The grind Tactic: proof automation in Lean

Leo de Moura
Senior Principal Applied Scientist, AWS
Chief Architect, Lean FRO

September 18, 2025

m

Lean is an open-source programming language and proof assistant.
Lean and its tooling are implemented in Lean. Lean is very extensible.

LSP, Parser, Macro System, Elaborator, Type Checker, Tactic Framework, Proof automation,
Compiler, Build System, Documentation Authoring Tool.

Lean has a small trusted kernel, proofs can be exported and independently checked.

lean-lang.org

https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/

Lean is based on dependent type theory

An example by Kim Morrison:

structure IndexMap (a : Type u) (B : Type v) [BEg a] [Hashable a] where
private indices : HashMap a Nat
private keys : Array a
private values : Array B
private size_keys' : keys.size = values.size := by grind
private WF : V (i : Nat) (a : a), keys[i]? = some a © indices[a]? = some i := by grind

Full example here.

https://github.com/leanprover/lean4/blob/master/tests/lean/run/grind_indexmap.lean

An example by Kim Morrison:

structure IndexMap (a : Type u) (B : Type v) [BEq a] [Hashable a] where
private indices : HashMap a Nat
private keys : Array a
private values : Array B
private size_keys' : keys.size = values.size := by grind
private WF : V (i : Nat) (a : a), keys[i]? = some a © indices[a]? = some i := by grind

def insert [LawfulBEgq al (m : IndexMap a B) (a : a) (b : B) : IndexMap a B :=
match h : m.indices[a]? with

| some i =>
{ indices := m.indices
keys := m.keys.set i a
values := m.values.set i b }
| none =>
{ indices := m.indices.insert a m.size

keys := m.keys.push a
values := m.values.push b }

An example by Kim Morrison:
/-1 #it# Verification theorems -/
attribute [local grind] getIdx findIdx insert

@[grind] theorem getIdx_findIdx (m : IndexMap a B) (a : a) (h : a € m)
m.getIdx (m.findIdx a h) = m[al := by grind

@[grind] theorem mem_insert (m : IndexMap a B) (a a' : a) (b : B)
a' Em.insert a be® a' = ava'€m:= by
grind

@[grind] theorem getElem_insert (m : IndexMap a B) (a a' : a) (b : B) (h : a' € m.insert a b)
(m.insert a b)[a']l'h = if h' : a' == a then b else m[a'] := by
grind

@[grind] theorem findIdx_insert_self (m : IndexMap a B) (a : a) (b : B)
(m.insert a b).findIdx a (by grind) = if h : a € m then m.findIdx a h else m.size := by
grind

Theorem proving in Lean is an interactive game

The “game board”

) Welcome Odd.lean 2,U ® YV @ O - Lean Infoview X
Odd.lean > @ square_of_odd_is_odd v Odd.lean:9:1 ISR
; import Mathlib v Tactic state « L v
3 defodd (n:N) :=3k, n=2x%k+1 1goal
4 n ks : N
5 - Prove that the square of an odd number is always odd ey : N =2 % ky +1
6 theorem square_of_odd_is_odd : odd n & odd (n * n) := by F3k, (2%ky +1) * (2*xKky +1) =2%k+1
7 intro (ki, ej;)
8 simp [e,, odd] » Messages (1)
7 dame > All M 2 I
10 1 essages (2)
11
12

The “game move” simp, the simplifier, is one of the most popular moves in our game

“You have written my favorite computer game”, Kevin Buzzard

m

User-driven design philosophy: We Listen to Our Users.
Classical logic and mathematics as defaults.
The math community using Lean is growing rapidly. They love the system.

Lean is also a programming language, you can be constructive when it matters.

Extensibility. You can make Lean your own.

Exceptional tooling. Linters, Cl, UX, Build System, Caches. Maintenance is the Grand Challenge.

All components work together as a unified system.

=-

Proof Automation

Why do we need proof automation?
‘| thought Al would prove all theorems for us now.”
Al at the IMO 2024
AlphaProof (Google DeepMind) achieved silver medal level using Lean.
Al at the IMO 2025
Google DeepMind and OpenAl achieved gold medal level using informal reasoning.

ByteDance achieved silver* medal using Lean. (*) They reached gold after the competition.

