
The State of Lean

Lean Together, January 2026

Leo de Moura
Chief Architect, Lean FRO
Senior Principal Applied Scientist, AWS

Lean is an open-source programming
language and proof assistant.
Lean and its tooling are implemented in Lean. Lean is very extensible.

LSP, Parser, Macro System, Elaborator, Type Checker, Tactic Framework, Proof automation, Compiler, Build

System, Documentation Authoring Tool.

Lean has a small trusted kernel, proofs can be exported and independently checked.

"Lean is not just interesting as a theorem prover. It is an example of a well-designed, modern
programming language that can serve as a model for current and future languages."
— Harry Goldstein, DC Systems

lean-lang.org

2025
A Transformative Year for Lean

2025 By The Numbers

12
Releases

 v4.15 – v4.26

90K+
VS Code

Unique Installs

7,100+
GitHub Stars

50+
University Courses

~4,000
PRs to Lean 4 Repo

2
Major Awards

5+
AI Startups on Lean

2025 Key Milestones

MAY

DeepMind Formal Conjectures in Lean

JUNE

ACM SIGPLAN Software Award

JULY
IMO Gold: Harmonic and BydeDance
Skolem Award, $10M Gerko

AUGUST

grind, Carleson

SEPTEMBER

AI Math Fund: $18M, 14 feature Lean

OCT-DEC

Velvet, Aleph, Axiom, Erdős problems

New Website

lean-lang.org rebuilt with Verso

ICARM Institute

NSF institute at CMU

CSLib

leanprover/cslib launched

Recognition in 2025

JULY 2025

Skolem Award
For the 2015 CADE paper

 "The Lean Theorem Prover"

JUNE 2025

ACM SIGPLAN Programming
Languages Software Award
Recognizing Lean's impact on programming

languages research and practice

2025 Funding

July 2025 — Alex Gerko

$10M
$5M — Mathlib Initiative

$5M — Lean FRO: Next-Gen UX

Next-Gen UX Initiative (3 years)

Team hired and ramping up

Literate programming (Verso), Lean Online Workbench,

scientific paper authoring, educational resources, VS Code

enhancements

Team: Principal + 4 Senior Engineers

Existing support: Simons Foundation, Alfred P. Sloan Foundation, Richard Merkin, Alex Gerko

The Lean FRO team

2025 HIGHLIGHTS

Compiler & Performance

New Module System & Parallel Elaboration

Module System Benefits

Robust module interfaces, better build times, reduced memory footprint. New

shake import minimizer bundled with Lean.

Parallel Elaboration

Drastically improves latency in proof-heavy files and makes builds scale to

many more cores.

Memory opening all of Mathlib

6GB →
3GB
50% reduction

Sebastian Ullrich will present on Tuesday.

Continued Performance Improvements
Measured on Mathlib4 build instructions:

v4.17.0

-2.3%
v4.20.0

-2.7%
v4.21.0

-9.7%*
v4.24.0

-2.9%
v4.26.0

-2.8%
v4.27.0

-2.2%

Scalability: Large inductive data types and match

statements handled more gracefully.

*Of the 9.7% reduction, 8.1% was due to an

external PR by Jovan Gerbscheid. Many thanks to

him!

The New Compiler

Lean Compiles Itself

In 2025, we replaced the old C++ bootstrap compiler with a

new one fully implemented in Lean.

Development started in late 2022, frozen until 2025

Now: Only the kernel and runtime are still in C/C++

What This Enabled

Zero Cost BaseIO — only possible with new compiler

infrastructure

Many optimizations — easier to implement and maintain in

Lean

GitHub issues closed — long-standing bugs fixed by the

transition

A major milestone in Lean's self-hosting journey.

2025 HIGHLIGHTS

Proof Automation

bv_decide: Verified Bit-Blasting
The fastest verified bit-blaster, now solving 96% of SMT-LIB bitvector problems.

Best solver Bitwuzla sits at 99%.

Key components — all implemented and verified in Lean:

Bit-blaster, AIG (And-Inverter Graph), LRAT SAT proof checker, CaDiCaL SAT

Solver integration

New in 2025: Support for enum and structure types

96%
SMT-LIB bitvector

problems solved

The grind Tactic
New proof automation (v4.22, August 2025).

