
_[when (gd = 0) [split-inegs (max-splits := 12)]1;
interval-cp(max-contractions := 10); simp-zrhs; run stable-simp;
demod-1in; run stable-simp; simp-real-null; fert-tsos; univ-sturm-inegs;
satur-lin; interval-cp; triv-ideals; run stable-simp; interval-cp;
rcr-inegs; run stable-simp; fert-tsos; run stable-simp; interval-cp;
simp-zrhs; interval-cp; int-dom-zpb; rcr-inegs;

when (dim <= 7 /\ deg <= 30) [gepcad(open? := 1); gepcad]].

defstrat calculemus-2

[interval-cp(max-contractions := 10);

[when (dim <= 3 /\ deg <= 3) [gepcad]];

[when (gd = 0 /\ dim >= 2) [split-inegs(max-splits := 12)]];

interval-cp (max-contractions := 20); simp-zrhs; run stable-simp;
demed-1lin; run stable-simp; simp-real-null; fert-tsos; univ-sturm-inegs;
satur-lin; interval-cp; triv-ideals; run stable-simp; interval-cp;
rcr-inegs; run stable-simp; fert-tsos; run stable-simp; interval-cp;
simp-zrhs; interval-cp; int-dom-zpb; rcr-inegs;

when (dim <= 7 /\ deg <= 30) [gepcad(open? := 1); gepcad]].

Sunday, 1 July 12

benchmark dimension degree time (s) time (s) time (s)

3]
6
D
)
o
4
1
8
7
7
7
6
o
4
2
4
4
4
4
3
3
3
2
2

NENAEDINNNNN WO OCWN
COOONFONC
Pt et e =] = (O =]

AWANA

Sunday, 1 July 12

#(Proof-tree) 32768 8192 8192
TRIV-IDEALS 278 (45.847) 96 (0.936) 21 (0.101)
SATUR-LIN 485 (1.465) 344 (0.756) 25 (0.275)
FERT-TSOS 70 (0.355) 48 (0.200) 8 (0.041)
DEMOD-LIN 1101 (0.238) 444 (0.048) 33 (0.003)
SIMP-GLS 34351 (1.290) 3384 (0.185) 33 (0.000)
SIMP-ZRES 32919 (0.370) 3133 (0.031) 33 (0.000)
SPLIT-INEQS (MAX-SPLITS:=12) 8194 (0.468) 2 (0.109) 2 (0.131)
QEPCAD (OPEN?:=1) 207 (21.081) 70 (10.881)

RCR-INEQS 180 (7.601) 70 (0.225)

INT-DOM-ZPB 0 (0.012) 0 (0.006)

INTERVAL-CP (MAX-CONTRACTIONS:=10) | - 5120 (6.052) 5120(6.092)
INTERVAL-CP (MAX-CONTRACTIONS:=20) | - - 3039 (2.126)
DEMOD-NUM 32766 (3.318) 3070 (0.170) 33 (0.003)
SIMP-ARITH 1954 (0.430) 482 (0.143) 33 (0.006)
SIMP-REAL-NULL 142(0.031) 0(0.032) 0(0.002)
UNIV-STURM-INEQS 4 (0.035) 0(0.016) 0(0.001)
INTERVAL-CP - 178 (0.834) 4 (0.024)

Sunday, 1 July 12

Sunday, 1 July 12

Meti'larski: an automatic theorem prover
coupled with RCF decision procedures

+ Objective: to prove first-order statements involving real-valued
functions such as exp, In, sin, cos, tan’}, ...

* Method: resolution theorem proving augmented with
+ axioms bounding these functions by rational functions

* heuristics to isolate function occurrences and create RCF problems

+ ... to be solved using QE tools: QEPCAD, Mathematica, Z3, etc.

the basic 1dea

Sunday, 1 July 12

Some Meti'Tarski Theorems

0<tAO<vf= ((1.565 + .313v¢) cos(1.16t)
+ (.01340 + .00268v) sin(1.16t))e 134
— (6.55 + 1.31vf)e B + v +10 2 0
0<xAXx<146X%X107°=

(64.425in(1.71 X 10%x) — 21.08 cos(1.71 X 108x))e%05%10°x
+ 24.24¢1-86x10°% 5

0<xA0=<1vy = ytanh(x) <sinh(yx) Each Ls provcd LA
a few seconds!