Harmonic achieved gold medal using Lean.

https://x.com/AlexKontorovich/status/1947852329006350712?t=yAJVaZl_mG3qXDwjR-IaBg&s=19
https://x.com/AlexKontorovich/status/1947852329006350712?t=yAJVaZl_mG3qXDwjR-IaBg&s=19
https://github.com/ByteDance-Seed/Seed-Prover
https://x.com/i/broadcasts/1BdGYqEkOYyGX
https://x.com/i/broadcasts/1BdGYqEkOYyGX

m

Al is playing the “Lean game"
The moves in this game are tactics from Automated Reasoning: good old proof automation.

Here are some “moves” played by AlphaProof:

simp all[Finset.sum range id]

zify[*]at*

norm num at*

nlinarith[(by norm cast: (c:R)>=A*(1-| |)+| [+1),Int.floor lex,Int.lt floor add one x]

Even the most advanced Al relies on the same tactics we use every day.

By developing better moves/tactics, we enable even more powerful Al.

Why is Proof Automation Hard in Lean?

Dependent Types: more expressive, but harder to automate.

Example: given

def Array.get {a : Type u} (as : Array a) (i : Nat) (h : 1 < as.size) : a

Suppose we want to rewrite/simplify

Array.get as (2 + i - 1) h

and can easily construct a proofthat2 + i - 1 = i + 1, but the following term is not type correct.
Array.get as (i+1) h

Lean generates custom congruence theorems that “patch” the proof term.

theorem Array.get.congr_simp' {a : Type u} (as as' : Array a) (i i' : Nat) (h : i < as.size)
(h, : as = as') (h, : i =1")
: Array.get as i h = Array.get as' i' (hy » h, » h) := by

Type Classes

Type classes provide an elegant mechanism for managing ad-hoc polymorphism.

class Mul (a : Type u) where
mul : a->a->a

#check EMul.mul EMul.mul : {a : Type u_1} > [self : Mul al > a>a > a

instance : Mul Nat where
mul := Nat.mul

instance : Mul Int where
mul := Int.mul

def n : Nat := 1
def i : Int := -2

set_option pp.explicit true

#check Mul.mul n n OMul.mul Nat instMulNat n n : Nat
#check Mul.mul i i OMul.mul Int instMullnt i i : Int
infix:65 (priority := high) "%" => Mul.mul

#icheck n*n OMul.mul Nat instMulNat n n : Nat

#icheck i*xi OMul.mul Int instMulInt i i : Int

Type Classes

class Semigroup (a :
mul_assoc (a b c :

Type u) extends Mul a where
a) :a*b*xc=a* (b *c)

instance : Semigroup Nat where
mul_assoc := Nat.mul_assoc

instance : Semigroup Int where
mul_assoc := Int.mul_assoc

class CommSemigroup (a : Type u) extends Semigroup a where
mul_comm (a b :a) : a*xb="h%a

class Monoid (a : Type u) extends Semigroup a, One a where
one_mul (a : a) : 1 xa=a
mul_one (a : a) : a*1=a

class CommMonoid (a : Type u) extends Monoid a, CommSemigroup a where

class NoZeroDivisors (a : Type u) [Mul a] [Zero a] where
no_zero_div (ab : a) :a#0>a*xb=0>b=0

Semigroup

/

Monoid CommSemigroup

N

CommMonoid

Type Classes

There approx. 1.5K classes and 20K instances in Mathlib.

Type class resolution is backward chaining.

You can view instances as Horn Clauses.

instance [Semiring a] [AddRightCancel a] [NoNatZeroDivisors a] : NoNatZeroDivisors (0fSemiring.Q a) where
Lean procedure is based on tabled resolution.

Proof automation must be able to detect that different synthesized instances are definitionally equal.

Semigroup
Monoid CommSemigroup

N

CommMonoid

Type Classes

As Russian dolls.

/-- A “LieAdmissibleAlgebra’ is a "~ LieAdmissibleRing’ equipped with a compatible action by scalars
from a commutative ring. -/
ELext]
class LieAdmissibleAlgebra (R L : Typex) [CommRing R] [LieAdmissibleRing L]
extends Module R L, IsScalarTower R L L, SMulCommClass R L L

Does Lean Have Hammers?
The Lean community is also actively developing automation.

LeanHammer: an automated reasoning tool for Lean which brings together multiple proof search and
reconstruction technigues and combine them into one tool. CMU

Duper: a superposition theorem prover written in Lean for proof reconstruction.

bv_decide: fastest verified bit-blaster. Uses the CaDiCaL SAT Solver. Bit-blaster, AlG, and LRAT SAT proof
checkers are all implemented and verified in Lean.

