
Regression Tests
and the

Inventor’s Dilemma

Leonardo de Moura

Microsoft Research

SAGE

How do we make progress?

We are trying to solve HARD problems

Automated Reasoning Tools use heuristics

Progress is not monotonic

How do we release new versions?

How do we find bugs?

Regression tests

Expected Output Input

Tool

Produced Output

Regression tests: the 1st directive

Every bug report becomes a regression test

Fuzzer

“Random” input generator

 Syntactically valid input

 It is not trying to expose bugs in the parser

Runtime assertions

Inefficient
Version

Efficient
Version

Input

Output 1 Output 2

External Oracle

Procedure

Input

Output, Certificate Oracle

Example: Oracles in nlsat

M
o

d
els

Le
m

m
as

Example: Oracles in nlsat

𝑥 2, 𝑦 1
¬ 𝑧 < 0,

2𝑧2 − 𝑦2 = 0,
¬𝑥 𝑧 − 𝑦 = 0

Current Assignment Conflicting Core

Example: Oracles in nlsat

𝑥 2, 𝑦 1
¬ 𝑧 < 0,

2𝑧2 − 𝑦2 = 0,
¬𝑥 𝑧 − 𝑦 = 0

Current Assignment Conflicting Core

z−
1

2
, z

1

2

Example: Oracles in nlsat

𝑥 2, 𝑦 1
¬ 𝑧 < 0,

2𝑧2 − 𝑦2 = 0,
¬𝑥 𝑧 − 𝑦 = 0

Current Assignment Conflicting Core

z−
1

2
, z

1

2

Example: Oracles in nlsat

𝑥 2, 𝑦 1
¬ 𝑧 < 0,

2𝑧2 − 𝑦2 = 0,
¬𝑥 𝑧 − 𝑦 = 0

Current Assignment Conflicting Core

z−
1

2
, z

1

2

Example: Oracles in nlsat

Resolve[ForAll[{x, y, z}, !(x== Root[#1^2 - 2 &, 2] && y == 1) ||
 z < 0 ||
 !(2*z^2 - y^2 == 0) ||
 x*z - y == 0],
 Reals]

𝑥 2, 𝑦 1
¬ 𝑧 < 0,

2𝑧2 − 𝑦2 = 0,
¬𝑥 𝑧 − 𝑦 = 0

Current Assignment Conflicting Core

To Oracle:
Mathematica

“Telemetry”

“Call home” feature.

Collect stats from every run.

Store stats in a server.

Inventor’s Dilemma

“The new version is slower.”

“The new version fails on my problem.”

SDV: STATIC DRIVER VERIFIER
SLAM

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook, …

Overview

http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Ships with DDK

Application domain: device drivers.

Architecture:

c2bp C program → boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to:

 Perform predicate abstraction,

 Check path feasibility.

c2bp makes several calls to the SMT solver.

 The formulas are relatively small.

SLAM/SDV Summary

Regression tests are extensively used

Rigid process for incorporating new modules

 Several months to move from Z3 1.x Z3 3.x

 Long process for integrating Yogi

CLOUSOT: STATIC ANALYZER

0 Clousot checks the code as you type

0 It reports warnings and verified code fixes

Architecture

CCI1 CCI2 Roslyn

IL, Contract Reader

Facts Discovery

Assertion checking

Warnings
report

Code repairs
Contracts

Propagation

VS 08,10,12 Roslyn Command Line

Abstract
Interpretation

Clousot/CodeContracts impact
0 API .NET standard since v4

0 Externally available
0 > 60,000 downloads

0 Active forum (>1,500 threads)

0 Book chapters, blogs …

0 Internal and External adoption
0 Mainly professional programmers

0 A few university courses

0 Publications, talks, tutorials
0 Academic (POPL, OOPSLA, ECOOP, VMCAI, SAS …)

0 Programmers conferences

Clousot Summary

Regression tests

Inventor’s dilemma scenario

 User X invests time in the following loop:

 Inspect warnings

 Add more contracts

 Fix bugs

 Finally the code is warning free

 New version is released New warnings

Some users use multiple versions

Clousot Summary

Inventor’s Dilemma Apocalypse

 May ship as part of Visual Studio

 Potential for millions of users

SAGE: TEST-CASE GENERATION

Sage Summary

Tool as a service

Extensive use of “telemetry”

Automatically find issues that are relevant for
their customers

Satisfiability

𝑥2 + 𝑦2 < 1 𝑎𝑛𝑑 𝑥𝑦 > 0.1 sat, 𝑥 =
1

8
, 𝑦 =

7

8

𝑥2 + 𝑦2 < 1 𝑎𝑛𝑑 𝑥𝑦 > 1 unsat, Proof

Is execution path P feasible? Is assertion X violated?

