Generalized and Efficient Array Decision Procedures FMCAD,Austin, 2009

Leonardo de Moura and Nikolaj Bjørner
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Many Flavors:
SAT Solvers
SMT Solvers
First-order Theorem Provers
Computer Algebra Systems

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable modulo theory T ?

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable modulo theory T ?

Arithmetic,
Bit-vectors, Arrays,
Inductive data-types,
....

Satisfiability Modulo Theories (SMT)

Example:

$$
1>2
$$

Satisfiable if the symbols 1,2 and $>$ are uninterpreted.

$$
\begin{gathered}
|M|=\{\bullet\} \\
M(1)=M(2)=\bullet \\
M(>)=\{(\bullet, \bullet)\}
\end{gathered}
$$

Unsatisfiable modulo the theory arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{select}(\operatorname{store}(a, b, 3), c-2) \neq f(c-b+1)
$$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{select}(\operatorname{store}(a, b, 3), c-2) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { select store }(a, b, 3), c-2) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{select}(\operatorname{store}(a, b, 3), c-2) \neq f(c-b+1)
$$

Uninterpreted Functions

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

HAVOC

For $\mu \mathrm{La}$

Hyper-V
 Wicrosoft Virtualization

Terminator T-2

VCC

NModel

SpecExplorer

SAGE

What is a Theory?

A theory T is a set of first-order sentences.

F is satisfiable modulo T iff

T $\cup F$ is satisfiable.

Array Theory

$\forall a, i, v . \operatorname{select}(\operatorname{store}(a, i, v), i)=v$
$\forall a, i, j, v: i=j \vee \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)$

Array Theory

$\forall a, i, v . \operatorname{select}(\operatorname{store}(a, i, v), i)=v$
$\forall a, i, j, v: i=j \vee \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)$

We say store is a combinator.

Array Theory: a more familiar notation

$\forall a, i, v . \operatorname{select}(\operatorname{store}(a, i, v), i)=v$
$\forall a, i, j, v: i=j \vee \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)$

$\forall a, i, v . \operatorname{store}(a, i, v)[i]=v$
$\forall a, i, \mathrm{j}, v: i=j \vee \operatorname{store}(a, i, v)[j]=a[i]$

Why array theory is useful?

It is used to model the memory
 in

Hardware/Software verification/analysis tools

Extentional Array Theory

$\forall a, b:(\forall i: a[i]=b[i]) \Rightarrow a=b$

Arrays are actually "maps"

We have arrays from T_{1} to T_{2}
T_{1} does not need to be the Integers

Models for arrays as "finite graphs"

$a=\operatorname{store}(b, 0,5), b=\operatorname{store}(c, 1,10), c[0]=2$
$\mathrm{M}(a)=\{0 \rightarrow 5,1 \rightarrow 10$, else $\rightarrow 0\}$
$\mathrm{M}(b)=\{0 \rightarrow 2,1 \rightarrow 10$, else $\rightarrow 0\}$
$\mathrm{M}(c)=\{0 \rightarrow 2$, else $\rightarrow 0\}$

A "Timeline" (Related Work)

1962 - McCarthy proposes the Basic Array Theory.
1968 - Kaplan solves the satisfiability problem.
1981 - Nelson propose a simple procedure based on (lazy) instantiation (PhD thesis).

2001 - Stump, Barrett, Dill and Levitt propose a procedure for extentional arrays.

2005 - Lazy instantiation is used in Yices (it wins all array divisions in SMT-COMP from 2005-2007).

2005 - Kapur and Zarba propose the reduction approach (many array-like theories are described).

2006 - Bradley, Manna and Sipma propose a procedure for a rich decidable array fragment.

A "Timeline" (Related Work)

2008 - Goel, Krstic and Fuchs formalize the lazy instantiation approach.

2008 - Bofill, Nieuwenhuis, Oliveras, Rodriguez-Carbonell and Rubio propose the store-reduction approach
"Model-Based" approaches:
2007 - Ganesh and Dill, "a decision procedure for bitvectors and arrays", CAV'07

2008 - Brummayer and Biere, "lemmas on demand for the extentional theory of arrays", SMT'08

A "Timeline" (Related Work)

"Rewrite-Based" approaches:
2002 - Lynch and Morawska, "Automatic Decidability", LICS
2005 - Armando, Bonacina, Ranise and Schulz propose the rewrite based approach.