Lean-SMT: An SMT tactic for discharging proof goals in Lean UFMG, Stanford, University of lowa

Lean-Auto: Interface between Lean and automated provers. Yicheng Qian (CMU and Stanford).

Lean-auto is based on a monomorphization procedure from dependent type theory to higher-order
logic and a deep embedding of higher-order logic into dependent type theory. It is capable of handling
dependently-typed and/or universe-polymorphic input terms.

https://github.com/JOSHCLUNE/LeanHammer
https://github.com/leanprover-community/duper
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.15796
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto

m

What is grind?
New proof automation (Lean v4.22 — released mid August) developed by Kim Morrison and myself.
Kim is a kick-ass mathematician.
A proof-automation tactic inspired by modern SMT solvers. Think of it as a virtual whiteboard:
Discovers new equalities, inequalities, etc.
Writes facts on the board and merges equivalent terms
Multiple engines cooperate on the same workspace
Cooperating Engines:
Congruence closure; E-matching; Constraint propagation; Guided case analysis
Satellite theory solvers (linear integer arithmetic, commutative rings, linear arithmetic)
Supports dependent types, type-class system, and dependent pattern matching

Produces ordinary Lean proof terms for every fact.

https://lean-lang.org/doc/reference/latest/The--grind--tactic/

m

What grind is NOT

Not designed for combinatorially explosive search spaces:
Large-n pigeonhole instances
Graph-coloring reductions
High-order N-queens boards
200-variable Sudoku with Boolean constraints
Why? These require thousands/millions of case-splits that overwhelm grind's branching search

Key takeaway: grind excels at cooperative reasoning with multiple engines, but struggles with
brute-force combinatorial problems.

For massive case-analysis, use bv_decide

m

grind: Design Principles

Native to Dependent Type Theory: No translation to first-order or higher-order logic needed.
Solves trivial goals automatically.

Fast startup time: No server startup, no external tool dependencies, no translations

Great for software verification applications.

No Mathlib dependency.

Rich diagnostics: When it fails, it tells you why.

Configurable via Type Classes.

Extensible: users can plugin their own theory solvers and constraint propa

Provide grind? similarly to bv_decide? and aesop?

Stdlib and Mathlib pre-annotated.

m

grind: Architecture

Preprocessing: normalization, canonicalization, extracting nested proofs, hash-consing, ...
Internalization: process of converting Lean expressions into solver's internal data-structures.
E-graph: congruence closure, E-matching, constraint propagation.

Satellite Solvers: cutsat, commutative rings, linear arithmetic, AC, etc.

grind: Model-based theory solvers
For linear arithmetic (linarith) and linear integer arithmetic (cutsat).
linarith is parametrized by a Module over the integers. It supports preorders, partial orders, and linear orders.

“I'm interested in developing some API for linearly ordered vector spaces, in order to easily handle manipulations
of asymptotic orders” — Terence Tao on the Lean Zulip

example {R} [OrderedVectorSpace R] (x y z : R)

t X S 2y 2y < Z 3> X< 2z := Dby
grind -- &

OrderedVectorSpace implements IntModule, LinearOrder, IntModule.lsOrdered.

grind: Model-based theory solvers

cutsat is parametrized by the Tolnt type class used to embed types such as Int32, BitVec 64 into the
integers.

/--
The embedding into the integers takes addition to addition, wrapped into the range interval.
-/
class ToInt.Add (a : Type u) [Add a] (I : outParam IntInterval) [ToInt a I] where
/-- The embedding takes addition to addition, wrapped into the range interval. -/
toInt_add : V x y : a, toInt (x + y) = I.wrap (toInt x + toInt y)

/--

The embedding into the integers is monotone.

=

class ToInt.LE (a : Type u) [LE a] (I : outParam IntInterval) [ToInt a I] where
/-- The embedding is monotone with respect to “<°. -/

le_iff : Vxy : a, x £y e toInt x £ toInt vy

grind: Model-based theory solvers

example (x y : Int)
27 < 11xx + 13*xy > 11%x + 13%y < 45 >
-10 £ 7%x - 9%y > 7xx - 9%y < 4 > False := by
grind

example (a b ¢ : UInt32)
-a+-c>1>
a+ 2%xb =0 >
-c + 2xb = 0 > False := by
grind

example (a : Fin 4) : 1 <a>a # 2>a# 3> False :

by grind

grind: Commutative rings and Fields
Support for commutative rings and fields uses Grobner basis.

