Microsoft

Research

Complete Instantiationfor Quantified Formulas in SMT CAV2009

Yeting Ge
New York University

Leonardo de Moura
Microsoft Research

Satisfiability Modulo Theories (SMT)

$$
a>3,(a=b \vee a=b+1), f(a)=0, f(b)=1
$$

Many Applications

- Dynamic symbolic execution (DART)
- Extended static checking
- Test-case generation
- Bounded model checking (BMC)
- Equivalence checking

What is a Theory?

A theory T is a set of sentences.

F is satisfiable modulo T iff

TUF is satisfiable.

Theory: Examples

- Array Theory:
$\forall \mathrm{a}, \mathrm{i}, \mathrm{v}: \operatorname{read}(\mathrm{write}(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{i})=\mathrm{v}$
$\forall a, i, v: i=j \vee \operatorname{read}(w r i t e(a, i, v), j)=\operatorname{read}(a, j)$
e Linear Arithmetic
- Bit-vectors
- Inductive datatypes

SMT: Example

$$
a>3,(a=b \vee a=b+1), f(a)=0, f(b)=1
$$

$\mathrm{f}, \mathrm{g}, \mathrm{h}$	Uninterpreted functions
$\mathrm{a}, \mathrm{b}, \mathrm{c}$	Uninterpreted constants
$+,-,<, \leq, 0,1, \ldots$	Interpreted symbols

$+,-,<, \leq, 0,1, \ldots$
Interpreted symbols

SMT: Example

$$
a>3,(a=b \vee a=b+1), f(a)=0, f(b)=1
$$

Model/Structure:
a $\rightarrow 4$
b $\rightarrow 3$
$\mathrm{f} \rightarrow\{4 \rightarrow 0,3 \rightarrow 1, \ldots\}$

SMT: Example

$$
a>3,(a=b \vee a=b+1), f(a)=0, f(b)=1
$$

Model M:
$M(a)=4$
$M(b)=3$
$M(f)=\{4 \rightarrow 0,3 \rightarrow 1, \ldots\}$

SMT Solvers

Many SMT Solvers:

- Barcelogic, Beaver, Boolector,
- CVC3, MathSAT, OpenSMT,
e Sateen, Yices, Z3, ...

They are very efficient for quantifier-free formulas.

Manyapplications need

- Modeling the runtime
$\forall \mathrm{h}, \mathrm{o}, \mathrm{f}$:
IsHeap(h) \wedge o \neq null \wedge read(h, o, alloc) $=t$
\Rightarrow
$\operatorname{read}(\mathrm{h}, \mathrm{o}, \mathrm{f})=\operatorname{null} \vee \operatorname{read}(\mathrm{h}, \operatorname{read}(\mathrm{h}, \mathrm{o}, \mathrm{f}), \mathrm{alloc})=\mathrm{t}$

Manyapplications need

- Modeling the runtime
e User provided assertions
$\forall \mathrm{i}, \mathrm{j}: \mathrm{i} \leq \mathrm{j} \Rightarrow \operatorname{read}(\mathrm{a}, \mathrm{i}) \leq \operatorname{read}(\mathrm{b}, \mathrm{j})$

Manyapplications need

- Modeling the runtime
- User provided assertions
- Unsupported theories
$\forall \mathrm{x}$: $\mathrm{p}(\mathrm{x}, \mathrm{x})$
$\forall \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{p}(\mathrm{x}, \mathrm{y}), \mathrm{p}(\mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{p}(\mathrm{x}, \mathrm{z})$
$\forall x, y: p(x, y), p(y, x) \Rightarrow x=y$

Many applications need

- Modeling the runtime
e User provided assertions
- Unsupported theories
e Solver must be fast in satisfiable instances.

We want to find bugs!

Many Approaches

- Superposition Calculus + SMT.
- Instantiation Based Methods
- Implemented on top of "regular" SMT solvers.
e Heuristic quantifier instantiation (E-Matching).
e Complete quantifier instantiation.

Instantiation Based Methods: Related work

e Bernays-Schönfinkel class.

