Quantifiers

Leonardo de Moura
Microsoft Research

Satisfiability

$$
\begin{aligned}
& a>b+2, a=2 c+10, \quad c+b \leq 1000 \\
& a=0, \quad b=-3, c=-5 \\
& 0>-3+2, \quad 0=2(-5)+10, \quad(-5)+(-3) \leq 1000
\end{aligned}
$$

Quantifiers

$$
\forall x \exists y x>0 \Rightarrow f(x, y)=0
$$

Quantifiers

Universal

$$
\forall x \exists y x>0 \Rightarrow f(x, y)=0
$$

Quantifiers

Existential

$$
\forall x \exists y x>0 \Longrightarrow f(x, y)=0
$$

Quantifiers

$$
\forall x \exists y x>0 \Rightarrow f(x, y)=0
$$

A Model
f is the constant function 0

Quantifiers

$$
\forall x \exists y x>0 \Rightarrow f(x, y)=0
$$

Another Model
f is the polynomial

$$
y^{2}-x
$$

Verification Tools need Quantifiers

Modeling the Runtime

$\forall \mathrm{h}, \mathrm{o}, \mathrm{f}$:
$\operatorname{lsHeap}(h) \wedge 0 \neq$ null $\wedge \operatorname{read}(h, o$, alloc $)=t$
\Rightarrow
$\operatorname{read}(h, o, f)=\operatorname{null} \vee \operatorname{read}(h, \operatorname{read}(h, o, f), a l l o c)=$

Verification Tools need Quantifiers

Frame Axioms

$\forall \mathrm{o}, \mathrm{f}$:
$\mathrm{o} \neq$ null $\wedge \operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}\right.$, alloc $)=\mathrm{t} \Rightarrow$ $\operatorname{read}\left(\mathrm{h}_{1}, \mathrm{o}, \mathrm{f}\right)=\operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}, \mathrm{f}\right) \vee(\mathrm{o}, \mathrm{f}) \in \mathrm{M}$

Verification Tools need Quantifiers

User provided assertions

$\forall \mathrm{i}, \mathrm{j}: \mathrm{i} \leq \mathrm{j} \Rightarrow \operatorname{read}(\mathrm{a}, \mathrm{i}) \leq \operatorname{read}(\mathrm{b}, \mathrm{j})$

Verification Tools need Quantifiers

Extra Theories

$\forall \mathrm{x}: \mathrm{p}(\mathrm{x}, \mathrm{x})$
$\forall x, y, z: p(x, y), p(y, z) \Rightarrow p(x, z)$
$\forall x, y: p(x, y), p(y, x) \Rightarrow x=y$

Verification Tools need Quantifiers

Main Challenge

Solver must be fast is satisfiable instances

Verifying Compilers

Annotated Program

Verification Condition F

pre/post conditions
invariants
and other annotations

Verification Condition: Structure

VCC: Verifying C Compiler

BAD NEWS

First-order logic (FOL) is semi-decidable Quantifiers + EUF

BAD NEWS

FOL + Linear Integer Arithmetic is undecidable
Quantifiers + EUF + LIA

Hypervisor

Challenges:
VCs have several Megabytes
Thousands universal quantifiers
Developers are willing at most 5 min per VC

Verification Attempt Time vs. Satisfaction and Productivity

By Michal Moskal (VCC Designer and Software Verification Expert)

NNF: Negation Normal Form

$$
\begin{aligned}
N N F(p) & =p \\
N N F(\neg p) & =\neg p \\
N N F(\neg \neg \phi) & =N N F(\phi) \\
N N F\left(\phi_{0} \vee \phi_{1}\right) & =N N F\left(\phi_{0}\right) \vee N N F\left(\phi_{1}\right) \\
N N F\left(\neg\left(\phi_{0} \vee \phi_{1}\right)\right) & =N N F\left(\neg \phi_{0}\right) \wedge N N F\left(\neg \phi_{1}\right) \\
N N F\left(\phi_{0} \wedge \phi_{1}\right) & =N N F\left(\phi_{0}\right) \wedge N N F\left(\phi_{1}\right) \\
N N F\left(\neg\left(\phi_{0} \wedge \phi_{1}\right)\right) & =N N F\left(\neg \phi_{0}\right) \vee N N F\left(\neg \phi_{1}\right) \\
N N F(\forall x: \phi) & =\forall x: N N F(\phi) \\
N N F(\neg(\forall x: \phi)) & =\exists x: N N F(\neg \phi) \\
N N F(\exists x: \phi) & =\exists x: N N F(\phi) \\
N N F(\neg(\exists x: \phi)) & =\forall x: N N F(\neg \phi)
\end{aligned}
$$

NNF: Negation Normal Form

Theorem: $F \Leftrightarrow \operatorname{NNF}(F)$
Ex.: $\operatorname{NNF}(\neg(p \wedge(\neg r \vee \forall x: q(x))))=\neg p \vee(r \wedge \exists x: \neg q(x))$.