Arrays in hardware verification:
1994 - Burch and Dill, "Automatic Verification of pipelined microprocessor control", CAV
2006 - Manolios, Srinivasan, Vroon, "Automatic memory reductions for RTL model verification", ICCAD

More relevant work can be found in our paper...

Naïve instantiation

Recipe: Given a formula F

1) Collect all array terms in F
2) Collect all indices in F
3) Instantiate array axioms using 1 and 2

$$
F^{\prime}=F \cup \text { Instances }
$$

4) Execute EUF solver on F^{\prime}

Array theory is a local theory extension.

Naïve instantiation: Example

$a=\operatorname{store}(b, i, v), a[j] \neq v, c[k]=v, i=j$
array terms: $\quad a, b, \operatorname{store}(b, i, v), c$
indices:
i, j, k

Naïve instantiation: Example

$a=\operatorname{store}(b, i, v), a[j] \neq v, c[k]=v, i=j$
array terms: $\quad a, b, \operatorname{store}(b, i, v), c$ indices:
i, j, k

Instances:

$\operatorname{store}(a, i, v)[i]=v, \operatorname{store}(a, j, v)[j]=v, \ldots$
$i=j \vee \operatorname{store}(a, i, v)[j]=a[i], \ldots$

Problem: Many useless instances!

Naïve instantiation: Example

$a=\operatorname{store}(b, i, v), a[j] \neq v, c[k]=v, i=j$
array terms: $\quad a, b, \operatorname{store}(b, i, v), c$ indices:
i, j, k

Instances:

$\operatorname{store}(a, i, v)[i]=v, \operatorname{store}(a, j, v$
$i=j \vee \operatorname{store}(a, i, v)[j]=a[i]$,

Problem: Many useless instances!

Our contributions

A generalization of the Array theory
CAL: Combinatory Array Logic

New filters for minimizing the number of instances

A simple architecture for non-stably infinite theories We want arrays of bit-vectors.

CAL: Combinatory Array Logic

$\forall v, i: K(v)[i]=v$
$\forall a_{1}, \ldots, a_{n}, i: \operatorname{map}_{f}\left(a_{1}, \ldots, a_{n}\right)[i]=f\left(a_{1}[i], \ldots, a_{n}[i]\right)$

CAL: Combinatory Array Logic

Suggested by Stump, Barrett, Dill, Levitt Their procedure works for

infinite-domain satisfiability.

$\forall v, i: K(v)[i]=v$
$\forall a_{1}, \ldots, a_{n}, i: \operatorname{map}_{f}\left(a_{1}, \ldots, a_{n}\right)[i]=f\left(a_{1}[i], \ldots, a_{n}[i]\right)$

CAL: Combinatory Array Logic

$\forall v, i: K(v)[i]=v$
$\forall a_{1}, \ldots, a_{n}, i: \operatorname{map}_{f}\left(a_{1}, \ldots, a_{n}\right)[i]=f\left(a_{1}[i], \ldots, a_{n}[i]\right)$
"Family" of combinators. We can instantiate it with any f.

map $_{f}$ is the pointwise function application

$$
\begin{aligned}
& \operatorname{map}_{f}\left(\begin{array}{llllllllll}
\ldots . . & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & \ldots \\
= & \left., ~ \begin{array}{lllllllll}
\ldots & w_{1} & w_{2} & w_{3} & w_{4} & w_{5} & \ldots \\
\hline
\end{array}\right) \\
&
\end{array}\right. \\
& f\left(v_{1}, w_{1}\right) f\left(v_{2}, w_{2}\right) \quad f\left(v_{3}, w_{3}\right) f\left(v_{4}, w_{4}\right) \quad f\left(v_{5}, w_{5}\right)
\end{aligned}
$$

CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

$$
\begin{array}{lll}
\varnothing & \equiv & \text { K(false }) \\
\{a\} & \equiv & \operatorname{store}(\varnothing, a, \text { true }) \\
a \in S & \equiv & S[a] \\
S_{1} \cup S_{2} & \equiv & \operatorname{map}_{\vee}\left(S_{1}, S_{2}\right) \\
S_{1} \cap S_{2} & \equiv & \operatorname{map}_{\wedge}\left(S_{1}, S_{2}\right)
\end{array}
$$

CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

$$
\begin{array}{lll}
\varnothing & \equiv & \text { K(false }) \\
\{a\} & \equiv & \operatorname{store}(\varnothing, a, \text { true }) \\
a \in S & \equiv & S[a] \\
S_{1} \cup S_{2} & \equiv & \operatorname{map}_{\vee}\left(S_{1}, S_{2}\right) \\
S_{1} \cap S_{2} & \equiv & \operatorname{map}_{\wedge}\left(S_{1}, S_{2}\right)
\end{array}
$$

CAL is powerful: Bags as arrays

Bag of T as an Array from T to Integer

$$
\begin{array}{lll}
\varnothing & \equiv & K(0) \\
\{a\} & \equiv & \operatorname{store}(\varnothing, a, 1) \\
\text { mult }(a, B) & \equiv & B[a] \\
B_{1} \oplus B_{2} & \equiv & \operatorname{map}_{+}\left(B_{1}, B_{2}\right) \\
B_{1} \prod B_{2} & \equiv & \operatorname{map}_{\min }\left(B_{1}, B_{2}\right)
\end{array}
$$

CAL is powerful: a multiplexer

$$
\begin{array}{r}
\text { mapite }^{\left(\begin{array}{c|c|c|c|c|c|c|}
\hline \ldots & \mathrm{T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \ldots \\
\hline \ldots & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & \ldots \\
\hline \ldots & w_{1} & w_{2} & w_{3} & w_{4} & w_{5} & \ldots \\
\hline
\end{array}\right.} \begin{array}{|c|c|c|c|c|}
\hline \ldots
\end{array} \\
= \\
\begin{array}{|c|c|c|c|c|c|c|}
\hline \ldots & v_{1} & w_{2} & v_{3} & v_{4} & w_{5} & \ldots \\
\hline
\end{array}
\end{array}
$$

Core solver

Support for equality and uninterpreted functions (EUF) Set of strongly disjoint theories (more later)
Clauses and literals
Boolean terms
$a \equiv t \quad-a$ is a name for the term t
$a: \sigma \quad-a$ has sort σ
$a \sim b \quad-a$ and b are equal in the current context

$$
\frac{w_{1} \equiv f\left(v_{1}, \ldots, v_{n}\right), w_{2} \equiv f\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right), v_{1} \sim v_{1}^{\prime}, \ldots, v_{n} \sim v_{n}^{\prime}}{w_{1} \simeq w_{2}}
$$

Array Saturation Rules
 (this is not new)

$$
\begin{gathered}
\mathrm{idx} \frac{a \equiv \operatorname{store}(b, i, v)}{a[i] \simeq v} \\
\Downarrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv a^{\prime}[j], \quad a \sim a^{\prime}}{i \simeq j \vee a[j] \simeq b[j]} \\
\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]} \\
\operatorname{ext} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]}
\end{gathered}
$$

$a \sim b \quad-a$ and b are equal in the current context
$a \equiv t \quad-a$ is a name for the term t
$a:(\sigma \Rightarrow \tau)-a$ is an array from σ to τ

Bottlenecks

$\operatorname{ext} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]}$
Extensionality is applied to every pair of array constants.
$\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]}$
Upwards propagation distributes index over all modifications of same array.

Bottlenecks: simple "tricks"

$\operatorname{ext} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]}$
Extensionality is applied to every pair of array constants.

Delay the application of ext and \uparrow.

Only works for unsatisfiable instances.
$\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]}$
Upwards propagation distributes index over all modifications of same array.