- Stratified Many-Sorted Logic.
- Array Property Fragment.
e Local theory extensions.

Simplifying Assumption: CNF

$$
\begin{aligned}
& \forall \mathrm{x}_{1}, \mathrm{x}_{2}: \neg \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \vee \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)+1, \\
& \mathrm{p}(\mathrm{a}, \mathrm{~b}), \mathrm{a}<\mathrm{b}+1
\end{aligned}
$$

Simplifying Assumption: CNF

$$
\begin{aligned}
& \neg p\left(x_{1}, x_{2}\right) \vee f\left(x_{1}\right)=f\left(x_{2}\right)+1, \\
& p(a, b), a<b+1
\end{aligned}
$$

Essentially uninterpreted fragment

e Variables appear only as arguments of uninterpreted symbols.

$$
\begin{gathered}
f\left(g\left(x_{1}\right)+a\right)<g\left(x_{1}\right) \vee h\left(f\left(x_{1}\right), x_{2}\right)=0 \\
f\left(x_{1}+x_{2}\right) \leq f\left(x_{1}\right)+f\left(x_{2}\right)
\end{gathered}
$$

Basic Idea

Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F^{*}
"Domain" of f is the set of ground terms A_{f} $t \in A_{f}$ if there is a ground term $f(t)$

Suppose

1. We have a clause $C[f(x)]$ containing $f(x)$.
2. We have $f(t)$.
\rightarrow
Instantiate x with t : $\mathrm{C}[\mathrm{f}(\mathrm{t})]$.

Example

$$
\begin{aligned}
& \quad \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \\
& h(c)=1 \\
& f(a)=0
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\quad \text { F } \\
g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, & \begin{array}{l}
\text { F } \\
g(f)=1,
\end{array} \\
\begin{array}{ll}
h(c)=1, \\
f(a)=0
\end{array} & \square f(a)=0
\end{array}
$$

Copy quantifier-free formulas

"Domains":
$A_{f}:\{a\}$
$\mathrm{A}_{\mathrm{g}}:\{ \}$
$A_{h}:\{c\}$

Example

$$
\begin{array}{ll}
\quad \text { F } \\
g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, \\
g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right), \\
h(c)=1, \\
f(a)=0
\end{array} \quad \begin{aligned}
& \text { f(c) }=1, \\
& f(a)=0,
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{ \}$
$A_{h}:\{c\}$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a)
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c\}$

Example

$$
\quad \square \begin{aligned}
& \mathrm{h}(\mathrm{c})=\mathbf{F}^{*}, \\
& \mathrm{f}(\mathrm{a})=0, \\
& \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b})+1 \leq \mathrm{f}(\mathrm{a}),
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c\}$

Example

$$
\quad \square \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c, b\}$

Example

$$
\quad \square \begin{aligned}
& \text { h(c) }=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b]\}$
$A_{h}:\{c, b\}$

Example

$$
\quad \square \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& \\
& \\
& \\
& \\
& \\
& g(f(a), b)=0 \vee h(b), c)=0 \vee h(c)=0,
\end{aligned}
$$

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{[f(a), b],[f(a), c]\}$
$A_{h}:\{c, b\}$

Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \text {, } \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \text {, } \\
& h(c)=1 \text {, } \\
& f(a)=0 \\
& h(c)=1 \text {, } \\
& f(a)=0 \text {, } \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), c)=0 \vee h(c)=0 \\
& \text { M } \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow\{2 \rightarrow 0, \ldots\} \\
& \mathrm{h} \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\}
\end{aligned}
$$

Basic Idea (cont.)

Given a model M for F*, Build a model M^{π} for F

Define a projection function π_{f} s.t. range of π_{f} is $M\left(A_{f}\right)$, and
$\pi_{f}(v)=v$ if $v \in M\left(A_{f}\right)$
Then,
$M^{\pi}(f)(v)=M(f)\left(\pi_{f}(v)\right)$

Basic Idea (cont.)

Basic Idea (cont.)