Parametrized by the type classes: CommRing, CommSemiring, NoNatZeroDivisors, Field, AddRightCancel,
and IsCharP

example {a} [CommRing a] (a b c : a)

ta+b+c=35>

a"2 + b"2 + ¢c*"2 =5 >

ar3 + br3 + ¢c23 = 7 >

ard + bMy + ¢4 = 9 = by
grind

example [Field R] (a : R) : (2 * a)-* = a-* / 2 := by grind

example [Field R] (a : R) : (2 : R) #0>1/a+1/ (2*a)=3/(2=*a):

by grind

3/ (2% a):

example [Field R] [IsCharP R 0] (a : R) : 1/ a+ 1/ (2 % a) by grind

example (x y : BitVec 16) : x"2%y = 1 5 x*y”2 =y 5> y*xx = 1 := by grind

Automating Quantum Algebra

Here is a concrete example from quantum algebra. It comes from a classification result involving quantum
SO(3) categories. Specifically, the condition that certain relations among trivalent graphs imply a constraint
on the parameters d, t, and c:

example {a} [CommRing a] [IsCharP a 0] (d t ¢ : a) (d_inv PS03_inv : a)

(M40 : d?2 * (d+t -d*xt - 2) %
(d+t+d=xt)=0)

(A41 @ -d*4 x (d+t -dx*xt - 2) %
2xd+2xdxt-4xdxxt'2+2xdxthd+2*xd2*xtrd-c*x(d+t+dxt)) =0)

(_:dx*xd_inv = 1)

(L:(d+t-d+*t-2) % PS03_inv = 1) :

t"2 =t + 1 := by grind

From: “Categories generated by a trivalent vertex”, Morrison, Peters, and Snyder \/

Automating Quantum Algebra

example {a} [CommRing a] [IsCharP a 8] (d t ¢ : a) (d_inv PS03_inv : a)

(M40 : d*2 * (d+t -dx*xt - 2) %
(d+t+dxt)=0)

(A41 : -d*4 * (d+t-dx*xt - 2) %
2xd+2*xdxt-4xd*xtr2+2xdxtr4d+2*xd2*xtr4d-c*x(d+t+dxt)) =0)

(_:d=*d_inv = 1)

(L:(d+t-d=*xt-2) % PS03_inv = 1) :

t"2 =t + 1 := by grind

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

grind can handle this kind of reasoning automatically, in milliseconds.

Associative (commutative, idempotent) operators & neutral elements

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

Parametrized by the type classes: Associative, Commutative, [dempotentOp, Lawfulldentity.

Long-term: AC E-matching.

example {a} (f : a > a) (op : a > a > a) [Associative op] [Commutative op] (a b : a)
:op (f (opab)) b=opb (f (opba)):=hby
grind only

example {a} (bar : a > a) (op : a > a > a) [Associative op] [IdempotentOp op]
(abcdefxyw: a)

:opd(pxc)=opab>
op e (op f (opyw)) =op (opda) (opbc)->

bar (op d (op x c)) = bar (op e (op f (op y w))) := by
grind only
example (a b ¢ : Nat) : min a (max b ¢) = min (max c b) a := by
grind -cutsat only
example (a b ¢ : Nat) : min a (max b (max ¢ 0)) = min (max ¢ b) a := by

grind -cutsat only

grind: E-matching
E-matching is a heuristic for instantiating theorems. It is used in many SMT solvers.

It is matching modulo equalities.

@[grind =] theorem fg {x} : f (g X) = x := by
unfold ¥ g; omega

example {abc}t : fa=b>a=9gc->b=c := by
grind

-- Whenever “grind” sees “cos’ or ‘sin’, it adds "~ (cos x)*2 + (sin x)7*2 = 1° to the whiteboard.
-- That's a polynomial, so it is sent to the Grobner basis module.
-- And we can prove equalities modulo that relation!
example {x} : (cos x + sin x)?*2 = 2 * cos X * sin x + 1 := by
grind

grind: E-matching and Dependent Type Theory

def pbind {a B} : (o : Option a) > (f : (a : a) > o = some a > B) > Option B
| none, _ => none
| some a, f => some (f a rfl)

theorem pbind_some {a o B} {f : (a : a) > some o = some a > B} : pbind (some o) f = some (f o rfl) :=
rfl

example {b} (x : Option Nat) (h : x = some b) : pbind x (fun a h => a + 1) = some (b + 1) := by
/-
E-matching instantiates:
pbind_some: pbind (some b) (cast - fun a h => a + 1)
= some (cast - (fun a h => a + 1) b -)
~//
grind [pbind_some] -- fails
©[grind genl]

theorem pbind_some' {x a f} (h : x = some a): pbind x f = some (f a h) := by
subst h; rfl

example {a} (x : Option Nat) (h : x = some a) : pbind x (fun x _ => x + 1) = some (a + 1) := by
grind -- success

grind: Extensibility

You can configure grind using type classes.