Skolemization

After NNF, Skolemization can be used to eliminate existential quantifiers.

$$
\exists y: F[x, y] \rightsquigarrow F[x, f(x)]
$$

Skolemization

The resultant formula is equisatisfiable.
Example:

$$
\begin{aligned}
& \forall x: p(x) \Rightarrow \exists y: q(x, y) \\
& \forall x: p(x) \Rightarrow q(x, f(x))
\end{aligned}
$$

\forall - Many Approaches

Heuristic quantifier instantiation

SMT + Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifier Elimination

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).
Example:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{f(g(x))\} \\
& a=g(b), \\
& b=c, \\
& f(a) \neq c \quad \text { Pattern/Trigger }
\end{aligned}
$$

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).
Example:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{f(g(x))\} \\
& a=g(b), \\
& b=c, \\
& f(a) \neq c
\end{aligned}
$$

E-matching problem

Input: A set of ground equations E, a ground term t, and a pattern p, where p possibly contains variables.

Output: The set of substitutions β over the variables in p, such that:

$$
E \models t=\beta(p)
$$

Example:

$$
\begin{aligned}
E & \equiv\{a=f(b), a=f(c)\} \\
t & \equiv g(a) \\
p & \equiv g(f(x)) \\
R & \equiv\{\underbrace{\{x \mapsto b\}}_{\beta_{1}}, \underbrace{\{x \mapsto c\}}_{\beta_{2}}\}
\end{aligned}
$$

Applying $\beta_{2}: \quad a=f(b), a=f(c) \models g(a)=g(f(c))$

E-matching Challenge

Number of matches can be exponential
It is not refutationally complete
The real challenge is finding new matches:
Incrementally during backtracking search Large database of patterns

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\} \\
D= & \} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\} \\
D= & \} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

Merge equivalence classes of $f(g(a))$ and c.

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

EUF Solver: Review

$$
\begin{aligned}
& f(g(a))=c, c \neq f(g(b)), a=b \\
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

Add disequality

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

Merge equivalence classes of a and b.

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b, g(a)=g(b)
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a), g(b)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b, g(a)=g(b)
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a), g(b)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b))\}
\end{aligned}
$$

Merge equivalence classes of $g(a)$ and $g(b)$.

EUF Solver: Review

$$
f(g(a))=c, c \neq f(g(b)), a=b, g(a)=g(b), f(g(a))=f(g(b))
$$

$$
\begin{aligned}
F= & \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a), g(b)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b)), f(g(a))\}
\end{aligned}
$$

EUF Solver: Review

$$
\begin{aligned}
f(g(a))= & c, c \neq f(g(b)), a=b, g(a)=g(b), f(g(a))=f(g(b)) \\
F= & \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b) \\
& f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\
D= & \{c \neq f(g(b))\} \\
\pi(a)= & \{g(a), g(b)\} \\
\pi(b)= & \{g(b)\} \\
\pi(g(a))= & \{f(g(a))\} \\
\pi(g(b))= & \{f(g(b)), f(g(a))\}
\end{aligned}
$$

Merge equivalence classes of $f(g(a))$ and $f(g(b)) \rightsquigarrow$ unsat.

E-matching

$$
\begin{aligned}
& \operatorname{match}(x, t, S)=\{\beta \cup\{x \mapsto t\} \mid \beta \in S, x \notin c \\
&\left\{\beta \mid \beta \in S, F^{*}(\beta(x))=F^{*}\right. \\
& \operatorname{match}(c, t, S)= S \text { if } F^{*}(c)=F^{*}(t) \\
& \operatorname{match}(c, t, S)= \emptyset \text { if } F^{*}(c) \neq F^{*}(t) \\
& \operatorname{match}\left(f\left(p_{1}, \ldots, p_{n}\right), t, S\right)= \\
& \bigcup_{F^{*}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=F^{*}(t)} \operatorname{match}\left(p_{n}, t_{n}, \ldots, \operatorname{match}\left(p_{1}, t_{1}, S\right) \ldots\right)
\end{aligned}
$$

$\operatorname{match}(p, t,\{\emptyset\})$ returns the desired set of substitutions.

