Leonardo de Moura Microsoft Research

Satisfiability

$$a>b+2$$
, $a=2c+10$, $c+b\leq 1000$

SAT

 $a=0$, $b=-3$, $c=-5$
 $0>-3+2$, $0=2(-5)+10$, $(-5)+(-3)\leq 1000$

$$\forall x \; \exists y \; x > 0 \Longrightarrow f(x, y) = 0$$

Universal

$$\forall x \exists y \ x > 0 \Longrightarrow f(x,y) = 0$$

Existential

$$\forall x \exists y \ x > 0 \Longrightarrow f(x,y) = 0$$

$$\forall x \exists y \ x > 0 \Longrightarrow f(x, y) = 0$$

A Model f is the constant function 0

$$\forall x \exists y \ x > 0 \Longrightarrow f(x, y) = 0$$

Another Model f is the polynomial $y^2 - x$

Modeling the Runtime

```
\forall h,o,f:

IsHeap(h) \land o \neq null \land read(h, o, alloc) = t

\Rightarrow

read(h,o, f) = null \lor read(h, read(h,o,f),alloc) =
```

Frame Axioms

```
\forall o, f:

o \neq null \wedge read(h_0, o, alloc) = t \impressuremath{\Rightarrow}

read(h_1,o,f) = read(h_0,o,f) \vee (o,f) \in M
```

User provided assertions

 \forall i,j: i \leq j \Rightarrow read(a,i) \leq read(b,j)

Extra Theories

```
\forall x: p(x,x)
```

 $\forall x,y,z: p(x,y), p(y,z) \Rightarrow p(x,z)$

 \forall x,y: p(x,y), p(y,x) \Rightarrow x = y

Main Challenge

Solver must be fast is satisfiable instances

Verifying Compilers

Annotaated Program

Verification Condition F

pre/post conditions invariants and other annotations

Verification Condition: Structure

VCC: Verifying C Compiler

BAD NEWS

First-order logic (FOL) is semi-decidable Quantifiers + EUF

BAD NEWS

FOL + Linear Integer Arithmetic is undecidable

Quantifiers + EUF + LIA

Hypervisor

Challenges:

VCs have several Megabytes
Thousands universal quantifiers
Developers are willing at most 5 min per VC

Verification Attempt Time vs. Satisfaction and Productivity

By Michal Moskal (VCC Designer and Software Verification Expert)

NNF: Negation Normal Form

```
NNF(p) = p
           NNF(\neg p) = \neg p
         NNF(\neg \neg \phi) = NNF(\phi)
    NNF(\phi_0 \lor \phi_1) = NNF(\phi_0) \lor NNF(\phi_1)
NNF(\neg(\phi_0 \lor \phi_1)) = NNF(\neg\phi_0) \land NNF(\neg\phi_1)
    NNF(\phi_0 \wedge \phi_1) = NNF(\phi_0) \wedge NNF(\phi_1)
NNF(\neg(\phi_0 \land \phi_1)) = NNF(\neg\phi_0) \lor NNF(\neg\phi_1)
       NNF(\forall x : \phi) = \forall x : NNF(\phi)
  NNF(\neg(\forall x:\phi)) = \exists x: NNF(\neg\phi)
       NNF(\exists x : \phi) = \exists x : NNF(\phi)
  NNF(\neg(\exists x:\phi)) = \forall x:NNF(\neg\phi)
```

NNF: Negation Normal Form

Theorem: $F \Leftrightarrow NNF(F)$

Ex.: $NNF(\neg(p \land (\neg r \lor \forall x : q(x)))) = \neg p \lor (r \land \exists x : \neg q(x)).$

Skolemization

After NNF, Skolemization can be used to eliminate existential quantifiers.

$$\exists y : F[x,y] \rightsquigarrow F[x,f(x)]$$

Skolemization

The resultant formula is equisatisfiable.

$$\forall x: p(x) \Rightarrow \exists y: q(x,y)$$

$$\forall x: p(x) \Rightarrow q(x, f(x))$$

∀ - Many Approaches

Heuristic quantifier instantiation

SMT + Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifier Elimination

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

```
\forall x: f(g(x)) = x { f(g(x)) }
a = g(b),
b = c,
f(a) \neq c Pattern/Trigger
```

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

```
\forall x: f(g(x)) = x \{ f(g(x)) \}
a = g(b),
b = c,
f(g(b)) = b
f(a) \neq c
```

E-matching problem

Input: A set of ground equations E, a ground term t, and a pattern p, where p possibly contains variables.