SAGE

Is Formula F Satisfiable?

W
I
T
N
E
S
S

Solution/Model

Z3 is a collection of

Symbolic Reasoning Engines

DPLL
Simplex Rewriting

Superposition

Congruence
Closure Groebner

Basis

elimination

Euclidean
Solver

Theorem Prover
SMT Solver

Z3 Impact

HAVOC SAGE

Vigilante

Z3 is used by many research groups (> 700 citations)
More than 18k downloads
Z3 placed 1st in 17/21 divisions in the SMT-COMP 2011

history

2007-2008 Competition-oriented years
 Just check if it produces the right answer
 2007 Z3 0.1 (SMT-COMP’07) Z3 1.0 released later
 Tested using 1 machine with 8 cores
 2008 Z3 2.0 (SMT-COMP’08)
 Small cluster with 12 cheap machines
 Painful transition from Z3 1.x Z3 2.x

history

2009-2010 Decline
 Machines in the small cluster started dying
 No regressions or measurements
 Randomly adding features and fixing/adding bugs
 No idea whether making progress or not
 Many users consider Z3 2.19 much worse than 2.16

history

2011-2012 Revival Z3 3.x and 4.x
 Fuzzers running nonstop 24x7
 Rerun all SMT-LIB and key benchmarks every night
 Huge shared cluster
 Z3 3.0 won 17/21 divisions in SMT-COMP’11
 Z3 3.0 best 9/10 divisions in SMT-COMP’12
 Thousands of regression tests executed every night
 Testing several internal modules
 Testing exposed APIs

Next Steps…

Adding telemetry

More model/proof validation regression tests

More unit tests

Multiplatform testing: Linux and OSX versions

Monitoring system a-la Sagan

SMT-Lib benchmarks

Not good for testing corner cases

 Fuzzer is great for that

 Manually written tests

Most benchmarks use only the basic SMT 2.0 features

 New Fuzzer?

Z3 & Inventor’s Dilemma

“The new Z3 is 20% slower on my problem”

 Come on, move on

“The new Z3 is 3x slower on my problem”

 Does he work for Microsoft?

“The new Z3 is 10x slower on my problem”

 Let me check what is going on

Z3 & Inventor’s Dilemma

Incorporate problems from key customers in the
regression tests.

It is very hard to make progress.

 Z3 2.x search engine is still there.

Be careful when adding obscure features.

 Users will find and use them.

Inventor’s Dilemma: a Solution

Leonardo de Moura (Microsoft Research)
Grant Passmore (University of Cambridge)

What is a Strategy?

 Theorem proving as an exercise of
combinatorial search

 Strategies are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

Different Strategies for Different Domains.

The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines.

Users should be able to define their own strategies.

Tactic

goal

subgoals

Proof
builder

Proofs for subgoals

Proof
builder

Proof for goal

Tactic
goal

subgoals

Proof
builder

Tactic
goal

Tactic

Tactic

Proof
builder

Proof
builder

Proof
builder

Proof
Builder

proof

Proof
Builder

Proof
Builder

Proof
Builder

proof

Proof
Builder

Proof
Builder

thm in LCF
terminology

proof in LCF
terminology

 then(,) = Tactic Tactic Tactic

orelse(,) = Tactic Tactic Tactic

repeat() = Tactic Tactic

Tactic

goal

subgoals

Proof
builder

Model
builder

end-game tactics:
never return unknown(sb, mc, pc)

non-branching tactics:
sb is a sigleton in

 unknown(sb, mc, pc)

Empty goal [] is trivially satisfiable

False goal […, false, …] is trivially unsatisfiable

basic : tactic

Tactic:
elim-vars

Proof
builder

Model
builder

Tactic:
elim-vars

Proof
builder

Model
builder

M

M, M(a) = M(b) + 1

Tactic:
split-or

Proof
builder

Model
builder

Simplification
Constant propagation
Interval propagation
Contextual simplification
If-then-else elimination
Gaussian elimination
Unconstrained terms

Conclusion

Regression tests are extensively used at MS

“Telemetry”

Analyze your data

Inventor’s Dilemma is a major issue for any tool
based on heuristics.

 Gets worse as complexity increases

 NP, PSPACE, NEXPTIME, Undecidable

 Our partial solution:

 Orchestrating Decision Engines