You can annotate theorems and definitions with the [grind] attributes.

@L[grind =]

theorem getElem?_cons {a 1 i} : (a :: 1)[i]? = if i = O then some a else 1[i-1]? := by
cases 1 <;> simp

@[grind »]

theorem getElem_of_getElem? {a i a} {1 : List a} : 1[i]? = some a > 3 h : i < 1l.length, 1[i] = a :=
getElem?_eq_some_iff.mp

That said, grind is implemented in Lean, and you can extend its implementation using Lean itself.

No need to learn another programming language, or how to create shared objects.

grind: Extensibility - propagators

/--

Propagates equalities for a disjunction “a v b" based on the truth values

of its components “a’ and “b’. This function checks the truth value of "a” and "b",
and propagates the following equalities:

If “a = False', propagates “(a v b) =b".
If b = False', propagates “(a v b) = a .
If “a = True', propagates “(a v b) = True'.
If "b = True', propagates “(a v b) = True'.

-/

builtin_grind_propagator propagateOrUp 10r

:= fun e => do

let_expr Or a b := e | return ()
if (¢ isEqFalse a) then

-- a=False » (avb)=b |

pushEq e b <| mkApp3 (mkConst ~Grind.or_eq_of_eq_false_left) a b (¢ mkEqFalseProof a)
else if (¢ isEgFalse b) then

-- b = False » (a v b) = a

pushEq e a <| mkApp3 (mkConst ~Grind.or_eq_of_eq_false_right) a b (¢ mkEqFalseProof b)
else if (¢ isEqTrue a) then

--a = True » (a v b) = True

pushEqTrue e <| mkApp3 (mkConst ~ Grind.or_eq_of_eq_true_left) a b (¢ mkEqTrueProof a)
else if (¢ isEqTrue b) then

-- b = True » (a A b) = True

pushEqTrue e <| mkApp3 (mkConst ~ Grind.or_eq_of_eq_true_right) a b (¢ mkEqTrueProof b)

grind: Extensibility - solvers

You can plugin your own solver. We implemented all built-in solvers using the plugin API.

/-- State for all associative operators detected by “grind . -/
structure State where
/--
Structures/operators detected.
We expect to find a small number of associative operators in a given goal.
Thus, using “Array’ 1is fine here.

=/

structs : Array Struct := {}

/--

Mapping from operators to its "operator id". We cache failures using “none .
‘opIdOf[op]® is “some id', then “id < structs.size . -/

opId0f : PHashMap ExprPtr (Option Nat) := {}

/--

Mapping from expressions/terms to their structure ids.

Recall that term may be the argument of different operators. -/
exprToOpIds : PHashMap ExprPtr (List Nat) := {}

steps := 0

deriving Inhabited

builtin_initialize acExt : SolverExtension State ¢ registerSolverExtension (return {})

grind: Extensibility - solvers

After you declare your solver extension. You implement your internalizer, propagators, and equality
handlers.

def processNewDiseq (a b : Expr) : GoalM Unit := withExprs a b do
let ea ¢ asACExpr a
let 1lhs ¢ norm ea
let eb ¢ asACExpr b
let rhs ¢ norm eb
{ lhs, rhs, h := .core a b ea eb : DiseqCnstr }.assert

builtin_initialize
acExt.setMethods
(internalize := AC.internalize)
(newEg := AC.processNewEq)
(newDiseq := AC.processNewDiseq)
(check := AC.check)
(checkInv := AC.checkInvariants)

grind: Tooling

How to maintain annotations in a huge libraries with more than 2M lines of code?

