Lost In translation

how easy problems become hard due to bad encodings

Vampire Workshop 2015

Leonardo de Moura
Microsoft Research

| wanted to give the following talk

— N - Vampire

THEOREM PROVER
I\ /IS L IS/ VLIS

Microso ft Researc h

http://leanprover.github.io/

Automated Reasoning lools
as a service

Software/Hardware
Verification
Tools

SAT Solvers

Test-case

generators I

SMT Solvers

Static Analyzers

The “dream’”

Automated reasoning tools as black boxes

SAT Solvers

SMT Solvers

Example 1:
SAT solvers and Tseitin encoding

 Most SAT solvers expect the input formula to be in
CNF

* |n practice, it is not feasible to convert formulas into
CNF using equivalences such as

eliminate = A= B=-AVEB
reduce the scope of — -(AV B)=-AAN -8B,
-(AANB)=-AV-B
apply distributivity Av(BANC)=(AvB)AN(AVv(O),
AN(BVC)=(ANB)V(AANC)

Example 1:
SAT solvers and Tseitin encoding

However, there is a linear time translation to CNF that
produces an equisatisfiable formula. Replace the
distributivity rules by the following rules:

Fll; op 1] .
Flzl,z =l opl;
Tl Vi
-z VIV lj, -l; V x, ﬂlj VT

Tr < li /\IJ

-z Vi, -z Vi, -l V-l ve

(*) £ must be a fresh variable.

-xample 1:
SAT solvers and Tseitin encoding

Tseitin encoding Is easy to Implement.

owever, there are several important improvements.
 Example: detect common sub- formulas.

SAT preprocessors (such as SatkLite) “fix” naive
CNF encodings before invoking the actual SAT solver

Good: preprocessors are reused by different
research groups

-xample 2:
Finite model finding & symmetry breaking

e Given a first-order logic formula F, find a finite model M for it
 Procedures: reduce to SAT (or SMT), reduce to EPR
 MACE-style reduction

e FixdomainD ={1, ..., n}

« Create propositional variables for each predicate P and argument vector (d;, ..., d,)
where K is the rarity of P and d; in D

* Similarly, one proposition px, , application for each function f argument vector v = (d;,
..., dy)and “result” rin D

« Convert F into CNF, instantiate, and add
* function definition constraint: (not ps,,) or (not p;,,)

« totality constraints: (ps, 1 OF ... O Psyn)

-xample 2:
Finite model finding & symmetry breaking

* The encoding into SMT is simpler. Example: we can use the
theory of uninterpreted functions and avoid function
definition and totality constraints.

 Symmetry reduction is a very important optimization (in both
Cases).

 The MACE-style encoding implies that for each model, all

of its isomorphic valuations (obtained by permuting the
domain elements) are also models.

e |dea: add symmetry breaking constraints that force that
the model we are looking for has a certain canonical form.

-xample 2:
Finite model finding & symmetry breaking

e Suppose the problem encoder did not include the symmetry
breaking problems.

 Now, to achieve good performance the solver developer must try to
infer the symmetries (a much harder problem). See

“SYMT: finding symmetries in SMT formulas”, by Carlos Areces,
David Deharbe, Pascal Fontaine and Ezequiel Orbe

« SMT-LIB has as huge set of finite model finding (QF_UF) problems
where symmetry breaking constraints have not been added.

o Conseqguently, many SMT solvers (e.g., CVC4, veriT, Yices, Z3) do
implement SyMT-like procedures to be able to solve these
problems efficiently.

Example 3: Sledgehammer

Sledgehammer is a very successful tool available in the Isabelle
Proof assistant

It converts HOL into FOL and invokes many ATPs (Vampire) and
SMT solvers (Z3)

A lot is lost in the translation.
Sledgehammer may fail in very simple queries because they are
higher-order, but it will succeed once the user has, for example,

manually unfolded some definitions.

We need provers/solvers that can understand HOL and perform
proofs by induction. Even if it is just thin layer.