Given a model M for F^{*}, Build a model M^{π} for F

In our example, we have: $h(b)$ and $h(c)$
$\rightarrow A_{h}=\{b, c\}$, and $M\left(A_{h}\right)=\{2,3\}$

$$
\pi_{\mathrm{h}}=\{2 \rightarrow 2,3 \rightarrow 3, \text { else } \rightarrow 3\}
$$

$$
\begin{gathered}
\begin{array}{c}
\mathrm{M}(\mathrm{~h}) \\
\{2 \rightarrow 0,3 \rightarrow 1, \ldots\}
\end{array} \begin{array}{c}
\mathrm{M}^{\pi}(\mathrm{h}) \\
\mathrm{M}^{\pi}(\mathrm{h})=\lambda \mathrm{x} . \mathrm{if}(\mathrm{x}=2,0,1)
\end{array},\{2 \rightarrow 0,3 \rightarrow 1 \text {, else } \rightarrow 1\}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \text {, } \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \text {, } \\
& h(c)=1 \text {, } \\
& f(a)=0 \\
& h(c)=1 \text {, } \\
& f(a)=0 \text {, } \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), c)=0 \vee h(c)=0 \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow \lambda \mathrm{x} \text {. } 2 \\
& h \rightarrow \lambda x \text {. if }(x=2,0,1) \\
& g \rightarrow \lambda x, y . \text { if }(x=0 \wedge y=2,-1,0) \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow\{2 \rightarrow 0, \ldots\} \\
& h \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\} \\
& \text { Microsoft }
\end{aligned}
$$

Example: Model Checking

\mathbf{M}^{π}

$$
\begin{aligned}
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow \lambda \mathrm{x.} 2 \\
& \mathrm{~h} \rightarrow \lambda \mathrm{x} . \mathrm{if}(\mathrm{x}=2,0,1) \\
& \mathrm{g} \rightarrow \lambda \mathrm{x}, \mathrm{y} . \mathrm{if}(\mathrm{x}=0 \wedge \mathrm{y}=2,-1,0)
\end{aligned}
$$

Does M^{π} satisfies?

$$
\forall x_{1}, x_{2}: g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0
$$

$$
\forall x_{1}, x_{2}: \operatorname{if}\left(x_{1}=0 \wedge x_{2}=2,-1,0\right)=0 \vee \operatorname{if}\left(x_{2}=2,0,1\right)=0 \text { is valid }
$$

$$
\exists x_{1}, x_{2}: \operatorname{if}\left(x_{1}=0 \wedge x_{2}=2,-1,0\right) \neq 0 \wedge \operatorname{if}\left(x_{2}=2,0,1\right) \neq 0 \text { is unsat }
$$

$$
\operatorname{if}\left(s_{1}=0 \wedge s_{2}=2,-1,0\right) \neq 0 \wedge \operatorname{if}\left(s_{2}=2,0,1\right) \neq 0 \quad \text { is unsat }
$$

Why does it work?

Suppose M^{π} does not satisfy $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
Then for some value v, $\mathrm{M}^{\pi}\{\mathrm{x} \rightarrow \mathrm{v}\}$ falsifies $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
$\mathrm{M}^{\pi}\left\{\mathrm{x} \rightarrow \pi_{\mathrm{f}}(\mathrm{v})\right\}$ also falsifies $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
But, there is a term $t \in A_{f}$ s.t. $M(t)=\pi_{f}(v)$ Moreover, we instantiated $\mathrm{C}[\mathrm{f}(\mathrm{x})]$ with t .

So, M must not satisfy $C[f(t)]$.
Contradiction: M is a model for F^{*}.

Refinement 1: Lazy construction

e F^{*} may be very big (or infinite).
e Lazy-construction
e Build F^{*} incrementally, F^{*} is the limit of the sequence

$$
\mathrm{F}^{0} \subset \mathrm{~F}^{1} \subset \ldots \subset \mathrm{~F}^{\mathrm{k}} \subset \ldots
$$

e If F^{k} is unsat then F is unsat.
e If F^{k} is sat, then build (candidate) M^{π}
e If M^{π} satisfies all quantifiers in F then return sat.