Output: The set of substitutions β over the variables in p, such that:

$$E \models t = \beta(p)$$

$$E \equiv \{a = f(b), a = f(c)\}$$

$$t \equiv g(a)$$

$$p \equiv g(f(x))$$

$$R \equiv \{\underbrace{\{x \mapsto b\}}, \underbrace{\{x \mapsto c\}}\}$$

$$\beta_1 \qquad a = f(b), a = f(c) \models g(a) = g(f(c))$$

E-matching Challenge

Number of matches can be exponential

It is not refutationally complete

The real challenge is finding new matches:

Incrementally during backtracking search

Large database of patterns

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b)) \}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

Merge equivalence classes of f(g(a)) and c.

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

Add disequality

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), \mathbf{a} = \mathbf{b}$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

Merge equivalence classes of a and b.

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

Merge equivalence classes of g(a) and g(b).

EUF Solver: Review

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b)), f(g(a))\}$$

EUF Solver: Review

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b)$$

$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b)) \}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b)), f(g(a))\}$$

Merge equivalence classes of f(g(a)) and $f(g(b)) \rightsquigarrow unsat$.

E-matching

 $match(p, t, \{\emptyset\})$ returns the desired set of substitutions.

$$F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,$$

$$f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$$

$$g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c,$$

$$h(a,d) \mapsto b, h(c,a) \mapsto b\}$$

E-match t and p:

$$t = f(c,b)$$
$$p = f(g(x), h(x,a))$$

$$\begin{array}{ll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ & f(c,b) \mapsto f(c,b), \ \ f(g(a),b) \mapsto f(c,b), \\ & g(a) \mapsto c, \ \ g(b) \mapsto g(b), \ \ g(c) \mapsto c, \ \ g(d) \mapsto c, \\ & h(a,d) \mapsto b, \ \ h(c,a) \mapsto b \} \\ \\ \textit{match}(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) &= \\ \end{array}$$

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
          f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
          g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
          h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, match(h(x, a), b, \{\emptyset\}))
                                                               for f(c,b)
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
                                                               for f(g(a), b)
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
          f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
          g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
          h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, match(x, a, match(a, d, \{\emptyset\})))
                                                                 for h(a,d)
                     match(x, c, match(a, a, \{\emptyset\})))
                                                                 for h(c,a)
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

$$F = \{a \mapsto c, \, b \mapsto b, \, c \mapsto c, \, d \mapsto d,$$

$$f(c,b) \mapsto f(c,b), \, f(g(a),b) \mapsto f(c,b),$$

$$g(a) \mapsto c, \, g(b) \mapsto g(b), \, g(c) \mapsto c, \, g(d) \mapsto c,$$

$$h(a,d) \mapsto b, \, h(c,a) \mapsto b\}$$

$$\mathit{match}(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) =$$

$$\mathit{match}(g(x),c,\mathit{match}(x,a,\mathit{match}(a,d,\{\emptyset\}))) \quad \text{for } h(a,d)$$

$$\cup$$

$$\mathit{match}(x,c,\mathit{match}(a,a,\{\emptyset\}))) \quad \text{for } h(c,a)$$

$$\cup$$

$$\mathit{match}(g(x),g(a),\mathit{match}(h(x,a),b,\{\emptyset\}))$$

a and d are not in the same equivalence class.