-xample 4
Nonlinear arithmetic solvers

Nonlinear (real polynomial) arithmetic is decidable

x°—4x+y*—y+8 <1
Xy —2x —2y+4>1

Expensive decision procedure

Most efficient complete solvers are based on
Cylindrical Algebraic Decomposition (CAD)

Pertform computations with real algebraic numbers

-xample 4
Nonlinear arithmetic solvers

* Real algebraic numbers

Polynomial + Isolating Interval
x%—2,(1,2)

4 ?
+ 523’\/%—1

x? +3x°+3x>—1,(0,1)

-xample 4
Nonlinear arithmetic solvers

e Bad application: object placement in 3D virtual world (constraints of the form distance(a,
b) < n)

« Precision is not important: algebraic numbers are an overkill for this kind of
application

* Avoiding real-algebraic numbers
e replace p = 0 with -6 < p < 6 (for a small)
e replace p=0 with p< é

e The resulting problem is satisfiable iff it has a rational model. This trick only works if
the solver takes the property into account.

 Remark: we should not apply this transformation to linear equalities since they can be
easily eliminated using variable substitution

 Example, given x+y+2=0, replace x with -y-2 “everywhere” and delete equation.

-xample 4
Nonlinear arithmetic solvers

e Bad application: object placement in 3D virtual world (constraints of the form distance(a,
b) < n)

« Precision is not important: algebraic numbers are an overkill for this kind of
application

* Avoiding real-algebraic numbers
e replace p = 0 with -6 < p < 6 (for a small)
e replace p=0 with p< é

e The resulting problem is satisfiable iff it has a rational model. This trick only works if
the solver takes the property into account.

 Remark: we should not apply this transformation to linear equalities since they can be
easily eliminated using variable substitution

 Example, given x+y+2=0, replace x with -y-2 “everywhere” and delete equation.

-xample 4
Nonlinear arithmetic solvers

Bad idea: convert nonlinear real arithmetic into nonlinear integer
arithmetic (using fixed point encoding).

* Replace x with 10ky where yis a fresh integer variable and k is
the number of decimal places

This approximation also avoids algebraic numbers.

The resulting problem is in an undecidable fragment (Hilbert’s
10th problem).

This encoding was used by a Z3 user.

Lesson: users must have a rough idea on how the solver works.

-xample 5:
Proof checking in dependent type theory

e Proof assistants based on dependent type theory (e.g., Agda, Coqg and Lean) have
a builtin notion of reduction.

e Beta-reduction (Ax, fxx) (ga) = f(ga) (g a)
e Eta-reduction (Ax, fx) = f
 |ota-reduction

nat.orimrec cf0 = ¢

nat.primrec c f (succ n) = fn (nat.primrec ¢ f n)

e In these systems, we say that t and s are definitionally equal if there is an r such
that t =r «s

o /Zero-step proofs: we can use reflexivity to prove that definitionally equal terms are
equal. Example: (refl 4) is a proof for 2+2 = 4 since 2+2 is convertible to 4.

-xample 5:
Proof checking in dependent type theory

A naive definitional equality checker for t and s will simply compute the normal
forms for t and s and check whether they are syntactically equal or not.

In practice, the naive checker will fail in examples such as

fact (99+1) and fact 100.

Most proof assistants use the following heuristics for checking whether (7 s) is
definitionally equal to (f).

e If sand tare definitionally equal, then return yes.
« Otherwise, unfold fand try again.
(refl (fact 100)) is a compact proof for fact (99+1) = fact 100, but it is only

feasible to check it if the type/proof checker implements an optimization like
the one above.

Flexible solvers and provers

We need more flexible tools.
Customized solutions should be easy to build.
Reuse preprocessors and problem encoders.

Solvers should not be big monolithic black boxes, but a
collection of tools and procedures.

Open source tools is a must have.

Efforts such as TPTP and SMT-Lib are fundamental

The strategy challenge

To build theoretical and practical tools allowing users
to exert strategic control over core heuristic aspects
of high pertormance prover and solvers.

What is a strategy?

Theorem proving as an exercise of combinatorial search.

Strategies are adaptations of general search mechanisms which

reduce the search space by tailoring its exploration to a particular
class of formulas.