Bottlenecks: simple "tricks"

Ignore "congruent" axiom instances

$$
\begin{aligned}
& i \simeq j \vee a[j] \simeq b[j] \\
& i^{\prime} \simeq j^{\prime} \vee a^{\prime}\left[j^{\prime}\right] \simeq b^{\prime}\left[j^{\prime}\right] \\
& a \sim a^{\prime}, b \sim b^{\prime}, i \sim i^{\prime}, \text { and } j \sim j^{\prime}
\end{aligned}
$$

Bottlenecks

$\operatorname{ext} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \vee a\left[k_{a, b}\right] \nsim b\left[k_{a, b}\right]}$
Extensionality is applied to every pair of array constants.

$$
\begin{gathered}
\operatorname{ext}_{\nsim} \frac{p \equiv a \simeq b, \quad \Gamma(p)=\text { false }}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]} \\
\operatorname{ext}_{r} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau), \quad\{a, b\} \subseteq \text { foreign }}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]}
\end{gathered}
$$

Restrict to constants asserted to be different or foreign.
We say a is foreign if there is b s.t. $a \sim b$ and b is the argument of an uninterpreted function symbol. ${ }^{\text {. Ricroseft }}$ Rearch

Why do we need ext?

$$
\begin{gathered}
\operatorname{ext}_{\nsim} \frac{p \equiv a \simeq b, \quad \Gamma(p)=\text { false }}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]} \\
\operatorname{ext}_{r} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau), \quad\{a, b\} \subseteq \text { foreign }}{a \simeq b \vee a\left[k_{a, b}\right] \nsucceq b\left[k_{a, b}\right]}
\end{gathered}
$$

Example:

$$
a=\operatorname{store}(b, i, v), b[i]=v, f(a) \neq f(b)
$$

Another optimization...

We do not need to add the extensionality axiom for (a, b) if they are already known to be disequal.

```
    Definition 9 (Already Disequal) Given a state }\Gamma,(a,b)
already-diseq iff there are two definitions }\mp@subsup{v}{1}{}\equiv\mp@subsup{a}{1}{}[\mp@subsup{i}{1}{}]\mathrm{ and
v2}\equiv\mp@subsup{a}{2}{[}\mp@subsup{i}{2}{}]\mathrm{ in }\Gamma\mathrm{ such that v1}\not~\mp@subsup{v}{2}{},a~\mp@subsup{a}{1}{},b~\mp@subsup{b}{1}{}\mathrm{ , and
i}~\mp@subsup{i}{2}{}
```


Another optimization...

We do not need to add the extensionality axiom for (a, b) if they are already known to be disequal.

```
    Definition 9 (Already Disequal) Given a state \Gamma, (a,b)\in already-diseq iff there are two definitions \(v_{1} \equiv a_{1}\left[i_{1}\right]\) and \(v_{2} \equiv\left[i_{2}\right]\) in \(\Gamma\) such that \(v_{1} \nsim v_{2}, a \sim a_{1}, b \sim b_{1}\), and \(i_{1} \sim i_{2}\).
```

Typo in the paper! Should be b_{1}

Why is \Uparrow expensive?

$$
\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]}
$$

Scenario from software verification
Bunch of facts about the initial state of the heap
$a_{0}\left[i_{0}\right]=v_{0}, a_{0}\left[i_{1}\right]=v_{1}, a_{0}\left[i_{2}\right]=v_{2}, \ldots$
Perform a series of updates
$a_{1}=\operatorname{store}\left(a_{0}, j_{1}, w_{1}\right), a_{2}=\operatorname{store}\left(a_{1}, j_{2}, w_{2}\right), \ldots$
Check some property on the final heap
$a_{n}[k] \neq v$

Why do we need \uparrow ?

$$
\operatorname{store}\left(a, i, v_{1}\right)=\operatorname{store}\left(b, i, v_{2}\right), i \neq k, a[k] \neq b[k]
$$

Definition 10 (Linearity) Given a state Γ, the set non-linear of non-linear constants is the least set such that:

1. $a_{1} \equiv \operatorname{store}\left(b_{1}, i_{1}, v_{1}\right), a_{2} \equiv \operatorname{store}\left(b_{2}, i_{2}, v_{2}\right), a_{1}$ is not a_{2} and $a_{1} \sim a_{2}$ implies $\left\{a_{1}, a_{2}\right\} \subseteq$ non-linear,
2. $a \equiv \operatorname{store}(b, i, v)$ and $a \in$ non-linear implies $b \in$ non-linear,
3. $a \in$ non-linear and $a \sim b$ implies $b \in$ non-linear.