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b) \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

E-match t and p :

$$
\begin{aligned}
t & =f(c, b) \\
p & =f(g(x), h(x, a))
\end{aligned}
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
\operatorname{match}(& f(g(x), h(x, a)), f(c, b),\{\emptyset\})=
\end{aligned}
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=$ $\operatorname{match}(g(x), c, \operatorname{match}(h(x, a), b,\{\emptyset\})) \quad$ for $f(c, b)$ \cup $\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\})) \quad$ for $f(g(a), b)$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=$
$\operatorname{match}(g(x), c, \operatorname{match}(x, a, \operatorname{match}(a, d,\{\emptyset\})) \quad$ for $h(a, d)$
$\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\}))) \quad$ for $h(c, a)$
$\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))$

$$
\begin{gathered}
\text { E-matching: Example } \\
F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
\operatorname{match}(g(x), c, \operatorname{match}(x, a, \operatorname{match}(a, d,\{\emptyset\})) \quad \text { for } h(a, d) \\
\cup \\
\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\}))) \quad \text { for } h(c, a) \\
\cup \quad \operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
\end{gathered}
$$

a and d are not in the same equivalence class.

$$
\begin{gathered}
\text { E-matching: Example } \\
F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
\operatorname{match}(g(x), c, \operatorname{match}(x, a, \emptyset) \\
\cup \\
\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\}))) \\
\cup \\
\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
\end{gathered}
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$$
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=
$$ $\operatorname{match}(g(x), c, \emptyset$

$$
\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\})))
$$

$$
\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$$
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=
$$ $\operatorname{match}(g(x), c, \emptyset$

$$
\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\})))
$$

$$
\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), \quad g(c) \mapsto c, \quad g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$$
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=
$$ $\operatorname{match}(g(x), c, \emptyset$

$$
\operatorname{match}(x, c, \operatorname{match}(a, a,\{\emptyset\})))
$$

$\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))$

$$
F^{*}(a)=F^{*}(a)
$$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, \quad g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=$ $\operatorname{match}(g(x), c, \emptyset$ $\operatorname{match}(x, c,\{\emptyset\}))$
$\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, h(c, a) \mapsto b\}
\end{aligned}
$$

$\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=$ $\operatorname{match}(g(x), c, \emptyset$

$$
\{\{x \mapsto c\}\})
$$

$\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))$

E-matching: Example

$$
\begin{aligned}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), \quad f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, \quad h(c, a) \mapsto b\}
\end{aligned}
$$

$$
\operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})=
$$

$$
\operatorname{match}(g(x), c,\{\{x \mapsto c\}\})
$$

$$
\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
$$

E-matching: Example

$$
\begin{array}{ll}
F= & \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
\operatorname{match}(& f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
\operatorname{match}(x, a,\{\{x \mapsto c\}\}) \cup & \text { for } g(a) \\
\operatorname{match}(x, c,\{\{x \mapsto c\}\}) \cup & \text { for } g(c) \\
\operatorname{match}(x, d,\{\{x \mapsto c\}\}) \cup & \text { for } g(d) \\
\operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\})) &
\end{array}
$$

E-matching: Example

$$
\begin{aligned}
& F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& \\
& \quad f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& \\
& \quad g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& \quad h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
& \operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
& \{\{x \mapsto c\}\} \cup \\
& \{\{x \mapsto c\}\} \cup \\
& \emptyset \cup \\
& \operatorname{match}(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
\end{aligned}
$$

E-matching: Example

$$
\begin{aligned}
& F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
&h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
& \operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
&\{\{x \mapsto c\}\} \cup \\
& \text { match }(g(x), g(a), \operatorname{match}(h(x, a), b,\{\emptyset\}))
\end{aligned}
$$

E-matching: Example

$$
\begin{aligned}
& F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\
& \quad f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b), \\
& \quad g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
& \quad h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
& \operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
& \{\{x \mapsto c\}\} \cup \\
& \{\{x \mapsto c\}\}
\end{aligned}
$$