A proof-automation tactic inspired by modern SMT solvers. Think of it as a virtual whiteboard:

Discovers new equalities,

inequalities

Merges equivalent terms Multiple engines cooperate

Cooperating Engines: Congruence closure, E-matching, Constraint propagation, Guided case analysis

Satellite Solvers: Linear integer arithmetic, commutative rings (Gröbner basis), fields

Kim Morrison will dive deeper into grind later this week.

grind: Design Principles

Native to Dependent Type Theory
No translation to first-order or higher-order logic

Fast Startup Time
No server startup, no external dependencies

Rich Diagnostics
When it fails, it tells you why

Extensible
Users can plugin their own theory solvers

No Mathlib Dependency
Works with just the standard library

Configurable via Type Classes
Stdlib and Mathlib pre-annotated

Great for software verification applications.
2,800+ occurrences in Mathlib

2025 HIGHLIGHTS

Tooling & Developer Experience

Lake: Build System Improvements

Remote Caching
New lake cache for sharing build artifacts — built-in

replacement for Mathlib's cache

Local Artifact Cache
Share artifacts between package instances on a system; fast

rebuilds when switching branches

Semantic Version Ranges
require foo @ "≥1.2.3, ≤1.2.8"

Multi-Version Workspaces
Experimental support for multiple versions of a package in

the dependency tree

New Targets
input_file, input_dir, improved inter-target dependencies

lakefile.toml Support
Basic language server support for TOML configuration

Language Server & VS Code
Language Server

3.5× autocomplete speedup

Signature help, auto-implicit inlay hints, unknown identifier code actions,

go-to-definition for type class instances, module hierarchy navigation,

trace search

VS Code Extension

Gutter decorations (errors, warnings, ✓), "Goals accomplished!"

message, simplified one-step installation, Elan integration, InfoView UI

improvements

Better Error Messages
Error Explanations

Integrated examples and extra context directly into error messages

Smart Identifier Hints

Manual knows to redirect Rustaceans looking for Result to Except

"Most Wanted" Bad Messages

Systematically identified and fixed the worst offenders

Before

typeclass instance problem is stuck, it is often due to metavariables

 HAdd ?m.9 ?m.9 (?m.3 x)

After

typeclass instance problem is stuck

 HAdd ?m.9 ?m.9 (?m.3 x)

Note: Lean will not try to resolve this typeclass instance problem because the first

and second type arguments to `HAdd` are metavariables. These arguments must

be fully determined before Lean will try to resolve the typeclass.

"it is often due to metavariables" is gone forever

2025 HIGHLIGHTS

Language & Library Features

Standard Library Expansion
Iterators

Composable abstraction with combinators like mapM, takeWhile.

Verification library included.

Async Primitives

libuv bindings, networking, signal handlers, HTTP server.

Ranges & Slices

Polymorphic ranges (1...5) and slices (xs[1...5])

Verified Containers

HashMap and TreeMap verification. Set operations with lemmas.

Grove

New tool for tracking library defects at scale.

Markus Himmel established Std as a reliable foundation with clear

scope and quality guidelines.

New Language Features

Coinductive Predicates

Syntax identical to inductive definitions, powered by lattice theory.

coinductive infSeq (r : α → α → Prop) : α → Prop where

 | step : r a b → infSeq r b → infSeq r a

Auto-generated coinduction principles. Supports mutual coinduction.

mvcgen: Monadic Verification

Break down monadic programs into pure verification conditions via

weakest precondition.

Std.Do logic + proof mode for discharging verification conditions.

partial_fixpoint
Declare possibly non-terminating functions and verify them

functional_induction
Unfolds functions: fun_induction foo <> grind

Wojciech Rozowski: coinductive predicates on Thursday; Sebastian Graf: mvcgen on Tuesday.

2025 HIGHLIGHTS

Website & Documentation

New Website: lean-lang.org
Completely redesigned website built with Verso, featuring interactive code examples and clear navigation.

Key sections: Install, Learn, Community, Use Cases, FRO, Playground, Reservoir

Lean Language Reference & Verso

Lean Language Reference

Comprehensive coverage: type system, elaboration, tactics,

metaprogramming, interactivity, and more

New: "Validating Lean Proofs" section for high-trust

applications

Continuously updated for new features and libraries.

Verso: Literate Programming

Theorem Proving in Lean → Verso

Functional Programming in Lean → Verso

Automatic cross-linking between documents, hovers and proof states in

books, red squigglies on errors in docstrings!

2025 HIGHLIGHTS

Growth & Adoption

Repository Growth

900+
new repos in Q4 2025

+32%
increase over Q3

VS Code Extension Unique Installations

90K+
Since beginning of 2024

17K+
new installs Q4 2025

+21%
increase over Q3

Who Uses Lean?
Industry

AWS Google DeepMind Meta FAIR

Microsoft OpenAI

AI Startups

Harmonic Axiom Math, Inc.

