
Leonardo de Moura and Grant Passmore

A Satisfiability Checker

 with built-in support for useful theories

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer

Theorem Prover/
Satisfiability Checker

F

Satisfiable

(model)

Unsatisfiable

(proof)

Theorem Prover/
Satisfiability Checker

F Satisfiable

(model)

Unsatisfiable

(proof)
Config

Z3 has approx. 300
options

0

50

100

150

200

250

300

v 1.0 v 2.0 v 3.0

N
u

m
b

e
r

o
f

O
p

ti
o

n
s

Z3

Z3

Current SMT solvers provide

a combination

of different engines

DPLL

Simplex

Grobner
Basis

-
elimination

Superposition

Simplification

Congruence
Closure

KB
Completion

SMT

…

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”

“I want to include these rewriting rules in Z3.”

“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

 To build theoretical and practical tools
allowing users to exert strategic control

over core heuristic aspects of high
performance SMT solvers.

 Theorem proving as an exercise of
combinatorial search

 Strategy are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.

Even though one could illustrate how much more effective
partial strategies can be if we had only a very dreadful
general algorithm, it would appear desirable to postpone
such considerations till we encounter a more realistic case
where there is no general algorithm or nor efficient general
algorithm, e.g., in the whole predicate calculus or in number
theory. As the interest is presumably in seeing how well a
particular procedure can enable us to prove theorems on a
machine, it would seem preferable to spend more effort on
choosing the more efficient methods rather than on
enunciating more or less familiar generalities.

Hao Wang, 1958

Different Strategies for Different Domains.

Different Strategies for Different Domains.

From timeout to 0.05 secs…

Hardware Fixpoint Checks.

Given: and

Ranking function synthesis.

Join work with C. Wintersteiger and Y. Hamadi

FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Z3 is using different engines:

rewriting, simplification, model checking, SAT, …

Z3 is using a customized strategy.

We could do it because

we have access to the source code.

SMT solvers are collections of little engines.

They should provide access to these engines.

Users should be able to define their own strategies.

Tactic

goal

subgoals

Proof

builder

Proofs for subgoals

Proof

builder

Proof for goal

Tactic
goal

subgoals

Proof

builder

Tactic
goal

Tactic

Tactic

Proof

builder
Proof

builder

Proof

builder

Proof

Builder
proof

Proof

Builder

Proof

Builder

Proof

Builder
proof

Proof

Builder

Proof

Builder

thm in LCF

terminology
proof in LCF

terminology

 then(,) = Tactic Tactic Tactic

orelse(,) = Tactic Tactic Tactic

repeat() = Tactic Tactic

Tactic

goal

subgoals

Proof

builder

Model

builder

end-game tactics:

never return unknown(sb, mc, pc)

non-branching tactics:

sb is a sigleton in

 unknown(sb, mc, pc)

Empty goal [] is trivially satisfiable

False goal […, false, …] is trivially unsatisfiable

basic : tactic

Tactic:

elim-vars

Proof

builder
Model

builder

Tactic:

elim-vars

Proof

builder
Model

builder

M

M, M(a) = M(b) + 1

Tactic:

split-or

Proof

builder

Model

builder

simplify

nnf

cnf

tseitin

lift-if

bitblast

gb

vts

propagate-bounds

propagate-values

split-ineqs

split-eqs

rewrite

p-cad

sat

solve-eqs

Probing structural features of formulas.

diff logic?

atom/dim < k

no yes

no yes

simplex

simplex floyd warshall

Fail if condition is not satisfied.

Otherwise, do nothing.

Under-approximation

unsat answers cannot be trusted

Over-approximation

sat answers cannot be trusted

Under-approximation

model finders

Over-approximation

proof finders

Under-approximation

S  S  S’

Over-approximation

S  S \ S’

Under-approximation

Example: QF_NIA model finders

add bounds to unbounded variables (and blast)

Over-approximation

Example: Boolean abstraction

Combining under and over is bad!

sat and unsat answers cannot be trusted.

In principle, proof and model converters can check
if the resultant models and proofs are valid.

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

We want to write tactics that can check whether a
goal is the result of an abstraction or not.

Solution

Associate an precision attribute to each goal.

Store extra logical information

Examples:

precision markers

goal depth

polynomial factorizations

AP-CAD (tactic) = tactic

Simplification

Constant propagation

Interval propagation

Contextual simplification

If-then-else elimination

Gaussian elimination

Unconstrained terms

proof procedure as a transition system

Abstract DPLL, DPLL(T), Abstract GB, cutsat, …

proof procedure as a transition system

Abstract DPLL, DPLL(T), Abstract GB, cutsat, …

Challenge:

Efficient strategic control

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Tactic and Tacticals: big step approach.

More transparency.

