Orchestrating Decision Engines CP 2011, Perugia, taly

Leonardo de Moura (Microsoft Research) and Grant Passmore (University of Cambridge)

Satisfiability Modulo Theories (SMT)

A Satisfiability Checker

 with built-in support for useful theoriesMicrosoft ${ }^{*}$
Research

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } \boxed{f r e a d}(\text { write }(a, b, 3), c-2) \neq f(c-b+1)
$$

Uninterpreted Functions

SMT Solvers \& LIB \& COMP

Solvers:

AProve, Barcelogic, Boolector, CVC3, CVC4, MathSAT5, OpenSMT, SMTInterpol, SOLONAR, STP2, veriT, Yices, Z3

SMT-LIB: library of benchmarks (> 100k problems) http://www.smtlib.org

SMT-COMP: annual competition http://www.smtcomp.org

Applications

Test case generation Verifying Compilers
 Predicate Abstraction
 Invariant Generation
 Type Checking

Model Based Testing
Scheduling \& Planning

Microsoft
Research

Some Applications @ Microsoft

HAVOC

ForpLa

Hyper-V
 Mrerosoft | Virtualization ${ }^{*}$

Terminator T-2

VCC

NModel

Vigilante

SpecExplorer
SAGE

F7

Application Scenarios

"Big" and hard formulas

Thousands of "small" and easy formulas

Short timeout (< 5secs)

Application Scenarios

"Big" and hard formulas

Spec\#

Programming System

HAVOC

Short timeout (< 5secs)

SAGE

Verification/Analysis Tool: "Template"

Problem

Verification/Analysis
 Tool

Logical Formula

Theorem Prover/ Satisfiability Checker

SMT@Microsoft: Solver

- Z3 is a solver developed at Microsoft Research.
e Development/Research driven by internal customers.
- Free for non-commercial use.
e Interfaces:

e http://research.microsoft.com/projects/z3

rise4fun.com/z3
 RiSE4fun

agl bek boogie code contracts concurrent revisions dafny dkal esm f* formula heapdbg poirot pex rex slayer spec\# vcc z3

```
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)
(push)
(assert (= x y))
(check-sat)
(pop)
(exit)|
```


Microsoft ${ }^{*}$
 Research

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

e Logic is "The Calculus of Computer Science" (Z. Manna).

Undecidable ($\mathrm{FOL}+\mathrm{L} A$)

- High computational complexity

Microsoft ${ }^{*}$
Research

Symbolic Reasoning

Yes, we cannot solve arbitrary problems from the "complexity ladder".

Undecidable (First-order logic Linear Arithmetic)

Semi-decidable
But,... (First-order logic)

(Equallityy)
Microsoft ${ }^{*}$
Research

Symbolic Reasoning

We can try to solve the problems we find in real applications

Main challenges

e Scalability (huge formulas)

- Complexity
- Undecidability
- Quantified formulas

Microsoft ${ }^{*}$
Research

SMT@MS: Applications

A Sample

Directed Automated Random Testing (DART)

Microsoft ${ }^{*}$
Research

Test case generation

unsigned $\operatorname{GCD}(x, y)$ \{
requires $(y>0)$;
while (true) \{
SSA unsigned $m=x \% y$;
if $(m==0)$ return y;

$$
x=y ;
$$

$$
y=m
$$

\}

$$
\begin{aligned}
& \left(y_{0}>0\right) \text { and } \\
& \left(m_{0}=x_{0} \% y_{0}\right) \text { and } \\
& \text { not }\left(m_{0}=0\right) \text { and } \\
& \left(x_{1}=y_{0}\right) \text { and } \\
& \left(y_{1}=m_{0}\right) \text { and } \\
& \left(m_{1}=x_{1} \% y_{1}\right) \text { and } \\
& \left(m_{1}=0\right)
\end{aligned}
$$

We want a trace where the loop is executed twice.