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
          f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
          g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
          h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, match(x, a, \emptyset))
                      match(x, c, match(a, a, \{\emptyset\})))
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, \emptyset)
                      match(x, c, match(a, a, \{\emptyset\})))
  \bigcup
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, \emptyset)
                      match(x, c, match(a, a, \{\emptyset\})))
  \bigcup
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
            f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
            g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
            h(a,d) \mapsto b, h(c,a) \mapsto b
 match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
   match(g(x), c, \emptyset)
                       match(x, c, match(a, a, \{\emptyset\})))
   U
   match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
F^*(a) = F^*(a)
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, \ h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, \emptyset)
                      match(x, c, \{\emptyset\}))
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, \emptyset)
                      \{\{x\mapsto c\}\}\
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
          f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
          g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
          h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  match(g(x), c, \{\{x \mapsto c\}\})
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

$$\begin{split} F &= \{a \mapsto c, \, b \mapsto b, \, c \mapsto c, \, d \mapsto d, \\ &f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b), \\ &g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c, \\ &h(a,d) \mapsto b, \ h(c,a) \mapsto b \} \\ & \mathit{match}(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) = \\ & \mathit{match}(x,a,\{\{x \mapsto c\}\}) \cup & \mathit{for} \ g(a) \\ &\mathit{match}(x,c,\{\{x \mapsto c\}\}) \cup & \mathit{for} \ g(c) \\ &\mathit{match}(x,d,\{\{x \mapsto c\}\}) \cup & \mathit{for} \ g(d) \\ &\mathit{match}(g(x),g(a),\mathit{match}(h(x,a),b,\{\emptyset\})) \end{split}$$

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  \{\{x\mapsto c\}\}
  \{\{x\mapsto c\}\}
  \emptyset \cup
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
          g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
          h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  \{\{x\mapsto c\}\}
  match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))
```

```
F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d,
           f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b),
           g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,
           h(a,d) \mapsto b, h(c,a) \mapsto b
match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =
  \{\{x\mapsto c\}\}
  \{\{x\mapsto c\}\}
```

```
\begin{array}{ll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ & f(c,b) \mapsto f(c,b), \ \ f(g(a),b) \mapsto f(c,b), \\ & g(a) \mapsto c, \ \ g(b) \mapsto g(b), \ \ g(c) \mapsto c, \ \ g(d) \mapsto c, \\ & h(a,d) \mapsto b, \ \ h(c,a) \mapsto b \} \\ \\ \textit{match}(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) = \\ & \{\{x \mapsto c\}\} \end{array}
```

Efficient E-matching

Problem	Indexing Technique
Fast retrieval	E-matching code trees
Incremental E-Matching	Inverted path index

E-matching: code trees

Trigger:

f(x1, g(x1, a), h(x2), b)

Compiler

Similar triggers share several instructions.

Combine code sequences in a code tree

Instructions:

- 1. init(f, 2)
- 2. check(r4, b, 3)
- 3. bind(r2, g, r5, 4)
- 4. compare(r1, r5, 5)
- 5. check(r6, a, 6)
- 6. bind(r3, h, r7, 7)
- 7. yield(r1, r7)

E-matching needs ground seeds.

 $\forall x: p(x),$

 $\forall x$: not p(x)

Bad user provided triggers:

```
\forall x: f(g(x))=x \{ f(g(x)) \}

g(a) = c,

g(b) = c,

a \neq b
```

Trigger is too restrictive

Bad user provided triggers:

```
\forallx: f(g(x))=x { g(x) }
g(a) = c,
g(b) = c,
a \neq b
```

More "liberal" trigger

Bad user provided triggers:

```
\forall x: f(g(x))=x \{ g(x) \}

g(a) = c,

g(b) = c,

a \neq b,

f(g(a)) = a,

f(g(b)) = b
```

It is not refutationally complete

False positives

E-matching: why do we use it?

Integrates smoothly with current SMT Solvers design.

Proof finding.

Software verification problems are big & shallow.

Decidable Fragments & Complete Quantifier Instatiation

 \forall + theories

There is no sound and refutationally complete procedure for linear arithmetic + unintepreted function symbols

Model Generation

How to represent the model of satisfiable formulas?

Functor:

Given a model M for T

Generate a model M' for F (modulo T)

Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

	Symbol	Interpretation
n 4/	a	1
M':	b	0
	f	ite(x=1, 0, 2)

Model Generation

How to represent the model of satisfiable formulas?

Interpretation is given

using T-symbols

Functor:

Given a model M for T

Generate a model M' for F (m.

Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

	Symbol	Interpretation
. 41.	a	1
M':	b	0
	f	ite(x=1, 0, 2)

Λ

Model Generation

How to represent the model of satisfiable formulas?

Functor:

Given a model *M* for *T*

Generate a model M' for F (modu

Non ground term (lambda expression)

Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

	Symbol	Interpretati
0.4/	a	1
M':	b	0
	f	ite(x=1, 0, 2)

Models as Functional Programs