Different strategies for different domains

From timeout to 0.05secs

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: I[z]and 1’|z, 2’|
Vo, 2’ . I[x) AT* [z, 2'] = 3y, v Iyl AT y,]

Ranking function synthesis.

[sec]
1k
100
Z3 10
+
| +4 " %
+
" +
ELaE
0.1 :
+ FH
il | ¥ +
w +
0.01 *
001 0.1 10 100 1k

Z3

Hardware fixpoint checks

[sec)
1k
100
10
+
' *++ 4
Jd+
4 ++ N
+ +
+ '
01 + #
-+ ~H-+ + +-H-¢
+#- . X
0.01 + R .
0.01 0.1 1 10 100 1k [sec)
sKizzo

Ranking function synthesis

[sec]
1k
¥
100 $
Z3 10 E
1 I
0.1 -
+
0.01
001 0.1 1 10 100 1k [sec]

QuBE

Z3

[sec]

1k

100

10

0.01
0.01 0.1 1 10 100 1k [sec]

sKizzo

Why Is Z3 tast in these benchmarks”

/3 1S using a custom strategy that combines:

e rewriting, SAT, model based quantifier instantiation

Combining Strategies
Main inspiration: LCF-approach

subgoals

Tactic

goal Proof
builder

Combining Strategies
Main inspiration: LCF-approach

subgoals
Tactic
goal Proof
builder
Proof
O builder @,
O Proof for goal

Proofs for subgoals

Combining Strategies
Main inspiration: LCF-approach

Proof
builder

Tactic

B Tactic
goal
Tactic
Proof

builder Proof

builder

Combining Strategies
Main inspiration: LCF-approach

Q Proof Q
Proof Builder O
Q Builder
proof
Q Proof O

Builder O

Combining Strategies
Main inspiration: LCF-approach

Proof O
@ Builder

O Pr_oof O
oroof Builder

| O Proof O

Builder O

thm in LCF proofin LCF

terminology

terminology

Tactical: combinators

then(= Tactic | Tactic) = | Tactic

| | |

’

Tactic) = Tactic

| |

orelse(= Tactic

]

repeat(| Tactic) = | Tactic

I

g0al

SMT Tactic

Tactic

subgoals

Proof
builder

Model
builder

SMT Tactic

goal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

unsat proof

unknown goal sequence x modelconv X proofconv
fail

tactic = goal — trt

SMT Tactic

goal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

unsat proof
unknown goal sequence X modelconv X proofconv

fail

tactic = goal — trt

—

end-game tactics:
never return unknown(sb, mc, pc)

SMT Tactic

goal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model X nat — model

trt — sat model
unsat proof
unknown goal sequence X modelconv X proofconv
fail

tactic = goal — trt

non-branching tactics:
sb is a sigleton in
unknown(sb, mc, pc)

Trivial goals

Empty goal [] is trivially satisfiable

False goal [..., false, ...] is trivially unsatisfiable

SMT Tactic: example

la=b+1, (a<0Va>0),b>3]

Tactic:
elim-vars
Proof
builder (b+1<0Vb+1>0), b>3| Model

builder

SMT Tactic: example

la=b+1, (a<O0Va>0), b>3]

Tactic:
elim-vars ML M(a) = M(b) + 1
Proof
builder [(b+1<0Vb+1>0), b>3] Model

builder

\Y

SMT Tactic: example

[(1:1)—+—l. ((1<0\/(1>O). b>3]

Tactic:
split-or

Proof [a=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder

SMT Tactic

simplify propagate-bounds
nnf propagate-values
cnf split-ineqgs

tseitin split-eqs

lift-if rewrite

bitblast p-cad

gb sat

vts solve-eqs

SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,t2) applies ¢; to the given goal and ¢; to every subgoal produced by ;.
thenx : (tactic x tactic sequence) — tactic
thenx(t1,[t2,,....t2,]) applies ¢; to the given goal, producing subgoals g1, gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,%2) first applies ¢1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic

par(t1.t2) excutes t1 and 2 in parallel.

