The State of Lean

Leo de Moura
Chief Architect, Lean FRO
Senior Principal Applied Scientist, AWS

Lean Together, January 2026

m

Lean is an open-source programming
language and proof assistant.

Lean and its tooling are implemented in Lean. Lean is very extensible.

LSP, Parser, Macro System, Elaborator, Type Checker, Tactic Framework, Proof automation, Compiler, Build

System, Documentation Authoring Tool.

Lean has a small trusted kernel, proofs can be exported and independently checked.

"Lean is not just interesting as a theorem prover. It is an example of a well-designed, modern
programming language that can serve as a model for current and future languages."

— Harry Goldstein, DC Systems

lean-lang.org

2025

A Transformative Year for Lean

m

2025 By The Numbers

12

Releases
v4.15 —v4.26

~4,000

PRs to Lean 4 Repo

90K+

VS Code

Unique Installs

7,100+

2

Major Awards

GitHub Stars

50+

University Courses

5+

Al Startups on Lean

m

2025 Key Milestones

MAY JUNE JULY

DeepMind Formal Conjectures in Lean ACM SIGPLAN Software Award IMO Gold: Harmonic and BydeDance
Skolem Award, $10M Gerko

AUGUST SEPTEMBER OCT-DEC

grind, Carleson Al Math Fund: $18M, 14 feature Lean Velvet, Aleph, Axiom, Erdés problems

ICARM Institute CSLib

New Website
NSF institute at CMU leanprover/cslib launched

lean-lang.org rebuilt with Verso

m

Recognition in 2025

JUNE 2025 JULY 2025

ACM SIGPLAN Programming Skolem Award
Languages Software Award For the 2015 CADE paper
Recognizing Lean's impact on programming "The Lean Theorem Prover”

languages research and practice

=N

2025 Funding

July 2025 — Alex Gerko Next-Gen UX Initiative (3 years)

$10M

Team hired and ramping up

Literate programming (Verso), Lean Online Workbench,
scientific paper authoring, educational resources, VS Code

$5M — Mathlib Initiative enhancements

Team: Principal + 4 Senior Engineers
$5M — Lean FRO: Next-Gen UX

Existing support: Simons Foundation, Alfred P. Sloan Foundation, Richard Merkin, Alex Gerko

The Lean FRO team

2025 HIGHLIGHTS

Compiler & Performance

[ENN
New Module System & Parallel Elaboration

Module System Benefits

Memory opening all of Mathlib

Robust module interfaces, better build times, reduced memory footprint. New

shake import minimizer bundled with Lean. 6 G B)
Parallel Elaboration 3 G B

Drastically improves latency in proof-heavy files and makes builds scale to

N :
many more cores. 50% reduction

Sebastian Ullrich will present on Tuesday.

m

Continued Performance Improvements

Measured on Mathlib4 build instructions:

v4.17.0 v4.20.0

-2.3% -2.7%

v4.24.0 v4.26.0 v4.27.0

-2.9% -2.8% -2.2%

Scalability: Large inductive data types and match "Of the 9.7% reduction, 8.1% was due to an
statements handled more gracefully. external PR by Jovan Gerbscheid. Many thanks to

him!

m

The New Compiler

Lean Compiles Itself

In 2025, we replaced the old C++ bootstrap compiler with a

new one fully implemented in Lean.

Development started in late 2022, frozen until 2025

Now: Only the kernel and runtime are still in C/C++

What This Enabled

Zero Cost BaselO — only possible with new compiler

infrastructure

Many optimizations — easier to implement and maintain in

Lean

GitHub issues closed — long-standing bugs fixed by the

transition

A major milestone in Lean's self-hosting journey.

2025 HIGHLIGHTS

Proof Automation

m

bv_decide: Verified Bit-Blasting

The fastest verified bit-blaster, now solving 96% of SMT-LIB bitvector problems.

Best solver Bitwuzla sits at 99%.

96%

Key components — all implemented and verified in Lean:

Bit-blaster, AIG (And-Inverter Graph), LRAT SAT proof checker, CaDiCalL SAT SMI-LIB bitvector

Solver integration problems solved

New in 2025: Support for enum and structure types

m

The grind Tactic

New proof automation (v4.22, August 2025).