Logical Intelligence Axiomatic AI

Academia (50+ Courses)

CMU MIT Stanford Imperial ETH Zürich

Cambridge LMU + many more

Lean is the only proof assistant appearing in respectable

position on RedMonk rankings — competing with

general-purpose languages.Mistral

RedMonk 2025 Language Rankings
Lean now appears in the RedMonk Programming

Language Rankings — measured by GitHub projects

and Stack Overflow activity.

Lean's neighbors:

Mathematica, Nim, Puppet, Smalltalk

Key insight: Lean is the only proof assistant in a

respectable position. Coq is at the very bottom of the

chart.

2025 HIGHLIGHTS

AI & Software Verification

Vibe Proving

Vibe Proving

Startups using Lean & AI

...and more to come

A thriving startup ecosystem validates Lean as the platform of choice for verified AI reasoning.

CSLib: : : AI + CS is the Next Frontier
A Focused Effort on Formalizing Computer Science in Lean

Supported by: AWS, Google DeepMind, SDU, Centaur (Stanford)

Formalizing CS Foundations — computational models,

complexity

Reasoning about Code — deductive verification techniques

Verified Code Repository — algorithms & data structures

AI Integration — training datasets, AI-assisted tools

Harmonic

"Aristotle achieves SOTA 96.8% on VERINA benchmark"

— verifiable code generation

Ilya Sergey

"The research community's perception of program

verification is about to change irreversibly."

Fabrizio Montesi will present CSLib at Lean Together.

cslib.io

Software Verification Ecosystem
Verification Tools Building on Lean

Velvet
Imperative program verifier (Oct 2025)

mvcgen
Lean FRO's monadic verification framework

Aeneas
Rust verification via translation to Lean

Strata
 A unified platform for formalizing language syntax and semantics

Why CS + Lean?

AI systems excel at generating code. But can you trust that

code? Lean provides the missing piece: proof that the code

is correct.

2025 HIGHLIGHTS

Soundness & Trust

Why Soundness Matters
Lean's value proposition rests on trust. If the kernel has

bugs, proofs mean nothing.

Critical Use Cases

AI math competitions, verified software, hardware verification,

published theorems — all depend on kernel correctness.

Community Expectations

As Lean adoption grows, the community rightfully expects

transparency about soundness and clear guidance on trust.

"How do I know I can trust a Lean proof?"

This is a fair question. We take it seriously.

Our commitment: Provide the tools, infrastructure, and

documentation for users to verify proofs to their own

standards.

Our Approach to Soundness

Small Trusted Kernel

~8K lines of C++ that must be correct. Everything else generates

terms checked by this kernel.

Export Format

Lean can export proofs for independent checkers to verify.

Multiple Independent Kernels

If n kernels all accept a proof, the chance of a bug affecting all n is

very low.

Independent Kernel Implementations

lean4checker — Reference checker in Lean itself

nanoda — Rust implementation

lean4lean — Full kernel in Lean

+ more — Community implementations

Different languages, different authors, different approaches

New documentation

Comparator: Trustworthy Proof Judge

What is it?

A trustworthy judge for Lean proofs. Verify that a solution proves

exactly what was claimed, using only permitted axioms.

Sandboxed Execution

Solutions run in isolated sandbox — no access to modify trusted

files

Multi-Kernel Verification

Supports Lean kernel + nanoda for increased trust

How It Works

1. Build Challenge and Solution in sandboxes

2. Export both to kernel-checkable format

3. Verify declarations match exactly

4. Check only permitted axioms used

Use case: AI math competitions, untrusted proof verification

Lean Kernel Arena: arena.lean-lang.org

Lean Kernel Arena
Gamified competition for kernel implementations — arena.lean-lang.org

Leaderboard Metrics

Completeness %, Soundness %, Performance, Days since last

unsoundness, Lines of Code

Test Suite

Positive tests: All of Mathlib must pass

Negative tests: Collection of tricky exploits and edge cases

Goal: Make writing a Lean kernel a standard exercise in

programming language courses

Why a "Competition"?

Incentivizes diverse implementations. More implementations =

more eyes on the spec = higher confidence in soundness.

Future: "official-beta" Kernels

New kernel features can be tested on arena participants before

merging into the official kernel.

Watch out for an announcement on Zulip.

The Vision: Decentralized Trust

"Don't trust us. Verify."

We don't want you to trust the Lean FRO. We want to give you

the tools to trust yourself.

Export your proofs. Run them through independent kernels

you trust. If they all agree, you have a proof.