Microsoft Research

White box testing in practice

How to test this code?
 (Real code from .NET base class libraries.)

```
[SecuritvPermissionAttribute(SecurityAction.LinkDemand, Flags=SecurityPermissionFlag.SerializationFormatter)]
public ResourceReader(Stream stream)
{
    if (stream==null)
            throw new ArgumentNullException("stream"):
    if (!stream.CanRead)
            throw new ArgumentException(Environment.GetReaourceString("Argument_StreamNotReadable")};
    _resCache - new Dictionary<String, ResourceLocator>(FastResourceComparer.Default);
    _store - new BinaryReader(stream, Encoding.UTF8);
    // we have a raster code path Ior reading resource Iiles Irom an assembly.
    _ums = stream as UnmanagedMemoryStream;
    BCLDebug.Log("RESMGRFILEFORMAT", "ResourceReader .ctor(Stream) . UnmanagedMemoryStream: "+(_ums!=null));
    ReadResources();
```

\}

White box testing in practice

```
    // Reads in the header information for a .resources file. Verifies some
    // of the assumptions about this resource set, and builds the class table
    // for the default resource file format.
private void ReadResources()
    BCLDebug-4ssert(_store != null, "ResourceReader is closed!"):
    BinaryFormatter \overline{bf}=\mathrm{ new BinaryFormatter(null, new StreamingContext (StreamingContextStates.File |}
#if !FEATURE_PAL
    _typeLimitingBinder - new TypeLimitingDeserializationBinder();
    br.Binder = _\tauypeLimitingBinder;
#endif
    _objFormatter = bf;
    try {
        // Read ResourceManager header
            // Cheak fon macric number
            int magicNum = _store.ReadInt32 ();
            if (magicNum != ResourceManager.MagicNumber)
            throw new IngumentException(Environment.GetResourceString("Resources_StreamlJotValid"));
            // after the version number there is a number of bytes to skip
            // to bypass the rest or the ResMgr header.
            int resMgrHeaderVersion = store.ReadInt32 ();
            if (resMgrHeaderVersion > 1) {
                int numBytesToSkip = store.ReadInt32();
```



```
                    BCLDebug.Assert (numBytesToSkip >= 0, "numBytesToSkip in ResMgr header should be positive!"
```



```
            } else {
                BCLDebug.Log("RESMGREILEFORMAT", "ReadResources: Parsing ResMgr header v1."};
                    SkipInt32(); // We don't care about numBytesToSkip.
                        // Read in type name for a suitable ResourceReader
```


White box testing in practice

```
    // Reads in the header information for a .resources file. Verifies some
    // of the assumptions about this resource set, and builds the class table
    // for the default resource file format.
    private void ReadResources()
    BCLDebug-4ssert(_store != null, "ResourceReader is closed!"):
    BinaryFormatter bf = new BinaryFormatter(null, new StreamingContext(StreamingContextStates.File |
#if !FEATURE_PAL
    _typeLimitingBinder - new TypeLimitingDeserializationBinder();
    br.Binder = _饣ypeLimicingBinder;
#endif
    _objFormatter = bf;
    try {
        // Read ResourceManager header
            // Mheok for magric number
            int magicNum = _store.ReadInt32 ();
            if public virtual int ReadInt32(} {
            if (m_isMemoryStream) {
```



```
                MemoryStream mStream = m_stream as MemoryStream;
                        BCLDebug.Assert (mStream != null, "m_stream as MemoryStream != null"):
                        return mStream. InternalReadInt32 ();
            }
            else
            {
                F111BumFer(4):
                    return (int) (m_buffer[0] | m_buffer[1] << 8 | m_buffer[2] << 16 | m_buffer[3] << 24);
            }
                    }
}
/7 Read in type name for a suitable ResourceReader
```


Pex-Test Input Generation

SAGE

- Apply DART to large applications (not units).
- Start with well-formed input (not random).
- Combine with generational search (not DFS).
- Negate 1-by-1 each constraint in a path constraint.
- Generate many children for each parent run.

Zero to Crash in 10 Generations

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser

Generation 0 - seed file

Zero to Crash in 10 Generations

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser

Generation 1

Zero to Crash in 10 Generations

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser

Generation 10 - CRASH

SAGE $\leftrightarrow \mathrm{Z} 3$

- Formulas are usually big conjunctions.
- SAGE uses only the bitvector and array theories.
- Pre-processing step has a huge performance impact.
- Eliminate variables.
- Simplify formulas.
- Early unsat detection.

Verification architecture

Spec\#

A verifying C compiler

- VCC translates an annotated C program into a Boogie PL program.
- A C-ish memory model
- Abstract heaps
- Bit-level precision
e Microsoft Hypervisor: verification grand challenge.