A proof-automation tactic inspired by modern SMT solvers. Think of it as a virtual whiteboard:

Discovers new equalities, Merges equivalent terms Multiple engines cooperate

inequalities

Cooperating Engines: Congruence closure, E-matching, Constraint propagation, Guided case analysis

Satellite Solvers: Linear integer arithmetic, commutative rings (Grébner basis), fields

Kim Morrison will dive deeper into grind later this week.

m

grind: Design Principles

Native to Dependent Type Theory Fast Startup Time

No translation to first-order or higher-order logic No server startup, no external dependencies
Rich Diagnostics Extensible

When it fails, it tells you why Users can plugin their own theory solvers
No Mathlib Dependency Configurable via Type Classes
Works with just the standard library Stdlib and Mathlib pre-annotated

Great for software verification applications.

2,800+ occurrences in Mathlib

2025 HIGHLIGHTS

Tooling & Developer Experience

m

Lake: Build System Improvements

Remote Caching

New lake cache for sharing build artifacts — built-in

replacement for Mathlib's cache

Local Artifact Cache

Share artifacts between package instances on a system; fast

rebuilds when switching branches

Semantic Version Ranges
require foo @ "21.2.3, <1.2.8"

Multi-Version Workspaces

Experimental support for multiple versions of a package in

the dependency tree

New Targets

input_file, input_dir, improved inter-target dependencies

lakefile.toml Support

Basic language server support for TOML configuration

m

Language Server & VS Code

Language Server VS Code Extension

Gutter decorations (errors, warnings, v), "Goals accomplished!"

5% mpl
SR EUZB A R S Eetel)] message, simplified one-step installation, Elan integration, InfoView Ul

. . . .) " . improvements

Signature help, auto-implicit inlay hints, unknown identifier code actions,
go-to-definition for type class instances, module hierarchy navigation,

trace search

v MODULE HIERARCHY Mode: Imports
v) Main
v &) HierarchyTest
> <l')'j HierarchyTest.Basic def ;':\ (a b=t Makd . NMas Mmoo SOl‘Iy

v MODULE HIERARCHY Mode: Imported By (b c : Nat) - Nat - Nat

v) HierarchyTest.Basic #check f ®|
v £ HierarchyTest
> &) Main

=N

Better Error Messages

Error Explanations

Integrated examples and extra context directly into error messages

Smart Identifier Hints

Manual knows to redirect Rustaceans looking for Result to Except

"Most Wanted" Bad Messages

Systematically identified and fixed the worst offenders

Before

typeclass instance problem is stuck, it is often due to metavariables
HAdd ?m.9 ?m.9 (?m.3 x)

After

typeclass instance problem is stuck

HAdd ?m.9 ?m.9 (?m.3 x)

Note: Lean will not try to resolve this typeclass instance problem because the first
and second type arguments to "HAdd" are metavariables. These arguments must

be fully determined before Lean will try to resolve the typeclass.

"it is often due to metavariables" is gone forever

2025 HIGHLIGHTS

Language & Library Features

m

Standard Library Expansion

Iterators Verified Containers

Composable abstraction with combinators like mapM, takeWhile. HashMap and TreeMap verification. Set operations with lemmas.
Verification library included.

Grove

Async Primitiv
sync RRES New tool for tracking library defects at scale.

libuv bindings, networking, signal handlers, HTTP server.

Markus Himmel established Std as a reliable foundation with clear
Ranges & Slices scope and quality guidelines.

Polymorphic ranges (1...5) and slices (xs[1...5])

l!!EEisiii!}

New Language Features

Coinductive Predicates

Syntax identical to inductive definitions, powered by lattice theory.

coinductive infSeq (r : ¢« - a - Prop) : a — Prop where

| step : r a b - infSeq r b - infSeq r a

Auto-generated coinduction principles. Supports mutual coinduction.

partial_fixpoint

Declare possibly non-terminating functions and verify them

mvcgen: Monadic Verification

Break down monadic programs into pure verification conditions via
weakest precondition.

Std.Do logic + proof mode for discharging verification conditions.

functional_induction

Unfolds functions: fun_induction foo <> grind

Wojciech Rozowski: coinductive predicates on Thursday; Sebastian Graf: mvcgen on Tuesday.

2025 HIGHLIGHTS

Website & Documentation

=N

New Website: lean-lang.org

Completely redesigned website built with Verso, featuring interactive code examples and clear navigation.

