Tactic, Tacticals and SMIT
FBK-RSI, Trento, 2011

Leonardo de Moura and Grant Passmore




Satisfiability Modulo Theories (SMT)

A Satisfiability Checker
with built-in support for useful theories



Some Applications @ Microsoft

Spect - HAvOC  |ForgLa

Programming System

[ Terminator T-2 J

VCC foYe?
e ’\./OJ

S Vigilante |

SpecExplorer Pex E7
 SAGE | I—IS

Microso ft-

Research




Theorem Provers & Satisfiability Checkers

e

N

N

:/I\ Theorem Prover/
F Satisfiability Checker

=)

_/

Satisfiable
(model)

Unsatisfiable
(proof)



Theorem Provers & Satisfiability Checkers

Config

=)
=)

-

Theorem Prover/

N

Satisfiability Checker

=)

/

Z3 has approx. 300

options

Satisfiable
(model)

Unsatisfiable
(proof)



/3 number of options evolution

N
gl
o

Number of Options
N
o
o

gl

>~ //

=73

=
o)
o

=
o
o O

o

v1.0 v 2.0 v 3.0




Combining Engines

Current SMT solvers provide
a combination
of different engines




Combining Engines

Congruence m

Closure
R Grobner
Simplification \w/ Basis

V3-
KB elimination

Completion
Superposition



Opening the “Black Box”

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”
“I want to include these rewriting rules in Z3.”
“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”



The Strategy Challenge

To build theoretical and practical tools
allowing users to exert strategic control
over core heuristic aspects of high
performance SMT solvers.



What a strategy is?

Theorem proving as an exercise of
combinatorial search

Strategy are adaptations of general search
mechanisms which reduce the search space by
tailoring its exploration to a particular class of
formulas.



Even though one could illustrate how much more effective
partial strategies can be if we had only a very dreadful
general algorithm, it would appear desirable to postpone
such considerations till we encounter a more realistic case
where there is no general algorithm or nor efficient general
algorithm, e.g., in the whole predicate calculus or in number
theory. As the interest is presumably in seeing how well a
particular procedure can enable us to prove theorems on a
machine, it would seem preferable to spend more effort on
choosing the more efficient methods rather than on
enunciating more or less familiar generalities.

Hao Wang, 1958



The Need for “Strategies”

Different Strategies for Different Domains.



The Need for “Strategies”

Different Strategies for Different Domains.

From timeout to 0.05 secs...



Example in Quantified Bit-\Vector Logic

Join work with C. Wintersteiger and Y. Hamadi
FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Hardware Fixpoint Checks.
Given: I[z]and T'|x,2’]
Vo, o’ . I[a] AT [z, 2] = 3y, 4" Ty ATy, o]

Ranking function synthesis.



Hardware Fixpoint Checks

[sec] [sec]
1k 1k
100 100
Z3 10 L 73 10

% 3

+ E3 + 3

1 o S 1 o+

] i + T + " "

i + LT+ |+ .

0.1 = + = 0.1 ++ 3 +

N T A O S s £ wt | 3

¥ i + +H ++ + 4 +

+ +- 1 L 4

0.01 HHtHE |+ 4 0.01 + H + 4

0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo



Ranking Function Synthesis

[sec] [sec]
1k 1k
100 100
Z3 10 - Z3 10 =
= + -
1 + 1 +
¥ T OE
+7 *
0.01 0.01
0.01 0.1 1 10 100 1k [sec] 0.01 0.1 1 10 100 1k [sec]

QuBE sKizzo



Why is Z3 so fast in these benchmarks?

/3 is using different engines:
rewriting, simplification, model checking, SAT, ...

/3 is using a customized strategy.

We could do it because
we have access to the source code.



The "Message"

SMT solvers are collections of little engines.

They should provide access to these engines.
Users should be able to define their own strategies.