/-- Analyzes all theorems in the standard library marked as E-matching theorems. -/
def analyzeEMatchTheorems (c : Config := {}) : MetaM Unit := do

let origins := (¢ getEMatchTheorems).getOrigins
let decls := origins.filterMap fun | .decl declName => some declName | _ => none
for declName in decls.mergeSort Name.lt do
try
analyzeEMatchTheorem declName c
catch e =>

logError m!"{declName} failed with {e.toMessageData}"
logInfo m!"Finished analyzing {decls.length} theorems"

/-- Macro for analyzing E-match theorems with unlimited heartbeats -/
macro "#analyzeEMatchTheorems" : command => " (

set_option maxHeartbeats 0 in

run_meta analyzeEMatchTheorems

)
#analyzeEMatchTheorems

-- -- We can analyze specific theorems using commands such as
set_option trace.grind.ematch.instance true

-- 1. grind immediately sees " (#[] : Array a) = ([] : List a).toArray’ but probably this should be hlidden.
-- 2. “Vector.toArray_empty" keys on “Array.mk []1° rather than “#v[].toArray’

-- I guess we could add " (#[].extract _ _).extract _ _° as a stop pattern.

run_meta analyzeEMatchTheorem ~ Array.extract_empty {}

L IVIN

grind: Diagnostics at your fingertips

example {a} (as bs

grind

(ia

(hy :

i,

(h, :
(hs :
(hs :
(h, :
(hs :

(he :

. Cs

[3

J
i,
bs
i,

Cs =

i,
J
J
1

A A

cs :
: Nat)
as.
as.
bs.
bs.
£ 3)

size)
set i1 vi)
size)
set i, v.)

cs.size)
as.size)
as[j] := by

Array a) (vy v, :

a)

‘grind” failed

vcase grind

a : Type vu_l
as bs cs : Array a
Vi V2 : @

i, i, j : Nat

hy : i3 + 1 < as.size

h, : bs = as.set i; vp -
hs : i, + 1 < bs.size

hs_1 : cs = bs.set i, v, =

hg @ =iy = 3

hs : j + 1 < cs.size
hg : j + 1 < as.size
h : -cs[j] = as[jl

F False

Goal diagnostics Vv
Asserted facts »
True propositions »
False propositions »
Equivalence classes »
E-matching patterns »
Assignment satisfying linear constraints Vv

i, == 0
i, =1
i = il
as.size := 2
bs.size := 2

cs.size := 2

grind: Diagnostics at your fingertips

example {a} (as bs

grind

(i, i 3
(hy : i,
(h, : bs
(hs : i,
(hs : cs
(hg @ ia
(hs : j
(he = 3
: es[jl

cs :
: Nat)
as.
.set i, v,)
bs.
bs.

as

3)

Array a) (vi v»
size)

size)
set i, v,)

cs.size)
as.size)
as[jl := by

:a)

Goal diagnostics Vv
Asserted facts »
True propositions »
False propositions Vv

i, =3
cs[j] = as[jl

(bs.set i, v, =)[j] = bs[jl
Equivalence classes »
E-matching patterns »
Assignment satisfying linear constraints »
Thresholds reached »

Issues »

Diagnostics Vv

E-Matching instances Vv
Array.getElem_set_ne » 2
Array.size_set » 2
Array.getElem_set_self » 1

grind: Diagnostics at your fingertips

example {a} (as bs

grind

(il i2 J
(hy @ i,
(h, : bs
(hs 3 i>
(hs : cs
(hg @ ia
(hs = 3
(he = 3
: cs[jl

AN

cs : Array a) (vyi vy :)

. Nat)

as.size)
as.set i; v;)
bs.size)
bs.set i, v3)

£ 3)

cs.size)
as.size)
as[j] := by

©Array.getElem_set_ne :
: i< xs.size) {v :
i# 3> (xs.set iv h')[j] = xs[j]

Goal diagnostics Vv
Asserted facts »
True propositions »
False propositions Vv
ip =3
cs[j] = as[j]
-ip =3
(bs.set i, v, =)[j] = bs[jl
Equivalence classes »
E-matching patterns »
Assignment satisfying linear constraints »
Thresholds reached »

Y {a
atr {7 :

: Type u_1} {xs
Nat} (pj : j < xs.size),

Array.getElem_set_ne » 2
Array.size_set » 2
Array.getElem_set_self » 1

: Array a} {i :

Nat} (h'