```
(declare-fun f (Int Int) Int)
(declare-const a Int)
(declare-const b Int)

(assert (forall ((x Int)) (>= (f x x) (+ x a))))

(assert (< (f a b) a))
(assert (> a 0))
(check-sat)
(get-model)

(echo "evaluating (f (+ a 10) 20)...")
(eval (f (+ a 10) 20))
```

ask z3

Model Checking

Symbol

۸ 41.	a	1
M':	b	0
	f	ite(x=1, 0, 2)

Is $\forall x: f(x) \ge 0$ satisfied by M'?

Interpretation

Yes, not (ite(k=1,0,2) ≥ 0) is unsatisfiable

Model Checking

	Symbol	Interpretation
<i>M'</i> :	a	1
	b	0
	f	ite(x=1, 0, 2)

Is $\forall x: f(x) \ge 0$ satisfied by M'?

Yes, not (ite(k=1,0,2) ≥ 0) is unsatisfiable

Negated quantifier
Replaced f by its interpretation
Replaced x by fresh constant k

Essentially uninterpreted fragment

Variables appear only as arguments of uninterpreted symbols.

$$f(g(x_1) + a) < g(x_1) \lor h(f(x_1), x_2) = 0$$

$$f(x_1+x_2) \le f(x_1) + f(x_2)$$

Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F*

"Domain" of f is the set of ground terms A_f $t \in A_f$ if there is a ground term f(t)

Suppose

- 1. We have a clause C[f(x)] containing f(x).
- 2. We have f(t).

Instantiate x with t: C[f(t)].

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0 F*

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$
 $h(c) = 1,$
 $g(f(x_1),b) + 1 \le f(x_1),$ $f(a) = 0$
 $h(c) = 1,$
 $f(a) = 0$

Copy quantifier-free formulas

$$f$$

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$
 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

```
"Domains":
A<sub>f</sub>: { a }
A<sub>g</sub>: { }
A<sub>h</sub>: { c }
```

f $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0

F*
$$h(c) = 1,$$

$$f(a) = 0,$$

$$g(f(a),b) + 1 \le f(a)$$

```
"Domains":
A<sub>f</sub>: { a }
A<sub>g</sub>: { [f(a), b] }
A<sub>h</sub>: { c }
```

f $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0

h(c) = 1,

$$f(a) = 0,$$

 $g(f(a),b) + 1 \le f(a),$

"Domains": A_f: { a } A_g: { [f(a), b] } A_h: { c }

F

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0 F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0$

"Domains":

A_f: { a } A_g: { [f(a), b] } A_h: { c, b }

F

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0 F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0$

"Domains":

A_f: { a }
A_g: { [f(a), b]}
A_h: { c, b }

F

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0 F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0,$
 $g(f(a),c) = 0 \lor h(c) = 0$

"Domains":

A_f: { a }

A_g: { [f(a), b], [f(a), c] }

A_h: { c, b }

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

F*

a
$$\rightarrow$$
 2, b \rightarrow 2, c \rightarrow 3
f \rightarrow { 2 \rightarrow 0, ...}
h \rightarrow { 2 \rightarrow 0, 3 \rightarrow 1, ...}
g \rightarrow { [0,2] \rightarrow -1, [0,3] \rightarrow 0, ...}

```
Given a model M for F^*, Build a model M^{\pi} for F
```

```
Define a projection function \pi_f s.t. range of \pi_f is M(A_f), and \pi_f(v) = v if v \in M(A_f)
```