Refinement 2: Model-based instantiation

Suppose M^{π} does not satisfy a clause $C[f(x)]$ in F.
Add an instance C[f(t)] which "blocks" this spurious model. Issue: how to find t ?

Use model checking, and the "inverse" mapping π_{f}^{-1} from values to terms (in A_{f}). $\pi_{\mathrm{f}}^{-1}(\mathrm{v})=\mathrm{t} \quad$ if $\quad \mathrm{M}^{\pi}(\mathrm{t})=\pi_{\mathrm{f}}(\mathrm{v})$

Model-based instantiation: Example

F

$$
\begin{align*}
& \forall x_{1}: f\left(x_{1}\right)<0, \\
& f(a)=1,
\end{aligned} \quad \square \begin{aligned}
& f(a)=1 \\
& f(b)=-1
\end{align*}
$$

$$
f \rightarrow \lambda x . \operatorname{if}(x=2,1,-1)
$$

Model Checking $\forall x_{1}: f\left(x_{1}\right)<0$ not if($\left.s_{1}=2,1,-1\right)<0$
F^{1}

$$
\text { unsat } \begin{aligned}
f(a) & =1, \\
f(b) & =-1 \\
f(a) & <0
\end{aligned}
$$

Infinite F*

e Is our procedure refutationally complete?

- FOL Compactness

> A set of sentences is unsatisfiable iff
it contains an unsatisfiable finite subset.

- A theory T is a set of sentences, then apply compactness to $\mathrm{F}^{*} \cup T$

Infinite F*: Example

F

Unsatisfiable

```
\forall\mp@subsup{x}{1}{}:f(\mp@subsup{x}{1}{})<f(f(\mp@subsup{x}{1}{})),
```

\forall\mp@subsup{x}{1}{}:f(\mp@subsup{x}{1}{})<f(f(\mp@subsup{x}{1}{})),

* (: f(}\mp@subsup{\textrm{x}}{1}{})<\textrm{a}
* (: f(}\mp@subsup{\textrm{x}}{1}{})<\textrm{a}
1<f(0).

```
1<f(0).
```

F*
$f(0)<f(f(0)), f(f(0))<f(f(f(0))), \ldots$ $\mathrm{f}(0)<\mathrm{a}, \mathrm{f}(\mathrm{f}(0))<\mathrm{a}, \ldots$ $1<\mathrm{f}(0)$

Every finite subset of F^{*} is satisfiable.

Infinite F*: What is wrong?

e Theory of linear arithmetic T_{z} is the set of all first-order sentences that are true in the standard structure Z.

- T_{z} has non-standard models.
e F and F^{*} are satisfiable in a non-standard model.
e Alternative: a theory is a class of structures.
- Compactness does not hold.
e F and F* are still equisatisfiable.

Δ_{F} and Set Constraints

Given a clause $C_{k}\left[x_{1}, \ldots, x_{n}\right]$
Let
$S_{k, i}$ be the set of ground terms used to instantiate x_{i} in clause $C_{k}\left[x_{1}, \ldots, x_{n}\right]$
How to characterize $\mathrm{S}_{\mathrm{k}, \mathrm{i}}$?

\mathbf{F}	$\Delta_{\boldsymbol{F}}$
j-th argument of f in $\mathrm{C}_{\boldsymbol{k}}$	system of set constraints
a ground term t	$\mathrm{t} \in \mathrm{A}_{\mathrm{f}, \mathrm{j}}$
$\mathrm{t}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$	$\mathrm{t}\left[\mathrm{S}_{\mathrm{k}, 1}, \ldots, \mathrm{~S}_{\mathrm{k}, \mathrm{n}}\right] \subseteq \mathrm{A}_{\mathrm{f}, \mathrm{j}}$
x_{i}	$\mathrm{S}_{\mathrm{k}, \mathrm{i}}=\mathrm{A}_{\mathrm{f}, \mathrm{j}}$