E-matching: Example

$$
\begin{aligned}
& F=\{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d \\
& f(c, b) \mapsto f(c, b), f(g(a), b) \mapsto f(c, b) \\
& g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\
&h(a, d) \mapsto b, h(c, a) \mapsto b\} \\
& \operatorname{match}(f(g(x), h(x, a)), f(c, b),\{\emptyset\})= \\
&\{\{x \mapsto c\}\}
\end{aligned}
$$

Efficient E-matching

Problem	Indexing Technique
Fast retrieval	E-matching code trees
Incremental E-Matching	Inverted path index

E-matching: code trees

Trigger:

$$
f(x 1, g(x 1, a), h(x 2), b)
$$

Similar triggers share several instructions.

Combine code sequences in a code tree

Instructions:

1. init(f, 2)
2. $\operatorname{check}(r 4, b, 3)$
3. $\operatorname{bind}(r 2, g, r 5,4)$
4. compare(r1, r5, 5)
5. check($r 6, a, 6$)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

E-matching limitations

E-matching needs ground seeds.
$\forall x$: $p(x)$,
$\forall x$: not $p(x)$

E-matching limitations

Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{f(g(x))\} \\
& g(a)=c \\
& g(b)=c \\
& a \neq b
\end{aligned}
$$

Trigger is too restrictive

E-matching limitations

Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{g(x)\} \\
& g(a)=c, \\
& g(b)=c \\
& a \neq b
\end{aligned}
$$

E-matching limitations

Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{g(x)\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b, \\
& f(g(a))=a, \\
& f(g(b))=b \quad a=b
\end{aligned}
$$

E-matching limitations

It is not refutationally complete

False positives

E-matching: why do we use it?

Integrates smoothly with current SMT Solvers design.

Proof finding.

Software verification problems are big \& shallow.

Decidable Fragments

\&

Complete Quantifier Instatiation

$\forall+$ theories

There is no sound and refutationally complete procedure for
linear arithmetic + unintepreted function symbols

Model Generation

How to represent the model of satisfiable formulas?
Functor:
Given a model M for T
Generate a model M^{\prime} for $F($ modulo T)
Example:
F: $f(a)=0$ and $a>b$ and $f(b)>f(a)+1$

	Symbol	Interpretation
$M^{\prime}:$	a	1
	b	0
	f	ite $(x=1,0,2)$

Model Generation

How to represent the model of satisfiable formulas?
Functor:
Given a model M for T
Interpretation is given using T-symbols
Generate a model M^{\prime} for F (miunu Example:

F: $f(a)=0$ and $a>b$ and $f(b)>f(a)+1$

	Symbol	Interpretation
$M^{\prime}:$	a	1
	b	0
	f	ite $(x=1,0,2)$

Model Generation

How to represent the model of satisfiable formulas?
Functor:
Given a model M for T
Generate a model M^{\prime} for F (modu

Non ground term
(lambda expression)

Example:
F: $f(a)=0$ and $a>b$ and $f(b)>f(a)+1$

Models as Functional Programs

```
(declare-fun f (Int Int) Int)
(declare-const a Int)
(declare-const b Int)
(assert (forall ((x Int)) (>= (f x x) (+ x a))))
(assert (< (f a b) a))
(assert (> a 0))
(check-sat)
(get-model)
(echo "evaluating (f (+ a 10) 20)...")
(eval (f (+ a 10) 20))
ask z3
```

```
sat
```

sat
(model
(model
(define-fun b () Int
(define-fun b () Int
2)
2)
(define-fun a () Int
(define-fun a () Int
1)
1)
(define-fun f ((x!1 Int) (x!2 Int)) Int
(define-fun f ((x!1 Int) (x!2 Int)) Int
(ite (and (= x!1 1) (= x!2 2)) 0
(ite (and (= x!1 1) (= x!2 2)) 0
(+ 1 x!1)))
(+ 1 x!1)))
)
)
evaluating (f (+ a 10) 20)...
evaluating (f (+ a 10) 20)...
12

```
12
```


Model Checking

	Symbol	Interpretation
$M^{\prime}:$	a	1
	b	0
	f	ite $(x=1,0,2)$

$$
\text { Is } \forall x: f(x) \geq 0 \text { satisfied by } M^{\prime} \text { ? }
$$