Sunday, 1 July 12

Sunday, 1 July 12

some bounds for In

* based on the continued + Simplicity can be
fraction for In(x+1) exchanged for accuracy.

* much more accurate than + With these, the maximum
the Taylor expansion degree we use is 8.

x—1

= lbalgp =< g5 — 1

(x +5)(x — 1)

bounds for other functions

a mix of continued fraction approximants and truncated Taylor series,
etc, modified to suit various argument ranges and accuracies

a tiny bit of built-in knowledge about signs, for example, exp(x) >0

NO fundamental mathematical knowledge, for example, the geometric
interpretation of trigonometric functions

MetiTarski can reason about any function that has well-behaved upper
and lower bounds as rational functions.

Sunday, 1 July 12

statistics about the RCF problems

400,000 RCF problems generated from 859 MetiTarski problems.
Number of symbols: in some cases, 11,000 or more!

Maximum degree: up to 460!

But... number of variables? Typically just 1. No more than 8.

Sunday, 1 July 12

distribution of problem sizes

(in symbols)

10,

Sunday, 1 July 12

distribution of polynomial degrees

(multivariate)

distribution of problem
dimensions

10°

10*

10°

10° %

10§ I

107 I I .
0 1 2 3 4 5 6 7 8 9

number of variables

Sunday, 1 July 12

a heuristic: model sharing

MetiTarski applies QE only to existential formulas, 3x 3y ...
Many of these turn out to be satisfiable,...
and many satisfiable formulas have the same model.

By maintaining a list of “successful” models, we can show many RCF
formulas to be satisfiable without performing QE.

Sunday, 1 July 12

... because most of our RCF
problems are satisfiable...

Problem All RCF SAT RCF % SAT
F# secs # secs # secs

CONVOI2-sincos 268 3.28 194 258 72% 79%
exp-problem-9 1213 6.25 731 4.11 60% 66%
log-fun-ineq-e-weak 496 31.50 323 20.60 65% 65%
max-sin-2 AT PR 2,221 185.28 80% 73%
sin-3425b 118 39.28 ripa el iyl 61% 37%
sqrt-problem-13-sqrt3 2031 22.90 1403 17.09 69% 75%
tan-1-1var-weak 817 19.5 458 7.60 56% 39%
trig-squared3 742 3292 549 20.66 74% 63%
trig-squared4 847 45.29 637 20.78 75% 46%
trigpoly-3514-2 1070 17.66 934 1485 87% 84%

In one example, 2172 of 2221 satisfiable RCF problems can be
settled using model sharing, with only 37 separate models.

Sunday, 1 July 12

polynomials
' '

Problem # Factor # Irreducible % Runtime

asin-8-sqrt2 7791 5975 (76.7%) 22.4%
atan-problem-2-sqrt-weakest21 65304 63522 (97.3%) 55.4%
atan-problem-2-weakest21 9882 8552 (86.5%) 2.2%
cbrt-problem-5a 88986 61068 (68.6%) 38.6%
cbrt-problem-5b-weak 138861 25107 (18.0%) 53.1%
cos-3411-a-weak 150354 138592 (92.1%) 53.9%
ellipse-check-2-weak? 5236 3740 (71.4%) 88.7%
ellipse-check-3-1n 1724 1284 (74.4%) 86.7%
ellipse-check-3-weak 12722 9464 (74.3%) 77.9%

Sunday, 1 July 12

introducing Strategy 1

omitting the
model sharing —|— standard test for
irreducibility

= Strategy 1

introducing Strategy 1

' (and-then simplify purify-arith
propagate-values elim-term-ite
solve-eqgs tseitin-cnf simplify

model sharmg _I_ (using-params nlsat

:factor false

. :algebraic-min-mag 256))

= Strategy 1

Sunday, 1 July 12

comparative results
(0 proved 1n up to 120 secs)

70%
—e— 73 + Strategy 1

60%
— —

50%
S UEREAD

40%
—=— Mathematica
30%

20%

10%

| J
100 120

Sunday, 1 July 12

(10% faster)
(509% faster)

0 .
Mathematica QEPCAD Z3 0 Mathematica QEPCAD Z3 Z3 + Str 1

(100% faster)

0 Mathematica QEPCAD Z3 Z3 +Str 1

Sunday, 1 July 12

/.3 Strategy Intertaces:
C++APL S8y ..