SMT Tacticals

then(skip,¢) = then(t,skip) = ¢

orelse(fail, t) = orelse(t, fail) =t

SMT Tacticals

repeat : tactic — tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic X nat — tactic
Keep applying the given tactic until no subgoal is modified by it, or the max-
imum number of iterations is reached.

tryfor : tactic x seconds — tactic
tryfor(¢, k) returns the value computed by tactic ¢ applied to the given goal if
this value is computed within k seconds, otherwise it fails.

Features/Measures

Probing structural features of formulas

Features/Measures: Yices 1.0 strategy

diff logic?

|

no yes
simplex
atom/dim < k

no yes

simplex floyd warshall

Features/Measures: Yices 1.0 strategy

atom

orelse(then(failif (diff A > k), simplex), floydwarshall)

dim

Fail if condition is not satisfied.
Otherwise, do nothing.

Features/Measures

bw: Sum total bit-width of all rational coefficients of polynomials in case.
diff: True if the formula is in the difference logic fragment.

linear: True if all polynomials are linear.

dim: Number of arithmetic constants.

atoms: Number of atoms.
degree: Maximal total multivariate degree of polynomials.

size: Total formula size.

Tacticals: syntax sugar

if(c, t1, t2) = orelse(then(failif(—c),t1),t2)
when(e, t) = if(e, t, skip)

Abstraction/Refinement

x>20,y=x+1,(y>2vy<l1)

| | Abstract (aka “naming” atoms)
A 4

p]_l p?_l (p3 V p4) plE (X Z O), pZE (y =X+ 1)1
p3=(y>2), p,=(y<1)

Abstraction/Refinement

x20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

pll p‘.21 (p3 Vv p4) plE (X Z O)I p2 = (y =X+ 1)1
) ps=(y>2), p,=(y<1)
SAT
Solver

)

Abstraction/Refinement

x>0,y=x+ 1’,'(y>2vy<1)
) ~ Abstract (aka “naming” atoms)
A 4
Pq, pzz (p3 Vv p4) P1= (X 2 O), P, = (y =X+ 1):
&/ p3=(y>2), p,=(y<1)

-

SAT N Sssnrg)nmepnt p
Solver 'L/ bore e

/

Abstraction/Refinement

Xx>0,y=x+ 1,‘(y>2vy< 1)
i} Abstract (aka “naming” atoms)

pll p21 (p3\/ p4) pIE(XZO)l pZE(y:X+ 1)1
N

\{/ p3=(y>2),p,=(y<1)
V

Assignment

SAT AN x20,y=x+1,
Solver C> Fv Fo TPs Pa ‘> —(y>2),y<1
Y

Abstraction/Refinement

x20,y=x+1,(y>2vy<1)

il l Abstract (aka “naming” atoms)

P1, p;_, (p3V p4) p1E(XZO)r sz(y=X+ 1),

v / | P3= (y>2), Pa E‘ (y<1)
- <
SAT N ﬁss 'gn "fp”t o D, X20,y=x+ 1,
Solver " vy Ty YR —(y>2),y<1
Unsatisfiable - Theory

xZO,y=x+1,y<1\h Solver

Abstraction/Refinement
x20,y=x+1, (y>2vy<1)

' | Abstract (aka “naming” atoms)

A 4
Py, Py (P3V P P1=(x20), py=(y=x+1),
/ P3=(y>2),p,=(y<1)

S J L
: N

SAT —N\ SSSIFg)n r:epnt o, 0, X0,y =x+1,

Solver v v Fr e R —(y>2),y<1
N\) -
New Lemma . U nsatisfiable Theory

—p,V—Pp,V—p, \IJ X=20,y=x+1,y< 1\— Solver

Design engines as tacticals

then(preprocess, smt(finalcheck))

Apply “cheap” propagation/pruning steps;
and then apply complete “expensive” procedure

Conclusions

Flexible solver/prover architectures
“Good encodings” are solver/prover dependent
Transparency (open source) is essential

Separation of concerns: problem encoders x
solvers

“Orchestrating smaller/simpler procedures”