$\Delta_{F}:$ Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, \quad S_{1,1}=A_{g, 1}, S_{1,2}=A_{g, 2}, S_{1,2}=A_{h, 1} \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \text {, } \\
& h(c)=1 \text {, } \\
& f(a)=0 \\
& \Delta_{F} \\
& S_{2,1}=A_{f, 1}, f\left(S_{2,1}\right) \subseteq A_{g, 1}, b \in A_{g, 2} \\
& c \in A_{h, 1} \\
& a \in A_{f, 1}
\end{aligned}
$$

Δ_{F} : least solution

$$
\begin{aligned}
& S_{1,1}=\{f(a)\}, S_{1,2}=\{b, c\} \\
& S_{2,1}=\{a\}
\end{aligned}
$$

Complexity

e Δ_{F} is stratified then the least solution (and F^{*}) is finite

$$
\begin{array}{cl}
\mathrm{t}\left[\mathrm{~S}_{\mathrm{k}, 1}, \ldots, \mathrm{~S}_{\mathrm{k}, \mathrm{n}}\right] \subseteq \mathrm{A}_{\mathrm{f}, \mathrm{j}} & \operatorname{level}\left(\mathrm{~S}_{\mathrm{k}, \mathrm{j}}\right)<\operatorname{level}\left(\mathrm{A}_{\mathrm{f}, \mathrm{j}}\right) \\
\mathrm{S}_{\mathrm{k}, \mathrm{i}}=\mathrm{A}_{\mathrm{f}, \mathrm{j}} & \operatorname{level}\left(\mathrm{~S}_{\mathrm{k}, \mathrm{i}}\right)=\operatorname{level}\left(\mathrm{A}_{\mathrm{f}, \mathrm{j}}\right)
\end{array}
$$

e New decidable fragment: NEXPTIME-Hard.

- The least solution of Δ_{F} is exponential in the worst case. $a \in S_{1}, b \in S_{1}, f_{1}\left(S_{1}, S_{1}\right) \subseteq S_{2}, \ldots, f_{n}\left(S_{n}, S_{n}\right) \subseteq S_{n+1}$
e F^{*} can be doubly exponential in the size of F.

Extensions

© Arithmetical literals: π_{f} must be monotonic.

Literal of C_{k}	Δ_{F}
$\neg\left(x_{i} \leq x_{j}\right)$	$S_{k, i}=S_{k, j}$
$\neg \neg\left(\mathrm{x}_{\mathrm{i}} \leq \mathrm{t}\right), \neg\left(\mathrm{t} \leq \mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{t} \in \mathrm{S}_{\mathrm{k}, \mathrm{i}}$
$\mathrm{x}_{\mathrm{i}}=\mathrm{t}$	$\{\mathrm{t}+1, \mathrm{t}-1\} \subseteq \mathrm{S}_{\mathrm{k}, \mathrm{i}}$

© Offsets:

$$
\begin{array}{c|c}
\text { j-th argument of } f \text { in } C_{k} & \Delta_{F} \\
\hline x_{i}+r & S_{k, i}+r \subseteq A_{f, j} \\
A_{f, j}+(-r) \subseteq S_{k, i}
\end{array}
$$

Extensions: Example

Shifting

$$
\neg\left(0 \leq x_{1}\right) \vee \neg\left(x_{1} \leq n\right) \vee f\left(x_{1}\right)=g\left(x_{1}+2\right)
$$

More Extensions

- Many-sorted logic
- Pseudo-Macros

$$
\begin{aligned}
& 0 \leq g\left(x_{1}\right) \vee f\left(g\left(x_{1}\right)\right)=x_{1}, \\
& 0 \leq g\left(x_{1}\right) \vee h\left(g\left(x_{1}\right)\right)=2 x_{1}, \\
& g(a)<0
\end{aligned}
$$

Conclusion

e SMT solvers usually return unsat or unknown for quantified SMT formulas.
e Z3 was the only SMT-solver in SMT-COMP’08 to correctly answer satisfiable quantified formulas.

- New decidable fragments.
e Model-based instantiation and Model checking.
- Conditions for refutationally complete procedures.
- Future work: more efficient model checking techniques.

Thank you!