```
Then, M^{\pi}(f)(v) = M(f)(\pi_f(v))
```



```
Given a model M for F^*, Build a model M^{\pi} for F
```

In our example, we have:
$$h(b)$$
 and $h(c)$

$$\rightarrow A_h = \{b, c\}, \text{ and } M(A_h) = \{2, 3\}$$

$$\pi_h = \{2 \rightarrow 2, 3 \rightarrow 3, \text{ else} \rightarrow 3\}$$

$$M(h)$$

$$\{2 \rightarrow 0, 3 \rightarrow 1, ...\}$$

$$\{2 \rightarrow 0, 3 \rightarrow 1, \text{ else} \rightarrow 1\}$$

$$M^{\pi}(h) = \lambda x. \text{ if}(x=2, 0, 1)$$

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0,$
 $g(f(a),c) = 0 \lor h(c) = 0$

$$a \rightarrow 2$$
, $b \rightarrow 2$, $c \rightarrow 3$
 $f \rightarrow \lambda x$. 2
 $h \rightarrow \lambda x$. if(x=2, 0, 1)
 $g \rightarrow \lambda x$, y. if(x=0 \land y=2,-1, 0)

M

a
$$\rightarrow$$
 2, b \rightarrow 2, c \rightarrow 3
f \rightarrow { 2 \rightarrow 0, ...}
h \rightarrow { 2 \rightarrow 0, 3 \rightarrow 1, ...}
g \rightarrow { [0,2] \rightarrow -1, [0,3] \rightarrow 0, ...}

Example: Model Checking

 M^{π}

a
$$\rightarrow$$
 2, b \rightarrow 2, c \rightarrow 3
f \rightarrow λx . 2
h \rightarrow λx . if(x=2, 0, 1)
g \rightarrow λx ,y. if(x=0 \land y=2,-1, 0)

Does M^{π} satisfies?

$$\forall x_1, x_2 : g(x_1, x_2) = 0 \lor h(x_2) = 0$$

$$\forall x_1, x_2$$
: if($x_1=0 \land x_2=2,-1,0$) = 0 \lor if($x_2=2,0,1$) = 0 is valid

$$\exists x_1, x_2$$
: if($x_1=0 \land x_2=2,-1,0$) $\neq 0 \land$ if($x_2=2,0,1$) $\neq 0$ is unsat

if(
$$s_1=0 \land s_2=2,-1,0$$
) $\neq 0 \land$ if($s_2=2,0,1$) $\neq 0$ is unsat

Why does it work?

Suppose M^{π} does not satisfy C[f(x)].

Then for some value v, $M^{\pi}\{x \rightarrow v\}$ falsifies C[f(x)].

 $M^{\pi}\{x \rightarrow \pi_f(v)\}$ also falsifies C[f(x)].

But, there is a term $t \in A_f$ s.t. $M(t) = \pi_f(v)$ Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)]. Contradiction: M is a model for F*.

Refinement: Lazy construction

F* may be very big (or infinite).

Lazy-construction

Build F* incrementally, F* is the limit of the sequence

$$\mathsf{F}^0 \subset \mathsf{F}^1 \subset ... \subset \mathsf{F}^k \subset ...$$

If Fk is unsat then F is unsat.

If F^k is sat, then build (candidate) M^{π}

If M^{π} satisfies all quantifiers in F then return sat.

Refinement: Model-based instantiation

Suppose M^{π} does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which "blocks" this spurious model. Issue: how to find t?

Use model checking, and the "inverse" mapping π_f^{-1} from values to terms (in A_f). $\pi_f^{-1}(v) = t$ if $M^{\pi}(t) = \pi_f(v)$

Example: Model-based instantiation

Infinite F*

Is refutationally complete?

FOL Compactness

A set of sentences is unsatisfiable iff

it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then apply compactness to $F^* \cup T$

Infinite F*

Infinite F*: Example

F

$$\forall x_1$$
: $f(x_1) < f(f(x_1))$,
 $\forall x_1$: $f(x_1) < a$,
 $1 < f(0)$.

Unsatisfiable

F*

Every finite subset of F* is satisfiable.

Infinite F*: What is wrong?

Theory of linear arithmetic T_z is the set of all first-order sentences that are true in the standard structure Z.

T_z has non-standard models.

F and F* are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.

Compactness does not hold.

F and F* are still equisatisfiable.

Shifting

$$\neg (0 \le x_1) \lor \neg (x_1 \le n) \lor f(x_1) = g(x_1+2)$$

Many-sorted logic Pseudo-Macros

$$0 \le g(x_1) \lor f(g(x_1)) = x_1,$$

 $0 \le g(x_1) \lor h(g(x_1)) = 2x_1,$
 $g(a) < 0$

Online tutorial at:

http://rise4fun.com/z3/tutorial

Online tutorial at:

http://rise4fun.com/z3/tutorial

Related work

Bernays-Schönfinkel class.

Stratified Many-Sorted Logic.

Array Property Fragment.

Local theory extensions.

SMT + Saturation

Guessing

$$p, \neg q \mid p \lor q, \neg q \lor r$$

Deducing

$$p, s \mid p \lor q, \neg p \lor s$$

Backtracking

$\mathsf{DPLL}(\Gamma)$

Tight integration: DPLL + Saturation solver.

$DPLL(\Gamma)$

Inference rule:

$$\frac{C_1 \quad \dots \quad C_n}{C}$$

 $\mathsf{DPLL}(\Gamma)$ is parametric.

Examples:

Resolution

Superposition calculus

• • •

$\mathsf{DPLL}(\Gamma)$

$\mathsf{DPLL}(\Gamma)$: Deduce I

 $p(a) \mid p(a) \lor q(a), \forall x: \neg p(x) \lor r(x), \forall x: p(x) \lor s(x)$

$\mathsf{DPLL}(\Gamma)$: Deduce I

 $p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$

$\mathsf{DPLL}(\Gamma)$: Deduce I

 $p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$

 $p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x), r(x) \lor s(x)$

$\mathsf{DPLL}(\Gamma)$: Deduce II

Using ground atoms from M:

M | F

Main issue: backtracking.

Hypothetical clauses:

 $\mathsf{H} \triangleright \mathsf{C}$

Track literals from M used to derive C

(hypothesis)
Ground literals

(regular) Clause

$\mathsf{DPLL}(\Gamma)$: Deduce II

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x)$$

$$p(a), \neg p(x) \lor r(x)$$

$$r(a)$$

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(a) \triangleright r(a)$$

$\mathsf{DPLL}(\Gamma)$: Backtracking