"if-normalization” challenge by Leino, Merz, and Shankar

def normalize (assign : Std.HashMap Nat Bool) : IfExpr > IfExpr
| 1it b => 1lit b
| var v =>
match assign[v]? with
| none => var v
| some b => 1it
ite (lit true) t _ => normalize assign t

o

[_
| ite (lit false) _ e => normalize assign e
| ite (ite a b ¢) t e => normalize assign (ite a (ite b t e) (ite c t e))
| ite (var v) te=>
match assign[v]? with
| none =>
let t' := normalize (assign.insert v true) t
let e' := normalize (assign.insert v false) e
if t' = e' then t' else ite (var v) t' e'

| some b => normalize assign (ite (lit b) t e)
termination_by e => e.normSize

-- We tell “grind” to unfold our definitions above.
attribute [local grind] normalized hasNestedIf hasConstantIf hasRedundantIf disjoint vars eval List.disjoint

theorem normalize_spec (assign : Std.HashMap Nat Bool) (e : IfExpr)
(normalize assign e).normalized
A (V f, (normalize assign e).eval f = e.eval fun w => assign[w]?.getD (f w))
AY (v : Nat), v € vars (normalize assign e) - - v € assign := by
fun_induction normalize with grind

"if-normalization” challenge by Leino, Merz, and Shankar

Interactive tactic suggestion tool: the try? tactic
It tries many different tactics, guesses induction principle, and is extensible

4 theorem normalize_spec (assign : Std.HashMap Nat Bool) (e : IfExpr)
(normalize assign e).normalized
A (Y £, (normalize assign e).eval f = e.eval fun w => assign[w]?.getD (f w))
® AV (v : Nat), v € vars (normalize assign e) > - v € assign := by

Lean Infoview X
v Suggestions

Try these:

e fun_induction normalize <;> grind
e fun_induction normalize <;>
grind only [vars, normalized, disjoint, =_ Std.HashMap.contains_iff_mem, =_

List.contains_iff_mem, List.contains_eq_mem, hasNestedIf, hasConstantIf, hasRedundantIf,
List.elem_nil, eval, cases Or, List.contains_cons, List.eqg_or_mem_of_mem_cons,
Option.getD_none, List.mem_cons_of_mem, getElem?_pos, getElem?_neg, Option.getD_some, =
Std.HashMap.mem_insert, = Std.HashMap.getElem?_insert, = Std.HashMap.getElem_insert, =
Std.HashMap.contains_insert, =_ List.cons_append, = List.append_assoc, = List.contains_append,
List.nil_append, List.disjoint, List.append_nil, = List.cons_append, =_ List.append_assoc, =
List.eq_nil_of_append_eq_nil, List.mem_append]

L IVIN

grind: Initial reactions

Markus de Medeiros Jul 22nd at 1:43 PM

4@ | keep being surprised by how many nuisance goals
grind is able to solve. Props to everyone who worked
on it!

g7 11 &

2\ You and Kim Morrison, Oliver Nash

' Oliver Nash eoiTep
| was just singing grinds praises in the Mathlib community meeting and
highlighted my favourite example was #27372 (which massively golfs some of my
work).

After the call somebody suggested | highlight it to you both for your enjoyment :)

Fabrizio Montesi

.1 Testing a bundled definition of Bisimulation, and holy cow does
grind shine. With the right annotations, it managed to prove that
bisimilarity is a bisimulation.

def Bisimilarity (lts : Lts State Label) : Bisimulation 1t
rel sl s2 := 3 r : Bisimulation 1lts, r sl s2
is_bisimulation := by grind

-ﬁ- Chris Henson, Shreyas Srinivas, Kim Morrison

AUG 8

8:27 AM

SEP7

11:28 AM

refine {_, _, ., _, ha, haj, hb, hbj, hc, hcj, hd, hdj, 2., 2., 2., 2., 2.)

<;> rw [mem_insert] at * <;> try rintro rfl

- obtain (rfl | ha) := ha

« obtain (rfl | hb) := hb
- exact hw.isPathGraph3cCompl.fst_ne_snd rfl
- exact hw.fst_notMem_right hb
« obtain (rfl | hb) := hb
- exact hw.snd_notMem_left ha
« exact haj <| hw <| mem_inter_of_mem ha hb

- obtain (rfl | ha) := ha

- obtain (rfl | hd) := hd
- exact hw.isPathGraph3Compl.ne_fst rfl
« exact hw.fst_notMem_right hd
« obtain (rfl | hd) := hd
- exact hw.notMem_left ha
- exact haj <| hw <| mem_inter_of_mem ha hd

- obtain (rfl | hb) := hb

« obtain (rfl | hc) := hc
+ exact hw.isPathGraph3compl.ne_snd rfl
- exact hw.snd_notMem_left hc
- obtain (rfl | hc) := hc
- exact hw.notMem_right hb
« exact hbj <| hw <| mem_inter_of _mem hc hb