Key sections: Install, Learn, Community, Use Cases, FRO, Playground, Reservoir

[IWN Install Learn Community Use Cases FRO Playground Reservoir ¢ &

Powerful automation Mathematics

—— 'Grind' efficiently manages complex patter Copy ch

—— case analysis beyond standard tactics.

example (x : Nat) : @ < match x with
o =1
| n+#1 => x + n := by

Lean is an open-source programming language and proof
assistant that enables correct, maintainable, and formally
verified code

grind
— Automatically solves systems of linear inequaliti

o example by @ In)

Grind is a powerful tool that can help you prove @
theorems quickly and efficiently.

b

m

Lean Language Reference & Verso

Lean Language Reference

Comprehensive coverage: type system, elaboration, tactics,

metaprogramming, interactivity, and more

New: "Validating Lean Proofs" section for high-trust
applications

Continuously updated for new features and libraries.

Verso: Literate Programming

Theorem Proving in Lean — Verso

Functional Programming in Lean — Verso

Automatic cross-linking between documents, hovers and proof states in

books, red squigglies on errors in docstrings!

G % lean-lang.orgffag/ Q o} (=3 O work

[3IWN Install Learn Community Use Cases FRO Playground Reservoir (S

Frequently Asked Questions

This page provides answers to frequent questions and addresses common misconceptions and
myths around Lean.

Is Lean only useful for formalizing
mathematics?

Lean’s mathematical library, Mathlib, is impressive, but Lean itself is useful not just for verifying
mathematics, but equally suitable for verifying software, hardware, protocols, and more. Lean is also
a powerful tool for software development.

Is Lean only a theorem prover?

Contrary to other proof assistants, Lean is a full-blown programming language. Lean is a theorem
prover and a general-purpose programming language. Dependently typed pure functional
programming has a lot to offer for building reliable, maintainable software, even without formal
verification.

New Chrome available

Q

2025 HIGHLIGHTS

Growth & Adoption

=N

Repository Growth

Total Lean repositories (GitHub) 2021 - Present

8000
6000
new repos in Q4 2025
4000
0
+32%
2000
increase over Q3
0

2022-01-01 2023-01-01 2024-01-01 2025-01-01

VN
VS Code Extension Unique Installations

New Lean 4 VS Code extension installs 2024 - Present

90K+

100000

Since beginning of 2024
80000

60000 1 7 K +

40000 new installs Q4 2025

20000

+21%

increase over Q3

July 2024 January 2025 July 2025 January 2026

=N

Who Uses Lean?

Industry
AWS Google DeepMind Meta FAIR
Microsoft OpenAl
Al Startups
Harmonic Axiom Math, Inc. Mistral

Logical Intelligence Axiomatic Al

Academia (50+ Courses)

CMU MIT Stanford Imperial ETH Zirich

Cambridge LMU + many more

Lean is the only proof assistant appearing in respectable
position on RedMonk rankings — competing with

general-purpose languages.

m

RedMonk 2025 Language Rankings

RedMonk Q125 Programming Language Rankings

Lean now appears in the RedMonk Programming

Language Rankings — measured by GitHub projects R
Visual Basic NET BitBake e RgpeScript
and Stack Overflow activity. et PO
) Shell o
_ Assembly Rust
23 Sass o
& Arduino -
. 2 ColdFusion Gt =

Lean's neighbors: : R o e

3 @ offeeScrip L
. o % Scheme GLSL i 9 1 lixir

Mathematica, Nim, Puppet, Smalltalk & - Processing s
ks Jsonnet
o] Racket
(g VHDL Mathematica e . | Smarty
< macs Lisp
& FrEEMWAssembly D
% Raku Tel EAI«pex
3 Ballerina)

- a g . . I3 Modelica S ommon 1
Key insight: Lean is the only proof assistant in a % 5 ObjectieCt ZQIVFIlL YT Ghein gosom
Vala ©'%®) it
g . Veriloy
respectable position. Coq is at the very bottom of the e oV Basic Astro
NefHERSEL
chart. i styus He
SystemV(-xrilod"q“"‘1 ShaderLab Stk
i i tarlarl
01 SaltStaol ol Rich Text Format o Roff

Popularity Rank on GitHub (by # of Projects)

2025 HIGHLIGHTS

Al & Software Verification

[ENN
Vibe Proving

Forbidden Sidon subsets of perfect difference sets,
featuring a human-assisted proof

Boris Alexeev ChatGPT* Lean' Dustin G. Mixon?*$

Abstract

We resolve a $1000 Erdss prize problem, complete with formal verification generated by a large
language model.