IMain inspiration: LCF-approach

o

goal

Tactic

builder




IMain inspiration: LCF-approach

subgoals

@ Tactic i> O
Proof

goal

builder

®,
o X e
O

Proof for goal

Proofs for subgoals



IMain inspiration: LCF-approach

Tactic

i>© i> Tactic

@, i> Tactic

Proof
builder

Proof
builder

e
r

Proof
builder




IMain inspiration: LCF-approach

© (1 e (I
O Proof <i O

Builder

proof
® Proof Q
Builder Q




IMain inspiration: LCF-approach

<:] Proof <:]Q
o <i Broof <:] Builder

roof Builder
Proof Q
k Builder
thm in LCF proof in LCF
terminology terminology




Tacticals aka Combinators

then( | Tactic , | Tactic )

Tactic

Tactic

orelse( | Tactic | ,| Tactic | )

Tactic

S
I

repeat( | Tactic




SMIT Tactic

goal

Tactic

o
Q subgoals

»
Proof

builder

Model
builder




SMIT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt



SMIT Tactic

qoal = formula sequence x attribute sequence

proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model
| unsat proof
| unknown goal sequence x modelconv X proofconw
| fail

tactic = goal — trt

T

end-game tactics:
never return unknown(sb, mc, pc)




SMIT Tactic

qoal = formula sequence x attribute sequence
proofconv = proof sequence — proof

modelconv = model x nat — model

trt — sat model

| unsat proof

| unknown goal sequence x modelconv X proofconw
| fail
tactic = goal — trt
\ o
non-branching tactics:
sb is a sigleton In

unknown(sb, mc, pc)




Trivial goals

Empty goal [ ] is trivially satisfiable
False goal [ ..., false, ...] is trivially unsatisfiable

basic : tactic



SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
elim-vars
Proof Model
bUlIder [(b—Fl{UVb—l—l}U),b}S]

builder




SMT Tactic example

la=b+1, (a<0Va>0),b>3]

@

Tactic:
elim-vars

Proof

-~

bUlIder [(b—Fl{UVb—l—l}U),b}S]

M, M(a) = M(b) +1

m Ny

Model
builder

-~
M




SMT Tactic example

la=b+1, (a<0Va>0), b>3]

-~

Tactic:
split-or

-_=

Proof la=b+1, a<0, b>3] Model
builder [a=b+1,a>0,b>3] builder




SMIT Tactics

simplify propagate-bounds
nnf propagate-values
cnf split-inegs

tseitin split-eqs

lift-if rewrite

bitblast p-cad

gb sat

vts solve-eqs



SMT Tacticals

then : (tactic x tactic) — tactic
then(t1,%2) applies ¢; to the given goal and 5 to every subgoal produced by t;.
thenx : (tactic X tactic Sequence) — tactic
thenx(t1, [t2,, ..., t2,,]) applies ¢1 to the given goal, producing subgoals g1, ..., gm.
If n # m, the tactic fails. Otherwise, it applies t5, to every goal g;.
orelse : (tactic x tactic) — tactic
orelse(t1,t2) first applies #1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.
par : (tactic x tactic) — tactic
par(t1,t2) excutes t1 and t2 in parallel.



SMT Tacticals

then(skip,t) = then(t,skip) = ¢

orelse(fail, t) = orelse(t, fail) = ¢



SMT Tacticals

repeat : tactic — tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic X nat — tactic
Keep applying the given tactic until no subgoal is modified by it, or the max-
imum number of iterations is reached.

tryfor : tactic X seconds — tactic
tryfor(t, k) returns the value computed by tactic ¢ applied to the given goal if
this value is computed within k seconds, otherwise it fails.



Feature / Measures

Probing structural features of formulas.



Feature / Measures: Yices Strategy

diff logic?
o - < yes
simplex

atom/dim < k

no @ @ yes

simplex floyd warshall




Feature / Measures: Yices Strategy

orelse(then (failif (diff A atom

- > k), simplex), floydwarshall)

Fail if condition is not satisfied.
Otherwise, do nothing.




Feature / Measures: Examples

bw: Sum total bit-width of all rational coefficients of polynomials in case.
diff: True if the formula is in the difference logic fragment.

linear: True if all polynomials are linear.

dim: Number of arithmetic constants.

atoms: Number of atoms.
degree: Maximal total multivariate degree of polynomials.

size: Total formula size.



