
The grind Tactic: proof automation in Lean

September 18, 2025

Leo de Moura
Senior Principal Applied Scientist, AWS
Chief Architect, Lean FRO

Lean is an open-source programming language and proof assistant.

Lean and its tooling are implemented in Lean. Lean is very extensible.

LSP, Parser, Macro System, Elaborator, Type Checker, Tactic Framework, Proof automation,
Compiler, Build System, Documentation Authoring Tool.

Lean has a small trusted kernel, proofs can be exported and independently checked.

lean-lang.org

https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/

Lean is based on dependent type theory

An example by Kim Morrison:

Full example here.

https://github.com/leanprover/lean4/blob/master/tests/lean/run/grind_indexmap.lean

An example by Kim Morrison:

:

An example by Kim Morrison:

:

Theorem proving in Lean is an interactive game

The “game move” simp, the simplifier, is one of the most popular moves in our game

“You have written my favorite computer game”, Kevin Buzzard

The “game board”

User-driven design philosophy: We Listen to Our Users.

Classical logic and mathematics as defaults.

The math community using Lean is growing rapidly. They love the system.

Lean is also a programming language, you can be constructive when it matters.

Extensibility. You can make Lean your own.

Exceptional tooling. Linters, CI, UX, Build System, Caches. Maintenance is the Grand Challenge.

All components work together as a unified system.

Proof Automation

Why do we need proof automation?

“I thought AI would prove all theorems for us now.”

AI at the IMO 2024

AlphaProof (Google DeepMind) achieved silver medal level using Lean.

AI at the IMO 2025

Google DeepMind and OpenAI achieved gold medal level using informal reasoning.

ByteDance achieved silver* medal using Lean. (*) They reached gold after the competition.

Harmonic achieved gold medal using Lean.

https://x.com/AlexKontorovich/status/1947852329006350712?t=yAJVaZl_mG3qXDwjR-IaBg&s=19
https://x.com/AlexKontorovich/status/1947852329006350712?t=yAJVaZl_mG3qXDwjR-IaBg&s=19
https://github.com/ByteDance-Seed/Seed-Prover
https://x.com/i/broadcasts/1BdGYqEkOYyGX
https://x.com/i/broadcasts/1BdGYqEkOYyGX

AI is playing the “Lean game"

The moves in this game are tactics from Automated Reasoning: good old proof automation.

Here are some “moves” played by AlphaProof:

simp_all[Finset.sum_range_id]

zify[*]at*

norm_num at*

nlinarith[(by norm_cast:(c:ℝ)>=A*(l-⌊_⌋)+⌊_⌋+1),Int.floor_lex,Int.lt_floor_add_one x]

Even the most advanced AI relies on the same tactics we use every day.

By developing better moves/tactics, we enable even more powerful AI.

Why is Proof Automation Hard in Lean?

Dependent Types: more expressive, but harder to automate.

Example: given

Suppose we want to rewrite/simplify

and can easily construct a proof that 2 + i - 1 = i + 1, but the following term is not type correct.

Lean generates custom congruence theorems that “patch” the proof term.

Type Classes

Type classes provide an elegant mechanism for managing ad-hoc polymorphism.

Type Classes

Type Classes

There approx. 1.5K classes and 20K instances in Mathlib.

Type class resolution is backward chaining.

You can view instances as Horn Clauses.

Lean procedure is based on tabled resolution.

Proof automation must be able to detect that different synthesized instances are definitionally equal.

Type Classes

As Russian dolls.

Does Lean Have Hammers?

The Lean community is also actively developing automation.

LeanHammer: an automated reasoning tool for Lean which brings together multiple proof search and
reconstruction techniques and combine them into one tool. CMU

Duper: a superposition theorem prover written in Lean for proof reconstruction.

bv_decide: fastest verified bit-blaster. Uses the CaDiCaL SAT Solver. Bit-blaster, AIG, and LRAT SAT proof
checkers are all implemented and verified in Lean.

Lean-SMT: An SMT tactic for discharging proof goals in Lean UFMG, Stanford, University of Iowa

Lean-Auto: Interface between Lean and automated provers. Yicheng Qian (CMU and Stanford).

Lean-auto is based on a monomorphization procedure from dependent type theory to higher-order
logic and a deep embedding of higher-order logic into dependent type theory. It is capable of handling
dependently-typed and/or universe-polymorphic input terms.

https://github.com/JOSHCLUNE/LeanHammer
https://github.com/leanprover-community/duper
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto

What is grind?
New proof automation (Lean v4.22 – released mid August) developed by Kim Morrison and myself.

Kim is a kick-ass mathematician.

A proof-automation tactic inspired by modern SMT solvers. Think of it as a virtual whiteboard:

Discovers new equalities, inequalities, etc.

Writes facts on the board and merges equivalent terms

Multiple engines cooperate on the same workspace

Cooperating Engines:

Congruence closure; E-matching; Constraint propagation; Guided case analysis

Satellite theory solvers (linear integer arithmetic, commutative rings, linear arithmetic)

Supports dependent types, type-class system, and dependent pattern matching

Produces ordinary Lean proof terms for every fact.

https://lean-lang.org/doc/reference/latest/The--grind--tactic/

What grind is NOT

Not designed for combinatorially explosive search spaces:

Large-n pigeonhole instances

Graph-coloring reductions

High-order N-queens boards

200-variable Sudoku with Boolean constraints

Why? These require thousands/millions of case-splits that overwhelm grind's branching search

Key takeaway: grind excels at cooperative reasoning with multiple engines, but struggles with
brute-force combinatorial problems.