Yes, not (ite $(k=1,0,2) \geq 0)$ is unsatisfiable

Model Checking

Symbol		Interpretation
$M^{\prime}:$	a	1
	b	0
	f	ite $(x=1,0,2)$

$$
\text { Is } \forall x: f(x) \geq 0 \text { satisfied by } M^{\prime} \text { ? }
$$

Yes,
not (ite $(k=1,0,2) \geq 0$) is unsatisfiable
Negated quantifier
Replaced f by its interpretation
Replaced x by fresh constant k

Essentially uninterpreted fragment

Variables appear only as arguments of uninterpreted symbols.

$$
f\left(g\left(x_{1}\right)+a\right)<g\left(x_{1}\right) \vee h\left(f\left(x_{1}\right), x_{2}\right)=0
$$

$$
f\left(x_{1}+x_{2}\right) \leq f\left(x_{1}\right)+f\left(x_{2}\right)
$$

Basic Idea

Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F^{*}
"Domain" of f is the set of ground terms A_{f} $t \in A_{f}$ if there is a ground term $f(t)$

Suppose

1. We have a clause $C[f(x)]$ containing $f(x)$.
2. We have $f(t)$.
\rightarrow
Instantiate x with t : $\mathrm{C}[\mathrm{f}(\mathrm{t})]$.

Example

F

F*

$$
\begin{aligned}
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right), \\
& h(c)=1, \\
& f(a)=0
\end{aligned}
$$

Example

\[

\]

Copy quantifier-free formulas
"Domains":
$A_{f}:\{a\}$
$A_{g}:\{ \}$
$A_{h}:\{c\}$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0,
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{ \} \\
& A_{h}:\{c\}
\end{aligned}
$$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a)
\end{aligned}
$$

Example

$$
\quad \square \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a),
\end{aligned}
$$

Example

\[

\]

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c, b\}$

Example

$$
\quad \square \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c, b\}$

Example

\[

\]

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b],[f(a), c]\}$
$A_{h}:\{c, b\}$

Example

F
F*

$$
\begin{aligned}
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right), \\
& h(c)=1, \\
& f(a)=0
\end{aligned}
$$

$$
\begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), c)=0 \vee h(c)=0
\end{aligned}
$$

M

$$
\begin{aligned}
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow\{2 \rightarrow 0, \ldots\} \\
& \mathrm{h} \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\}
\end{aligned}
$$

Basic Idea

Given a model M for F*, Build a model M^{π} for F

Define a projection function π_{f} s.t.
range of π_{f} is $M\left(A_{f}\right)$, and
$\pi_{f}(v)=v$ if $v \in M\left(A_{f}\right)$
Then,
$M^{\pi}(f)(v)=M(f)\left(\pi_{f}(v)\right)$

Basic Idea

Basic Idea

Given a model M for F^{*}, Build a model M^{π} for F

In our example, we have: $h(b)$ and $h(c)$
$\rightarrow A_{h}=\{b, c\}$, and $M\left(A_{h}\right)=\{2,3\}$

$$
\pi_{\mathrm{h}}=\{2 \rightarrow 2,3 \rightarrow 3, \text { else } \rightarrow 3\}
$$

$$
\begin{aligned}
\begin{array}{c}
\mathrm{M}(\mathrm{~h}) \\
\{2 \rightarrow 0,3 \rightarrow 1, \ldots\}
\end{array} & \square
\end{aligned} \begin{gathered}
\mathrm{M}^{\pi}(\mathrm{h}) \\
\mathrm{M}^{\pi}(\mathrm{h})=\lambda \mathrm{x} . \operatorname{if}(\mathrm{x}=2,0,1)
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \text {, } \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \text {, } \\
& \mathrm{h}(\mathrm{c})=1 \text {, } \\
& f(a)=0 \\
& h(c)=1 \text {, } \\
& f(a)=0 \text {, } \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), c)=0 \vee h(c)=0 \\
& \mathbf{M}^{\pi} \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow \lambda \mathrm{x} .2 \\
& h \rightarrow \lambda x \text {. if }(x=2,0,1) \\
& g \rightarrow \lambda x, y . \text { if }(x=0 \wedge y=2,-1,0) \\
& \text { F* } \\
& \text { M } \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow\{2 \rightarrow 0, \ldots\} \\
& h \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\}
\end{aligned}
$$