Hypervisor: A Manhattan Project

e Meta OS: small layer of software between hardware and OS
e Mini: 60K lines of non-trivial concurrent systems C code
e Critical: must provide functional resource abstraction
e Trusted: a verification grand challenge

Hypervisor: Some Statistics

- VCs have several Mb
e Thousands of non ground clauses
e Developers are willing to wait at most 5 min per VC

Other Microsoft clients

- Model programs (M. Veanes - MSRR)
e Termination (B. Cook - MSRC)
e Security protocols (A. Gordon and C. Fournet - MSRC)
e Business Application Modeling (E. Jackson - MSRR)
- Cryptography (R. Venki - MSRR)
- Verifying Garbage Collectors (C. Hawblitzel - MSRR)
- Model Based Testing (L. Bruck - SQL)
- Semantic type checking for D models (G. Bierman MSRC)
- More coming soon...

http://rise4fun.com

Pex, Spec\#, VCC and many other tools are available online.

Research

Research

Orchestrating Decision Engines

Combining Engines

Current SMT solvers provide a combination of different engines

Combining Engines

Configuring SAT/SMT Solvers: "state-of-the-art"

Z3 has approx. 300 options

Opening the "Black Box"

Actual feedback provided by Z3 users:

"Could you send me your CNF converter?"
"I want to implement my own search strategy."
"I want to include these rewriting rules in Z3." "I want to apply a substitution to term t."
"I want to compute the set of implied equalities."

The Strategy Challenge

To build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high performance SMT solvers.

What is a strategy?

Theorem proving as an exercise of combinatorial search

Strategies are adaptations of general search mechanisms which reduce the search space by tailoring its exploration to a particular class of formulas.

The Need for "Strategies"

Different Strategies for Different Domains.

The Need for "Strategies"

Different Strategies for Different Domains.

From timeout to 0.05 secs...

Example in Quantified Bit-Vector Logic (QBVF)

Join work with C. Wintersteiger and Y. Hamadi FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: $I[x]$ and $T\left[x, x^{\prime}\right]$
$\forall x, x^{\prime} . I[x] \wedge T^{k}\left[x, x^{\prime}\right] \rightarrow \exists y, y^{\prime} . I[y] \wedge T^{k-1}\left[y, y^{\prime}\right]$
Ranking function synthesis.

Hardware Fixpoint Checks

Ranking Function Synthesis

Why is Z3 so fast in these benchmarks?

Z3 is using different engines:

 rewriting, simplification, model checking, SAT, ...Z3 is using a customized strategy.

We could do it because we have access to the source code.

The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines. Users should be able to define their own strategies.

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Proofs for subgoals

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Main inspiration: LCF-approach

Tacticals aka Combinators

SMT Tactic

SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
{ unsat proof
tactic = goal }->\mathrm{ trt
```


SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
        unsat proof
        unknown goal sequence }\times\mathrm{ modelconv }\times\mathrm{ proofconv
        fail
tactic = goal }->\mathrm{ trt
end-game tactics: never return unknown(sb, mc, pc)
```


SMT Tactic

```
goal = formula sequence }\times\mathrm{ attribute sequence
proofconv = proof sequence }->\mathrm{ proof
modelconv = model }\times\mathrm{ nat }->\mathrm{ model
trt = sat model
        unsat proof
        unknown goal sequence }\times\mathrm{ modelconv }\times\mathrm{ proofconv
        fail
tactic = goal }->\mathrm{ trt
non-branching tactics: sb is a sigleton in unknown(sb, mc, pc)
```


Trivial goals

Empty goal [] is trivially satisfiable

False goal [..., false, ...] is trivially unsatisfiable
basic : tactic

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic: elim-vars

Proof

 builder$$
[(b+1<0 \vee b+1>0), b>3]
$$

Model builder

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic: elim-vars
$M, M(a)=M(b)+1$

Proof builder

$$
[(b+1<0 \vee b+1>0), b>3]
$$

Model builder

M

SMT Tactic example

$$
[a=b+1,(a<0 \vee a>0), b>3]
$$

Tactic: split-or

Proof builder

$$
\begin{aligned}
& {[a=b+1, a<0, b>3]} \\
& {[a=b+1, a>0, b>3]}
\end{aligned}
$$

Model builder

SMT Tactics

simplify
nnf
cnf
tseitin
lift-if
bitblast
gb
vts
propagate-bounds
propagate-values
split-ineqs
split-eqs
rewrite
p-cad
sat
solve-eqs