Tacticals: syntax sugar

if(c, t1, ta) = orelse(then(failif(—c),t1),t2)
when(c, t) = if(c, t, skip)



Under/Over-Approximations

Under-approximation
unsat answers cannot be trusted

Over-approximation
sat answers cannot be trusted



Under/Over-Approximations

Under-approximation
model finders

Over-approximation
proof finders



Under/Over-Approximations

Under-approximation
SH>SUY

Over-approximation
S—>S\¢



Under/Over-Approximations

Under-approximation
Example: QF NIA model finders
add bounds to unbounded variables (and blast)

Over-approximation
Example: Boolean abstraction



Under/Over-Approximations

Combining under and over is bad!
sat and unsat answers cannot be trusted.



Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.



Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?



Tracking: under/over-approximations

In principle, proof and model converters can check
if the resultant models and proofs are valid.

Problem: if it fails what do we do?

We want to write tactics that can check whether a
goal is the result of an abstraction or not.



Tracking: under/over-approximations

Solution
Associate an precision attribute to each goal.



Goal Attributes

Store extra logical information
Examples:
precision markers
goal depth
polynomial factorizations



Decision Engines as Tacticals

AP-CAD ( tactic ) = tactic



Decision Engines as Tacticals

then(preprocess, smt(finalcheck))



Strategy: Example

then(then(simplify, gaussian), orelse(modelfinder, smt(apcad(icp))))



RAHD Calculemus Strategy

dim  deg iv calc-0  cale-1  cale-2 gepcad-b redlog/rlge  redlog/rlcad
PO 5 4 N A1 1.59 1.7 416.45% 40.4 -
P1 6 4 N 1.69 3.08 3.42 -* - -
P2 5 4 N 1.34 2.41 2.62 -* - -
P3 5 4 N 1.52 2.56 2.75 -* - -
P4 5 4 N 1.14 2.02 2.16 -* - -
P5 14 2 N 25 26 27 -* 97.4 -
P& 11 5 N 147 .4 07 06 - <201 <_.01
PT 8 2 N 05 <.01 <.01 08 .01 <.01
PS8 7 32 N 4.5 1 .01 3.38 <201 -
P9 7 16 N 4.51 A5 <.01 .29 .01 6.7
P10 7 12 N | 100.74 20.76 3.85 -* - -
P11 6 2 Y 1.6 5 53 .01 .01 .05
P12 D 3 N T8 .3 .36 .02 .01 07
P13 4 10 N 3.83 3.95 4.02 -* - -
Pl4d 2 2 N 4.55 1.67 .07 01 - -
P15 4 3 Y ATT .2 .12 01 =201 <.01
P16 4 2 N 9.99 217 2.1 02 <201 <_.01
P17 4 2 N .62 .59 .65 28 .02 61
P18 4 2 N 1.25 1.28 1.27 01 <01 <..01
P19 3 6 Y 3.34 1.72 2.08 .02 .01 i
P20 3 4 N 1.18 .65 .65 01 <201 3
P21 3 2 N .02 03 <.01 02 .01 N
P22 2 4 N <01 <.01 <.01 01 =201 <.01
P23 2 2 Y <01 <.01 .01 .01 <201 <_.01




/3 QF LIA Strategy

then(preamble, orelse(mf, pb, bounded, smt)

Simplification

Constant propagation
Interval propagation
Contextual simplification
If-then-else elimination
Gaussian elimination
Unconstrained terms




Challenge: small step configuration

proof procedure as a transition system
Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

UnitPropagate :

M|F, Cvl =
Pureliteral :

M|F =
Decide :

M|F —
Fail :

M|F,C =
Backtrack :

MEN|FC —

MIU|F CvI

MI|F

MU|F

FailState

M-I|F,C

M):{:

[ 1s undefined in M

[ oceurs in some clause of F

—[ ocecurs in no clause of F
[ is undefined in M

if

¢ [ or =l occurs in a clause of F
! [ is undefined in M

M= —C

if
M contains no decision literals

MIEN=-C

N contains no decision literals

if

[



Challenge: small step configuration

proof procedure as a transition system
Abstract DPLL, DPLL(T), Abstract GB, cutsat, ...

a A

Challenge:
Efficient strategic control

Backtrack :
AMHIE N E -
MUEN|F,C — M-l|F.C if {J’” N -C

N contains no decision literals



Conclusion

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Tactic and Tacticals: big step approach.

More transparency.