Example : Model Checking

\mathbf{M}^{π}

$$
a \rightarrow 2, b \rightarrow 2, c \rightarrow 3
$$

$$
f \rightarrow \lambda x .2
$$

$$
h \rightarrow \lambda x . \text { if(x=2, 0, 1) }
$$

Does M^{π} satisfies?
$\forall \mathrm{x}_{1}, \mathrm{x}_{2}: \mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0 \vee \mathrm{~h}\left(\mathrm{x}_{2}\right)=0$
$\forall x_{1}, x_{2}: \operatorname{if}\left(x_{1}=0 \wedge x_{2}=2,-1,0\right)=0 \vee \operatorname{if}\left(x_{2}=2,0,1\right)=0$ is valid
$\exists x_{1}, x_{2}:$ if $\left(x_{1}=0 \wedge x_{2}=2,-1,0\right) \neq 0 \wedge \mathrm{if}\left(x_{2}=2,0,1\right) \neq 0$ is unsat

$$
\operatorname{if}\left(s_{1}=0 \wedge s_{2}=2,-1,0\right) \neq 0 \wedge \operatorname{if}\left(s_{2}=2,0,1\right) \neq 0 \quad \text { is unsat }
$$

Why does it work?

Suppose M^{π} does not satisfy $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
Then for some value v,
$\mathrm{M}^{\pi}\{\mathrm{x} \rightarrow \mathrm{v}\}$ falsifies $\mathrm{C}[f(\mathrm{x})]$.
$\mathrm{M}^{\pi}\left\{\mathrm{x} \rightarrow \pi_{\mathrm{f}}(\mathrm{v})\right\}$ also falsifies $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
But, there is a term $t \in A_{f}$ s.t. $M(t)=\pi_{f}(v)$ Moreover, we instantiated $\mathrm{C}[\mathrm{f}(\mathrm{x})]$ with t .

So, M must not satisfy C[f(t)].
Contradiction: M is a model for F^{*}.

Refinement: Lazy construction

F* may be very big (or infinite).
Lazy-construction
Build F^{*} incrementally, F^{*} is the limit of the sequence

$$
\mathrm{F}^{0} \subset \mathrm{~F}^{1} \subset \ldots \subset \mathrm{~F}^{\mathrm{k}} \subset \ldots
$$

If F^{k} is unsat then F is unsat.
If F^{k} is sat, then build (candidate) M^{π}
If M^{π} satisfies all quantifiers in F then return sat.

Refinement: Model-based instantiation

Suppose M^{π} does not satisfy a clause $C[f(x)]$ in F.
Add an instance $C[f(t)]$ which "blocks" this spurious model. Issue: how to find t ?

Use model checking, and the "inverse" mapping π_{f}^{-1} from values to terms (in A_{f}). $\pi_{\mathrm{f}}^{-1}(\mathrm{v})=\mathrm{t} \quad$ if $\quad \mathrm{M}^{\pi}(\mathrm{t})=\pi_{\mathrm{f}}(\mathrm{v})$

Example: Model-based instantiation

$$
\quad \measuredangle \mathrm{f}(\mathrm{~b})=-1 \quad \begin{aligned}
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3
\end{aligned}
$$

> Model Checking $\forall \mathrm{x}_{1}: \mathrm{f}\left(\mathrm{x}_{1}\right)<0$ not if $\left(\mathrm{s}_{1}=2,1,-1\right)<0$
F^{1}

$$
\text { unsat } \begin{aligned}
f(a) & =1 \\
f(b) & =-1 \\
f(a) & <0
\end{aligned}
$$

Infinite F*

Is refutationally complete?

FOL Compactness
A set of sentences is unsatisfiable iff
it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then apply compactness to $\mathrm{F}^{*} \cup \top$

Infinite F*

Infinite F* : Example

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { F } \\
\forall x_{1}: f\left(x_{1}\right)<f\left(f\left(x_{1}\right)\right), \\
\forall x_{1}: f\left(x_{1}\right)<a, \\
1<f(0) .
\end{array}
\end{aligned}
$$

Unsatisfiable

F*

$$
\begin{aligned}
& f(0)<f(f(0)), f(f(0))<f(f(f(0))), \ldots \\
& f(0)<a, f(f(0))<a, \ldots \\
& 1<f(0)
\end{aligned}
$$

Every finite subset of F^{*} is satisfiable.

Infinite F^{*} : What is wrong?

Theory of linear arithmetic T_{Z} is the set of all first-order sentences that are true in the standard structure Z.
T_{2} has non-standard models.
F and F^{*} are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.
Compactness does not hold.
F and F* are still equisatisfiable.