SMT Tacticals

then : $($ tactic \times tactic $) \rightarrow$ tactic
then $\left(t_{1}, t_{2}\right)$ applies t_{1} to the given goal and t_{2} to every subgoal produced by t_{1}. then $*:($ tactic \times tactic sequence $) \rightarrow$ tactic
then $*\left(t_{1},\left[t_{2_{1}}, \ldots, t_{2_{n}}\right]\right)$ applies t_{1} to the given goal, producing subgoals g_{1}, \ldots, g_{m}. If $n \neq m$, the tactic fails. Otherwise, it applies $t_{2_{i}}$ to every goal g_{i}.
orelse : $($ tactic \times tactic $) \rightarrow$ tactic
orelse $\left(t_{1}, t_{2}\right)$ first applies t_{1} to the given goal, if it fails then returns the result of t_{2} applied to the given goal.
par : tactic \times tactic $) \rightarrow$ tactic
$\operatorname{par}\left(t_{1}, t_{2}\right)$ excutes t_{1} and t_{2} in parallel.

SMT Tacticals

then $(\operatorname{skip}, t)=\operatorname{then}(t, \operatorname{skip})=t$

$$
\operatorname{orelse}(\text { fail }, t)=\operatorname{orelse}(t, \text { fail })=t
$$

SMT Tacticals

repeat : tactic \rightarrow tactic
Keep applying the given tactic until no subgoal is modified by it. repeatupto : tactic \times nat \rightarrow tactic

Keep applying the given tactic until no subgoal is modified by it, or the maximum number of iterations is reached.
tryfor : tactic \times seconds \rightarrow tactic
tryfor (t, k) returns the value computed by tactic t applied to the given goal if this value is computed within k seconds, otherwise it fails.

Feature / Measures

Probing structural features of formulas.

Feature / Measures: Yices Strategy

diff logic?

yes atom/dim $<\mathrm{k}$

simplex
floyd warshall

Feature / Measures: Yices Strategy

orelse(then(failif(diff $\left.\wedge \frac{\text { atom }}{\operatorname{dim}}>k\right)$, simplex), floydwarshall)

Fail if condition is not satisfied. Otherwise, do nothing.

Feature / Measures: Examples

bw: Sum total bit-width of all rational coefficients of polynomials in case. diff: True if the formula is in the difference logic fragment.
linear: True if all polynomials are linear.
dim: Number of arithmetic constants.
atoms: Number of atoms.
degree: Maximal total multivariate degree of polynomials. size: Total formula size.

Tacticals: syntax sugar

if $\left(c, t_{1}, t_{2}\right)=\operatorname{orelse}\left(\operatorname{then}\left(\right.\right.$ failif $\left.\left.(\neg c), t_{1}\right), t_{2}\right)$ when $(c, t)=\mathrm{if}(c, t$, skip $)$

Under/Over-Approximations

Under-approximation

unsat answers cannot be trusted

Over-approximation
sat answers cannot be trusted

Under/Over-Approximations

Under-approximation model finders

Over-approximation proof finders

Under/Over-Approximations

Under-approximation

$$
S \rightarrow S \cup S^{\prime}
$$

Over-approximation

$$
S \rightarrow S \backslash S^{\prime}
$$

Under/Over-Approximations

Under-approximation

Example: QF_NIA model finders
add bounds to unbounded variables (and blast)

Over-approximation

Example: Boolean abstraction

Under/Over-Approximations

Combining under and over is bad! sat and unsat answers cannot be trusted.

Tracking: under/over-approximations

In principle, proof and model converters can check if the resultant models and proofs are valid.

Tracking: under/over-approximations

In principle, proof and model converters can check if the resultant models and proofs are valid.

Problem: if it fails what do we do?

Tracking: under/over-approximations

In principle, proof and model converters can check if the resultant models and proofs are valid.

Problem: if it fails what do we do?

We want to write tactics that can check whether a goal is the result of an abstraction or not.

Tracking: under/over-approximations

Solution

Associate an precision attribute to each goal.