No Single Point of Failure

If one kernel has a bug → other kernels catch it

Different authors, languages, approaches

Common interface, common test suite

Result: Trust in the collective, not in any single implementation

2026
Moving Forward

2026: Year 3 Goals

Std 1.0 — Finalize standard library; support Mathlib in

reducing technical debt

Proof Automation — grind improvements, scalable simp,

try?, +suggestions, counter-example generation

Compiler — Smaller binaries, unboxed types, new

backend optimizations

New do-notation — Verification condition generation,

async/await

Benchmarking — Reliable profiling infrastructure for Lean

and Mathlib — radar.lean-lang.org

Usability — Auto-formatter, clearer errors, IDE polish

Lake — Deploy remote cache to Lean core and Mathlib Case Studies — Demonstrate Lean's prowess in multiple

domains

2026: Next-Gen UX & Literate Programming
Lean Online Workbench
Zero-install browser environment with multi-file projects, full-featured

editing, real-time collaboration

Next-gen Lean Games editor — Natural Number Game

successor

GitHub integration — Seamless workflow

Verso Blueprints — Relate formal and informal objects in the

same file

Verso + doc-gen4
Shared code, auto cross-linking, consistent rendering

Zero-config Websites
"Turn my code into a website" with one command

Auto-formatter
In VS Code extension, scales with Mathlib

GUI Installer
Cross-platform, installs VS Code too

2026: Software Verification
New do-notation
Extensible elaborator framework for intrinsic Dafny-style verification

using do notation.

Call-by-value Tactic
"Proofs by computation" supporting well-founded recursion. Partial

evaluation for hardware verification.

Counterexample Generator
When proofs fail, show why with concrete counterexamples.

Finer-grained Incrementality & Parallelism
Robust against whitespace changes. Run expensive terminal tactics

in parallel.

SymM
Framework for developing verification condition generators, decision

procedures, etc.

Goal: Make Lean the best platform for verified software.

2026: Compiler & Backend

Smaller Binaries

Reducing executable size for better distribution and

deployment

Unboxed Types

Better memory layout, improved cache performance

New Code Generator

Stack allocation, ownership annotations, more efficient

codegen

Finer-grained Incrementality

Robust against whitespace changes after a tactic. Parallelized

expensive terminal tactics.

Improved Derived Instances

Scalable noConfusion, better deriving handlers

Goal: Make Lean even faster for production use at scale

Stability &
Backward Compatibility

Our commitment to the community

The Journey So Far

July 2023

Lean 4 officially released after Mathlib was fully ported in the

same month.

Since then: 25 releases, rapid feature development, growing

ecosystem, +7,500 PRs merged.

We hear you: Stability and backward compatibility are

essential for growth and adoption.

Why Changes Were Necessary

Some design decisions only reveal problems at scale (e.g.,

Mathlib)

Better to fix fundamental issues early than accumulate

technical debt

Module system, type class resolution, stdlib design needed

refinement, etc

What We're Still Improving

Implicit Argument DefEq issues

Current strategy negatively impacts Mathlib performance and

usability. This must be fixed — it's a fundamental issue.

Module System

New module system (Sebastian's presentation Tuesday) is a

big deal for compilation and code organization.

Standard Library Completion

Stdlib will be "completed" in 2026 — stable APIs,

comprehensive coverage, minimal future breaking changes.

These fixes have breaking changes, but they're necessary to

build a solid foundation for the next decade.

Our Commitment

2026 Goal

2026 will be the last year with significant changes to

the language and standard library.

After 2026, we shift to a stability-first approach. Breaking

changes will be rare and carefully considered.

What We're Doing Now

Release notes: All breaking changes clearly highlighted

Deprecation annotations: Old APIs marked deprecated

before removal

Migration guides: Documentation for updating code

We understand stability is essential for adoption. We're working

to earn your trust.

Looking Ahead

The Opportunity

AI is transforming how we do mathematics and write

software. Lean is uniquely positioned at this intersection

— the only tool that's both a serious programming

language and a serious proof assistant.

What's Next

AI systems that can discover and verify mathematics

Verified software at scale — not just proofs of concept

A stable, mature platform for the next decade

We're building the infrastructure for trustworthy AI and verified

software. Thank you for being part of it.

Get Involved

Contribute New Projects

Math and Software

Write Documentation using Verso

Tutorials, blog posts, teaching materials

Report Issues

Bug reports and feature requests help improve Lean

Join the Community

Zulip: leanprover.zulipchat.com

GitHub: github.com/leanprover

X: @leanprover
Build Independent Kernels

Participate in the Kernel Arena — help strengthen Lean's trust

model

Thank You
https://leanprover.zulipchat.com/
x: @leanprover
LinkedIn: Lean FRO
Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

Questions?
lean-lang.org • leanprover.zulipchat.com