+ intro hat

obtain (rfl | ha) := ha
« exact hw.fst_notMem_right hat
- exact haj <| hw <| mem_inter_of_mem ha hat

- intro hbs

exact (_, _, _, _, ha, haj, hb, hbj, hc, hcj, hd, hdj, by grind)

obtain (rfl | hb) := hb
+ exact hw.snd_notMem_left hbs
« exact hbj <| hw <| mem_inter_of_mem hbs hb

Vv Comment on line R312

®

YaelDillies 19 minutes ago

Wow! &

©

Collaborator

m

grind: Initial reactions

Terence Tao
@tao@mathstodon.xyz

In contrast, Al chatbots are usually tuned to avoid a "failure mode" as much as possible, at the
expense of increasing the occurrence of "intermediate modes" where the chatbot response looks
potentially useful, and invites further interaction from the user, but is not exactly providing what the
user wants, and could contain hallucinations or some fundamental misunderstanding of the task that
would take significant effort to uncover. Paradoxically, such tools may become significantly more
useful if they simply reported that they were unable to provide a high quality answer to a query in
such cases.

A comparison may be drawn with the increasingly advanced, but stringently verified, "tactics" used
in a modern proof assistant such as Lean. | have been experimenting recently with the new tactic
“grind” in Lean, which is a powerful tool (inspired more by "good old-fashioned Al" such as
satisfiability modulo theories (SMT) solvers, than modern data-driven Al) to try to close complex
proof goals if all the tools needed to do so are already provided in the proof environment; roughly
speaking, this corresponds to proofs that can be obtained by "expanding everything out and trying
all obvious combinations of the hypotheses". When | apply “grind" to a given subgoal, it can report
a success within seconds, closing that subgoal in a Lean-verified fashion and allowing me to move on
to the next subgoal. But, importantly, when this does not work, | quickly get a " grind™ failed"
message, in which case | simply delete ~grind® from the code and proceed by a more pedestrian
sequence of lower level tactics. (2/3)

grind: Roadmap

AC E-matching.

More tooling: grind parameter minimizer, deploy annotation analyzers.

Make try? as a hub for all proof automation in Lean, Al-based ones included.
Mathlib annotations: crowd sourcing.

Nonlinear inequality support. Interval propagator.

theorem historicalVaR_monotonic (ar : AssetReturns) (c; c, : ConfidencelLevel) (v, v, : Int)

: c1 £ c2 2 historicalVaR ar ci = some v, > historicalVaR ar c, = some v, > v, < vy, := by
fun_cases historicalVaR ar ci <;> fun_cases historicalVaR ar c, <;> simp
next sorted: ni pi1 11 _ _ sorted, n, pp i, _ =>
intros

have : p2 * ny £ p1 * ny := by apply Nat.mul_le_mul_right <;> grind
grind

grind: Roadmap

Isn't this example a good candidate for Al?

theorem historicalVaR_monotonic (ar : AssetReturns) (ci c. : ConfidencelLevel) (vi v, : Int)
: c1 £ ¢, 2 historicalVaR ar c; = some v, 2 historicalVaR ar c, = some v, 2 v, £ vy, = by
fun_cases historicalVaR ar c, <;> fun_cases historicalVaR ar c, <;> simp
next sorted; n, p1 i1 _ _ sorted, n, pp i, _ =>
intros
have : p2 * n1 £ p1 * ny := by apply Nat.mul_le_mul_right <;> grind
grind

Yes, Al can figure out the missing steps in this example, and it even feels like a good candidate for Al
since nonlinear integer arithmetic is undecidable, but a simple heuristic is cheaper and more effective.

m

grind: Roadmap - New tooling for Maintenance

The challenge: maintaining a 2M LoC library with grind annotations (aka hints)

Library build vs. use time: They often require different annotations. We use [1local grind]
New tools for suggesting and maintaining annotations.

User request: An un-grind tool that expands a grind proof into a detailed tactic proof.

For our Al experts: Al agents that can use all these tooling, create PRs with improvements, suggest
new annotations.

Software

Conclusion

Lean is an efficient programming language and proof assistant.

Mathematics

Lean is very extensible and is implemented in Lean.

grind is a new extensible tactic based on SMT techniques.

try? will be a hub for all proof automation in Lean, Al-based ones included.
Many new extensions and features are in development.

We expect Al systems will adopt grind as key tactic within months.

Maintaining formal proofs is as hard as writing them in the first place.

Thank You

https://leanprover.zulipchat.com/

X: @leanprover

LinkedIn: Lean FRO

Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