Goal Attributes

Store extra logical information
Examples: precision markers
goal depth
polynomial factorizations

SMT \rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) \quad p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)
$$

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

Assignment
Solver

$$
\begin{aligned}
& \text { ASSIgnment } \\
& p_{1}, p_{2}, \neg p_{3}, p_{4} \square \begin{array}{l}
x \geq 0, y=x+1 \\
\neg(y>2), y<1
\end{array}
\end{aligned}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT
Assignment
Solver

Unsatisfiable
$x \geq 0, y=x+1, y<1$
Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

New Lemma

$\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}$$\quad$| Unsatisfiable |
| :--- |
| $x \geq 0, y=x+1, y<1$ |

Theory Solver

Decision Engines as Tacticals

then $($ preprocess, $\operatorname{smt}($ finalcheck $)$)

Apply "cheap" propagation/pruning steps; and then apply complete "expensive" procedure

Decision Engines as Tacticals

AP-CAD $($ tactic $)=$ tactic

Strategy: Example

then (then(simplify, gaussian), orelse $($ modelfinder, $\operatorname{smt}(\operatorname{apcad}(i c p))))$

RAHD Calculemus Strategy

	dim	deg	div	calc-0	calc-1	calc-2	qepcad-b	redlog/rlqe	redlog/rlcad
P0	5	4	N	.91	1.59	1.7	416.45^{*}	40.4	-
P1	6	4	N	1.69	3.08	3.42	$-*$	-	-
P2	5	4	N	1.34	2.41	2.62	$-*$	-	-
P3	5	4	N	1.52	2.56	2.75	$-*$	-	-
P4	5	4	N	1.14	2.02	2.16	$-*$	-	-
P5	14	2	N	.25	.26	.27	$-*$	97.4	-
P6	11	5	N	147.4	.07	.06	$-*$	$<.01$	$<.01$
P7	8	2	N	.05	$<.01$	$<.01$.08	$<.01$	$<.01$
P8	7	32	N	4.5	.1	$<.01$	8.38	$<.01$	-
P9	7	16	N	4.51	.15	$<.01$.29	.01	6.7
P10	7	12	N	100.74	20.76	8.85	$-*$	-	-
P11	6	2	Y	1.6	.5	.53	.01	.01	.05
P12	5	3	N	.78	.3	.36	.02	.01	.07
P13	4	10	N	3.83	3.95	4.02	$-*$	-	-
P14	2	2	N	4.55	1.67	.07	.01	-01	-
P15	4	3	Y	.177	.2	.12	.01	$<.01$	$<.01$
P16	4	2	N	9.99	2.17	2.1	.02	$<.01$	$<.01$
P17	4	2	N	.62	.59	.65	.28	.02	.61
P18	4	2	N	1.25	1.28	1.27	.01	$<.01$	$<.01$
P19	3	6	Y	3.34	1.72	2.08	.02	.01	.7
P20	3	4	N	1.18	.65	.65	.01	$<.01$.3
P21	3	2	N	.02	.03	$<.01$.02	.01	.1
P22	2	4	N	$<.01$	$<.01$	$<.01$.01	$<.01$	$<.01$
P23	2	2	Y	$<.01$	$<.01$	$<.01$	$<.01$	$<.01$	$<.01$

Z3 QF_LIA Strategy

then (preamble, orelse(mf, pb, bounded, smt)

Simplification

Constant propagation Interval propagation Contextual simplification If-then-else elimination Gaussian elimination Unconstrained terms

Challenge: small step configuration

proof procedure as a transition system Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

UnitPropagate :

$$
M\|F, C \vee l \quad \Longrightarrow M l\| F, C \vee l \text { if }\left\{\begin{array}{l}
M \models \neg C \\
l \text { is undefined in } M
\end{array}\right.
$$

PureLiteral :

$$
M\|F \quad \Longrightarrow \quad M l\| F \quad \text { if }\left\{\begin{array}{l}
l \text { occurs in some clause of } F \\
\neg l \text { occurs in no clause of } F \\
l \text { is undefined in } M
\end{array}\right.
$$

Decide :

$$
M\left\|F \quad \Longrightarrow \quad M l^{\mathrm{d}}\right\| F \quad \text { if }\left\{\begin{array}{l}
l \text { or } \neg l \text { occurs in a clause of } F \\
l \text { is undefined in } M
\end{array}\right.
$$

Fail :

$$
M \| F, C \quad \Longrightarrow \text { FailState } \quad \text { if } \quad\left\{\begin{array}{l}
M \models \neg C \\
M \text { contains no decision literals }
\end{array}\right.
$$

Backtrack :

$$
M l^{\mathrm{d}} N\|F, C \Longrightarrow M \neg l\| F, C \quad \text { if }\left\{\begin{array}{l}
M l^{\mathrm{d}} N \models \neg C \\
N \text { contains no decision literals }
\end{array}\right.
$$

Challenge: small step configuration

proof procedure as a transition system Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

Conclusion

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Tactic and Tacticals: big step approach.

More transparency.