Extensions

Shifting

$$
\neg\left(0 \leq x_{1}\right) \vee \neg\left(\mathrm{x}_{1} \leq \mathrm{n}\right) \vee \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{g}\left(\mathrm{x}_{1}+2\right)
$$

Extensions

Many-sorted logic
Pseudo-Macros

$$
\begin{aligned}
& 0 \leq g\left(x_{1}\right) \vee f\left(g\left(x_{1}\right)\right)=x_{1}, \\
& 0 \leq g\left(x_{1}\right) \vee h\left(g\left(x_{1}\right)\right)=2 x_{1}, \\
& g(a)<0
\end{aligned}
$$

Extensions

Online tutorial at: http://rise4fun.com/z3/tutorial

Extensions

Online tutorial at: http://rise4fun.com/z3/tutorial

Related work

Bernays-Schönfinkel class.
Stratified Many-Sorted Logic.
Array Property Fragment.
Local theory extensions.

SMT + Saturation

CDCL/DPLL : Review

CDCL/DPLL : Review

Guessing

$$
p \mid p \vee q, \neg q \vee r
$$

$$
p, \neg q \mid p \vee q, \neg q \vee r
$$

CDCL/DPLL : Review

Deducing

$$
p \mid p \vee q, \neg p \vee s
$$

$$
p, s \mid p \vee q, \neg p \vee s
$$

CDCL/DPLL : Review

Backtracking

$$
p, \neg s, q \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

$$
p, s \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

DPLL(Г)

Tight integration: DPLL + Saturation solver.

DPLL(Г)

Inference rule:

$$
\frac{C_{1} \ldots C_{n}}{C}
$$

$\operatorname{DPLL}(\Gamma)$ is parametric.
Examples:
Resolution
Superposition calculus

DPLL(Г)

Partial model

Set of clauses

DPLL(Г) : Deduce I

 $p(a) \mid p(a) v q(a), \forall x: \neg p(x) \vee r(x), \forall x: p(x) \vee s(x)$
DPLL(Г) : Deduce I

$$
p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x)
$$

DPLL(Г) : Deduce I

$$
p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x)
$$

Resolution

$p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x), r(x) \vee s(x)$

DPLL(Г) : Deduce II

Using ground atoms from M :

$$
M \mid F
$$

Main issue: backtracking.
Hypothetical clauses:

Track literals from M used to derive \mathbf{C}

(regular) Clause

DPLL(Г) : Deduce II

$$
p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x)
$$

DPLL(Γ) : Backtracking

$p(a), r(a) \mid p(a) \vee q(a), \neg p(a) \vee \neg r(a), p(a) \triangleright r(a), \ldots$

DPLL(Г) : Backtracking

$$
p(a), r(a) \mid p(a) \vee q(a), \neg p(a) \vee \neg r(a), p(p)(a), \ldots
$$

$$
\neg p(a) \mid p(a) \vee q(a), \neg p(a) \vee \neg r(a), \ldots
$$

DPLL(Г) : Improvement

Saturation solver ignores non-unit ground clauses.

$$
p(a) \mid p\left(D^{\prime}\right)(a), \neg p(x) \vee r(x)
$$

DPLL(Г) : Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:
Γ has the reduction property.

DPLL(Г) : Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:

- Γ has the reduction property.

Ground literals

Saturation

 Solver
Ground clauses

DPLL
 $+$

Theories

DPLL(Г) : Problem

Interpreted symtbols

$$
\neg(f(a)>2), \quad f(x)>5
$$

It is refutationally complete if
Interpreted symbols only occur in ground clauses
Non ground clauses are variable inactive "Good" ordering is used

Summary

E-matching proof finding
fast shallow proofs in big formulas not refutationally complete regularly solves VCs with more than 5 Mb

Summary

Complete instantiation + MBQI decides several useful fragments model \& proof finding
slow
complements E-matching

Summary

SMT + Saturation refutationally complete for pure first-order proof finding slow

Not covered

Quantifier elimination
Fourier-Motzkin (Linear Real Arithmetic)
Cooper (Linear Integer Arithmetic)
CAD (Nonlinear Real Arithmetic)
Algebraic Datatypes (Hodges)
Finite model finding
Many Decidable Fragments

Challenge

New and efficient procedures capable of producing models for satisfiable instances.