In over a dozen papers, beginning in 1976 and spanning two decades, Paul Erdés repeatedly
posed one of his “favourite” conjectures: every finite Sidon set can be extended to a finite perfect
difference set. We establish that {1,2,4, 8,13} is a counterexample to this conjecture.

During the preparation of this paper, we discovered that although this problem was presumed
to be open for half a century, Marshall Hall, Jr. published a different counterexample three decades
before Erdés first posed the problem. With a healthy skepticism of this apparent oversight, and
out of an abundance of caution, we used ChatGPT to vibe code a Lean proof of both Hall’s and
our counterexamples.

borisalexeev.com/pdf/erdos707.pdf

Vibe Proving

@ Harmonic & @HarmonicMath - Nov 29 g L A) o
Mathematical superintelligence is coming, faster than you imagined 6 Ca'rma Hong & @Carinal Hong - Dec 2 e
AxiomProver solved Erdos problem #481 - took 5 hours

. Viad Tenev @ # @vladtenev - Nov 29 #124 simplified version took over 24 hours (oof) and was not as succinct as
We are on the cusp of a profound change in the field of mathematics. we'd like it to be

Vibe proving is here. . a—

Aristotle from @HarmonicMath just proved Erdos Problem #124 in
@leanprover, all by itself. This problem has been open for nearly 30 ...

Show more
O Q40 Q 561 ihi 89K A [A
J i . e
Logical Intelligence & B Harmonic 42 @HarmonicMath - Nov 30 (&)
@logic_int
4 Aleph prover just went BEAST MODE
4 math problems unsolved for 20+ years. Formal proofs in Lean 4. Less e Bartosz Naskrecki & @nasqret - Nov 29
than 48 hours. Under $5k total. Aristotle by @Harmonic is acing group-theory puzzles.
Binomial tail bounds conjecture (Telgarsky, 2009) Here is a complete formal proof of the popular Yu Tsumura 554 puzzle.
Quantum gate lattice approximation (Greene & Damelin, 2015)* What's nice is that the proof is very transparent, with easy-to-follow
Erdés 124 steps. It was generated in less than an hour without any hints. | am ...
Erdés 481 Show more

#1on PutnamBench leaderboard

The era of Al mathematics is here.

m

Startups using Lean & Al

@ Harmonic L. Axiom

. @ @Ef Axiomatic_Al

Math, Inc. Logical Intelligence

...and more to come

A thriving startup ecosystem validates Lean as the platform of choice for verified Al reasoning.

=N
.::i csLib: Al + CS is the Next Frontier

A Focused Effort on Formalizing Computer Science in Lean

Harmonic

Supported by: AWS, Google DeepMind, SDU, Centaur (Stanford)
"Aristotle achieves SOTA 96.8% on VERINA benchmark"

Formalizing CS Foundations — computational models, — verifiable code generation

complexity

: — , I
Reasoning about Code — deductive verification techniques VB SRy

"The research community's perception of program

verification is about to change irreversibly."

Verified Code Repository — algorithms & data structures

Al Integration — training datasets, Al-assisted tools Fabrizio Montesi will present CSLib at Lean Together.

cslib.io

VN
Software Verification Ecosystem

Verification Tools Building on Lean Why CS + Lean?

Velvet Al systems excel at generating code. But can you trust that

Imperative program verifier (Oct 2025) code? Lean provides the missing piece: proof that the code

is correct.

mvcgen

Lean FRQO's monadic verification framework

Aeneas

Rust verification via translation to Lean

Strata

A unified platform for formalizing language syntax and semantics

2025 HIGHLIGHTS

Soundness & Trust

m

Why Soundness Matters

Lean's value proposition rests on trust. If the kernel has

bugs, proofs mean nothing.

Critical Use Cases

Al math competitions, verified software, hardware verification,

published theorems — all depend on kernel correctness.

Community Expectations

As Lean adoption grows, the community rightfully expects

transparency about soundness and clear guidance on trust.