```
p(a), r(a) \mid p(a) \lor q(a), \neg p(a) \lor \neg r(a), p(a) \triangleright r(a), ...
```

$\mathsf{DPLL}(\Gamma)$: Backtracking

 $\neg p(a) \mid p(a) \lor q(a), \neg p(a) \lor \neg r(a), ...$

$\mathsf{DPLL}(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses.

$$p(a) \mid p(x) \mid$$

$\mathsf{DPLL}(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:

 Γ has the reduction property.

$\mathsf{DPLL}(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:

ullet Γ has the reduction property.

$\mathsf{DPLL}(\Gamma)$: Problem

Interpreted symtbols

$$\neg$$
(f(a) > 2), f(x) > 5

It is refutationally complete if

Interpreted symbols only occur in ground clauses

Non ground clauses are variable inactive

"Good" ordering is used

Summary

```
E-matching
proof finding
fast
shallow proofs in big formulas
not refutationally complete
regularly solves VCs with more than 5 Mb
```

Summary

```
Complete instantiation + MBQI
decides several useful fragments
model & proof finding
slow
complements E-matching
```

Summary

```
SMT + Saturation
refutationally complete for pure first-order
proof finding
slow
```

Not covered

Quantifier elimination

Fourier-Motzkin (Linear Real Arithmetic)

Cooper (Linear Integer Arithmetic)

CAD (Nonlinear Real Arithmetic)

Algebraic Datatypes (Hodges)

Finite model finding

Many Decidable Fragments

Challenge

New and efficient procedures capable of producing models for satisfiable instances.