5 hexp /P risedfun. com TPy |

wolet Mags YouTebe W

zpr =

Explore the Z3 API using Python Ask z3py!
X,y = Reals('x y)

solve(x**2 + y**2 <1, 2*x +y > 1,
show=True)

X, Y, 2 = Reals('x y 2")

g = Goal() (home i tutorial l persalink]

g. add (Or (X Wore senples Aot 230y - Python interface for The 23 Theeres Prover
Or(y ‘ 30 & Righ-performae Thatren prover. I3 Supderss &
Or(z
X +y+2z>2

Split all clauses”
split_all = Repeat(OrElse(Tactic('split-clause'),
Tactic('skip')))

print split_all(g)

split_at_most_2 = Repeat(OrElse(Tactic('split-clause'),
Tactic('skip')),
1)

print split_at most 2(g)

Split all clauses and solve equations
split_solve = Then(Repeat(OrElse(Tactic('split-clause’),
Tactic('skip'))),
Tactic('solve-egs'))

print split_solve(q)

Sunday, 1 July 12

In closing

We have illustrated that not only is a strategy-language based approach practical
in the context of high-performance solvers, it is also desirable.

In difficult (i.e., infeasible or undecidable) theorem proving domains, the situation
with heuristic proof strategies is rarely “one size fits all.”

Instead, given a class of problems to solve, it is often the case that one heuristic
combination of reasoning engines is far more suited to the ftask than another.

SMT solver developers cannot anticipate all classes of problems end-users will
wish fo analyze.

By virtue of this, heuristic components of high-performance solvers will never be
sufficient in general when they are beyond end-users' control.

Without providing end-users mechanisms to control and modify the heuristic
components of their solvers, solver developers are inhibiting their chances of
success.

Sunday, 1 July 12

ontext and a Story

Lecture Notes in
Computer Science
Progress in

Automated Reasoning
1960-1996

SRR R TR N

Democabixo
and
Vanmoo ko

Zdeanses
PRt LE

g
;
«
-
[
¥
z
l-‘
7

v,
Mt,;hﬂ

_,;,i t

| RLLAR R 17 LR R

YEAR of DEVELOFMENT

Sunday, 1 July 12

Prologue: Bill McCune

Solution of the Robbins Problem

WILLIAM McCUNE ™
Mathematics and Computer Science Divasion, Argonne National Laboratory, Argonne, 11
ln('.’ Y

sSubmitted to J. Automated Heasoning, Jan 1997

Abstract. In this article we show that the three equations known as commutativity, associa-
tivity, and the Robbins equation are a basis for the variety of Boolean algebras. The problem
was posed by Herbert Robbins in the 1930s, The proof was found automatically by EQP, a
theorem-proving program for equational logic. We present the proof and the search strategies
that enabled the program to find the proof.

Key words: Assocative-commutative unification, Boolean algebra, EQP, equational logic,
paramodulation, Robbins algebra, Robbins problem.

1. Introduction

I'his article contains the answer to the Robbins (|>lc-t-1in|| of whether all Robbins
.112!"4.’1& are Boolean. The answer is yes, all Robbins u{_l,'c bras are Boolean. The
proof that answers the question w
proving program for equational logit

In 1933, E. V. Huntington pres

1953-2011

Sunda July 12

Prologue: Bill McCune

A COMPUTATIONAL LOGIC

A Fascinating Country in
the World of Computing

Your Guide to
Automated Reasoning

Sunday, 1 July 12

Prologue: Bill McCune

A COMPUTATIONAL LOGIC

LabVIEW

Sunday, 1 July 12

Sunday, 1 July 12

Prologue: Bill McCune

Automated Reasoning
and the
Discovery of Missing and
Elegant Proofs

Larry Wos
Gail W. Pieper

Harrison

o . Waldinger Wachter
Rudnicki Boyer & Uribe

etk Dahn Lusk Jech MeCune

Staples

Walsh Jackson Kuncn Kapur Hagiyu
Holmex

Trybulec Beeson Murthy Thaycr Hart Pasc