"How do | know | can trust a Lean proof?"

This is a fair question. We take it seriously.

Our commitment: Provide the tools, infrastructure, and
documentation for users to verify proofs to their own

standards.

=N
Our Approach to Soundness

Small Trusted Kernel

~8K lines of C++ that must be correct. Everything else generates

terms checked by this kernel.

Export Format

Lean can export proofs for independent checkers to verify.

Multiple Independent Kernels
If n kernels all accept a proof, the chance of a bug affecting all n is

very low.

Independent Kernel Implementations

lean4checker — Reference checker in Lean itself

nanoda — Rust implementation

leand4lean — Full kernel in Lean

+ more — Community implementations

Different languages, different authors, different approaches

m

New documentation
| VN

¥ Table of Contents

ks

000 St S Bod

12

10.
. Type Classes

15;
16.
17.
18.
19.

Introduction

Elaboration and Compilation
Interacting with Lean

The Type System

Source Files and Modules
Namespaces and Sections
Definitions

Axioms

Attributes

Terms

. Coercions
13.
14.

Tactic Proofs

Functors, Monads and do-
Notation

10

The Simplifier

The grind tactic
The mvcgen tactic
Basic Propositions

The Lean Language Reference

Search...

€ 24.2. Managing Toolchains with Elan Error Explanations =

Validating a Lean Proof

This section discusses how to validate a proof expressed in Lean.

Depending on the circumstances, additional steps may be recommended to rule out misleading proofs. In
st proof attempt, and needs protection against

In particular, we use honest when the goal is to create a valid proof. This allows for mistakes and bugs in proofs
and meta-code (tactics, attributes, commands, etc.), but not for code that clearly only serves to circumvent the
system.

In contrast, we use malicious to describe code to go out of its way to trick or mislead the user, exploit bugs or
compromise the system. This includes un-reviewed Al-generated proofs and programs.

Furthermore it is important to distinguish the question “does the theorem have a valid proof” from “what does
the theorem statement mean”.

Below, an escalating sequence of checks are presented, with instructions on how to perform them, an
explanation of what they entail and the mistakes or attacks they guard against.

m

Comparator: Trustworthy Proof Judge

How It Works
What is it?

A trustworthy judge for Lean proofs. Verify that a solution proves 1. Build Challenge and Solution in sandboxes

exactly what was claimed, using only permitted axioms.

2. Export both to kernel-checkable format

Sandboxed Execution
3. Verify declarations match exactly

Solutions run in isolated sandbox — no access to modify trusted

files
4. Check only permitted axioms used

Multi-Kernel Verification
Use case: Al math competitions, untrusted proof verification

Supports Lean kernel + nanoda for increased trust

Lean Kernel Arena: arena.lean-lang.org

m

Lean Kernel Arena

Gamified competition for kernel implementations — arena.lean-lang.org

Leaderboard Metrics

Completeness %, Soundness %, Performance, Days since last

unsoundness, Lines of Code

Test Suite

Positive tests: All of Mathlib must pass

Negative tests: Collection of tricky exploits and edge cases

Goal: Make writing a Lean kernel a standard exercise in
programming language courses

Why a "Competition"?

Incentivizes diverse implementations. More implementations =

more eyes on the spec = higher confidence in soundness.

Future: "official-beta" Kernels

New kernel features can be tested on arena participants before

merging into the official kernel.

Watch out for an announcement on Zulip.

m

The Vision: Decentralized Trust

No Single Point of Failure

"Don't trust us. Verify." If one kernel has a bug — other kernels catch it

Different authors, languages, approaches

We don't want you to trust the Lean FRO. We want to give you

the tools to trust yourself.
Common interface, common test suite

Export your proofs. Run them through independent kernels

you trust. If they all agree, you have a proof. Result: Trust in the collective, not in any single implementation

2026

Moving Forward

EXN
2026: Year 3 Goals

Std 1.0 — Finalize standard library; support Mathlib in

reducing technical debt

Compiler — Smaller binaries, unboxed types, new

backend optimizations

Benchmarking — Reliable profiling infrastructure for Lean
and Mathlib — radar.lean-lang.org