For massive case-analysis, use bv_decide

grind: Design Principles

Native to Dependent Type Theory: No translation to first-order or higher-order logic needed.

Solves trivial goals automatically.

Fast startup time: No server startup, no external tool dependencies, no translations

Great for software verification applications.

No Mathlib dependency.

Rich diagnostics: When it fails, it tells you why.

Configurable via Type Classes.

Extensible: users can plugin their own theory solvers and constraint propa

Provide grind? similarly to bv_decide? and aesop?

Stdlib and Mathlib pre-annotated.

grind: Architecture

Preprocessing: normalization, canonicalization, extracting nested proofs, hash-consing, …

Internalization: process of converting Lean expressions into solver’s internal data-structures.

E-graph: congruence closure, E-matching, constraint propagation.

Satellite Solvers: cutsat, commutative rings, linear arithmetic, AC, etc.

grind: Model-based theory solvers

For linear arithmetic (linarith) and linear integer arithmetic (cutsat).

linarith is parametrized by a Module over the integers. It supports preorders, partial orders, and linear orders.

“I'm interested in developing some API for linearly ordered vector spaces, in order to easily handle manipulations
of asymptotic orders” – Terence Tao on the Lean Zulip

OrderedVectorSpace implements IntModule, LinearOrder, IntModule.IsOrdered.

grind: Model-based theory solvers

cutsat is parametrized by the ToInt type class used to embed types such as Int32, BitVec 64 into the
integers.

grind: Model-based theory solvers

grind: Commutative rings and Fields

Support for commutative rings and fields uses Grobner basis.

Parametrized by the type classes: CommRing, CommSemiring, NoNatZeroDivisors, Field, AddRightCancel,
and IsCharP

Automating Quantum Algebra

Here is a concrete example from quantum algebra. It comes from a classification result involving quantum
SO(3) categories. Specifically, the condition that certain relations among trivalent graphs imply a constraint
on the parameters d, t, and c:

From: “Categories generated by a trivalent vertex”, Morrison, Peters, and Snyder

Automating Quantum Algebra

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

grind can handle this kind of reasoning automatically, in milliseconds.

Associative (commutative, idempotent) operators & neutral elements

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

Parametrized by the type classes: Associative, Commutative, IdempotentOp, LawfulIdentity.

Long-term: AC E-matching.

grind: E-matching

E-matching is a heuristic for instantiating theorems. It is used in many SMT solvers.

It is matching modulo equalities.

grind: E-matching and Dependent Type Theory

grind: Extensibility

You can configure grind using type classes.

You can annotate theorems and definitions with the [grind] attributes.

That said, grind is implemented in Lean, and you can extend its implementation using Lean itself.

No need to learn another programming language, or how to create shared objects.

grind: Extensibility - propagators

grind: Extensibility - solvers

You can plugin your own solver. We implemented all built-in solvers using the plugin API.

grind: Extensibility - solvers

After you declare your solver extension. You implement your internalizer, propagators, and equality
handlers.

grind: Tooling

How to maintain annotations in a huge libraries with more than 2M lines of code?

grind: Diagnostics at your fingertips

grind: Diagnostics at your fingertips

grind: Diagnostics at your fingertips

"if-normalization” challenge by Leino, Merz, and Shankar

"if-normalization” challenge by Leino, Merz, and Shankar

Interactive tactic suggestion tool: the try? tactic

It tries many different tactics, guesses induction principle, and is extensible

grind: Initial reactions

grind: Initial reactions

grind: Roadmap

AC E-matching.

More tooling: grind parameter minimizer, deploy annotation analyzers.

Make try? as a hub for all proof automation in Lean, AI-based ones included.

Mathlib annotations: crowd sourcing.

Nonlinear inequality support. Interval propagator.

grind: Roadmap

Isn’t this example a good candidate for AI?

Yes, AI can figure out the missing steps in this example, and it even feels like a good candidate for AI
since nonlinear integer arithmetic is undecidable, but a simple heuristic is cheaper and more effective.

grind: Roadmap – New tooling for Maintenance

The challenge: maintaining a 2M LoC library with grind annotations (aka hints)

Library build vs. use time: They often require different annotations. We use [local grind]

New tools for suggesting and maintaining annotations.

User request: An un-grind tool that expands a grind proof into a detailed tactic proof.

For our AI experts: AI agents that can use all these tooling, create PRs with improvements, suggest
new annotations.

Conclusion

Lean is an efficient programming language and proof assistant.

Lean is very extensible and is implemented in Lean.

grind is a new extensible tactic based on SMT techniques.

try? will be a hub for all proof automation in Lean, AI-based ones included.

Many new extensions and features are in development.

We expect AI systems will adopt grind as key tactic within months.

Maintaining formal proofs is as hard as writing them in the first place.

Software

Mathematics AI

L N

AE

Thank You

https://leanprover.zulipchat.com/
x: @leanprover
LinkedIn: Lean FRO
Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