We say a is linear if $a \notin$ non-linear.

Restricting \uparrow

$\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]}$
$\Uparrow_{r} \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}, \quad b \in \text { non-linear }}{i \simeq j \vee a[j] \simeq b[j]}$

Effect on Benchmarks

Microsoft ${ }^{\circ}$
Research

Saturating CAL

$$
\begin{gathered}
\mathrm{K} \Downarrow \frac{a \equiv K(v), \quad w \equiv a^{\prime}[j], \quad a \sim a^{\prime}}{a[j] \simeq v} \\
\operatorname{map} \Downarrow \frac{a \equiv \operatorname{map}_{f}\left(b_{1}, \ldots, b_{n}\right), \quad w \equiv a^{\prime}[j], \quad a \sim a^{\prime}}{a[j] \simeq f\left(b_{1}[j], \ldots, b_{n}[j]\right)} \\
\operatorname{map} \Uparrow \frac{b_{k} \sim b_{k}^{\prime}, \text { for some } k \in\{1, \ldots, n\}}{a[j] \simeq f\left(b_{1}[j], \ldots, b_{n}[j]\right)} \\
\epsilon_{\nsim} \frac{v \equiv a[i], \quad i: \sigma, \quad i \text { is not } \epsilon_{\sigma}}{\epsilon_{\sigma} \nsim i} \quad \epsilon \delta \frac{a:(\sigma \Rightarrow \tau)}{a\left[\epsilon_{\sigma}\right] \simeq \delta_{a}}
\end{gathered}
$$

Mraopt
Research

Saturating CAL

$$
\epsilon_{\nsim} \frac{v \equiv a[i], \quad i: \sigma, \quad i \text { is } \operatorname{not} \epsilon_{\sigma}}{\epsilon_{\sigma} \nsucc i}
$$

Potentially unsound if F only has models M where $M(\sigma)$ is finite.

$$
\text { blast } \frac{a:(\sigma \Rightarrow \tau), \quad \operatorname{size}(\sigma)=k}{a\left[\sigma_{1}\right] \simeq \delta_{a, 1}, \ldots, a\left[\sigma_{k}\right] \simeq \delta_{a, k}}
$$

Saturating CAL

We also have a restricted version of map介 using linear stratification (see paper for details).

$$
a \simeq \operatorname{map}_{i t e}(a, b, c) \wedge b[j] \simeq \perp \wedge c[j] \simeq \top
$$

Default-value extension (new theory symbol δ), and alternative for $\epsilon \nsim$ and $\epsilon \delta$

$$
\begin{gathered}
\mathrm{U} \delta \frac{a \equiv \operatorname{store}(b, i, v)}{\delta(a) \simeq \delta(b)} \quad \mathrm{K} \delta \frac{a \equiv K(v)}{\delta(a) \simeq v} \\
\operatorname{map} \delta \frac{a \equiv \operatorname{map}_{f}\left(b_{1}, \ldots, b_{n}\right)}{\delta(a) \simeq f\left(\delta\left(b_{1}\right), \ldots, \delta\left(b_{n}\right)\right)}
\end{gathered}
$$

Theory combination in Z3

Efficient Core

Strongly disjoint theories + Unintepreted functions

Strongly disjoint theory \equiv Sort disjoint
Examples: Arithmetic, Bitvectors and Booleans

$$
f(\top) \simeq w \wedge f(\perp) \simeq w \wedge f(v) \not 千 w
$$

All other theories are reduced to this core.
Not covered today: inductive datatypes.

Conclusion

Arrays are useful in practice.

They are used in many verification tools at Microsoft.

CAL is a useful extension of the array theory.

Simple combination architecture. Efficient and easy to implement.

Conclusion

Arrays are useful in practice.

They are used in many verification tools at Microsoft.

CAL is a useful extension of the array theory.

Simple combination architecture. Efficient and easy to implement.

Thank You!