Lake — Deploy remote cache to Lean core and Mathlib

Proof Automation — grind improvements, scalable simp,

try?, +suggestions, counter-example generation

New do-notation — Verification condition generation,

async/await

Usability — Auto-formatter, clearer errors, IDE polish

Case Studies — Demonstrate Lean's prowess in multiple

domains

l!!EEisiii!}

2026: Next-Gen UX & Literate Programming

Lean Online Workbench

Zero-install browser environment with multi-file projects, full-featured

editing, real-time collaboration

Next-gen Lean Games editor — Natural Number Game

successor

GitHub integration — Seamless workflow

Verso Blueprints — Relate formal and informal objects in the

same file

Verso + doc-gen4

Shared code, auto cross-linking, consistent rendering

Zero-config Websites

"Turn my code into a website" with one command

Auto-formatter

In VS Code extension, scales with Mathlib

GUI Installer

Cross-platform, installs VS Code too

m

2026: Software Verification

New do-notation Finer-grained Incrementality & Parallelism

Extensible elaborator framework for intrinsic Dafny-style verification Robust against whitespace changes. Run expensive terminal tactics
using do notation. in parallel.

Call-by-value Tactic SymM

"Proofs by computation" supporting well-founded recursion. Partial Framework for developing verification condition generators, decision
evaluation for hardware verification. procedures, etc.

Counterexample Generator Goal: Make Lean the best platform for verified software.

When proofs fail, show why with concrete counterexamples.

=N
2026: Compiler & Backend

Smaller Binaries Finer-grained Incrementality

Robust against whitespace changes after a tactic. Parallelized

Reducing executable size for better distribution and

deployment expensive terminal tactics.

| Deri |
Vil Tipes mproved Derived Instances

. Scalable noConfusion, better deriving handlers
Better memory layout, improved cache performance

Goal: Make Lean even faster for production use at scale
New Code Generator

Stack allocation, ownership annotations, more efficient

codegen

Stability &
Backward Compatibility

Our commitment to the community

m

The Journey So Far

Why Changes Were Necessary

July 2023

Lean 4 officially released after Mathlib was fully ported in the Some design decisions only reveal problems at scale (e.g.,

same month. Mathlib)

Since then: 25 releases, rapid feature development, growing Better to fix fundamental issues early than accumulate

ecosystem, +7,500 PRs merged. technical debt

We hear you: Stability and backward compatibility are Module system, type class resolution, stdlib design needed

essential for growth and adoption. refinement, etc

=N
What We're Still Improving

Implicit Argument DefEq issues

Current strategy negatively impacts Mathlib performance and

usability. This must be fixed — it's a fundamental issue.

Module System

New module system (Sebastian's presentation Tuesday) is a

big deal for compilation and code organization.

Standard Library Completion

Stdlib will be "completed" in 2026 — stable APlIs,

comprehensive coverage, minimal future breaking changes.

These fixes have breaking changes, but they're necessary to

build a solid foundation for the next decade.

m

Our Commitment

2026 Goal

2026 will be the last year with significant changes to

the language and standard library.

After 2026, we shift to a stability-first approach. Breaking

changes will be rare and carefully considered.

What We're Doing Now

Release notes: All breaking changes clearly highlighted

Deprecation annotations: Old APls marked deprecated

before removal

Migration guides: Documentation for updating code

We understand stability is essential for adoption. We're working

to earn your trust.

=N

Looking Ahead

What's Next

The Opportunity

Al systems that can discover and verify mathematics
Al is transforming how we do mathematics and write

software. Lean is uniquely positioned at this intersection
: : ified soft t scale — not just fs of t
— the only tool that's both a serious programming Verified software at scale — not just proofs of concep

language and a serious proof assistant.

A stable, mature platform for the next decade

We're building the infrastructure for trustworthy Al and verified
software. Thank you for being part of it.

Get Involved

Contribute New Projects

Join the Community

Math and Software
Zulip: leanprover.zulipchat.com

Write Documentation using Verso GitHub: github.com/leanprover

Tutorials, blog posts, teaching materials

Build Independent Kernels

Report Issues Participate in the Kernel Arena — help strengthen Lean's trust

Bug reports and feature requests help improve Lean model

Thank You

https://leanprover.zulipchat.com/

X: @leanprover

LinkedIn: Lean FRO

Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

Questions?

lean-lang.org ¢ leanprover.zulipchat.com

