

Engineering DPLL(T) + Saturation

Leonardo de Moura and Nikolaj Bjørner Microsoft Research

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT)

 $x+2=y \Rightarrow f(read(write(a, x, 3), y-2) = f(y-x+1)$

Guessing p | p ∨ q, ¬q ∨ r p, ¬q | p ∨ q, ¬q ∨ r

• Deducing $p \mid p \lor q, \neg p \lor s$ $p, s \mid p \lor q, \neg p \lor s$

Backtracking

p, \neg s, q | p \lor q, s \lor q, \neg p \lor \neg q p, s | p \lor q, s \lor q, \neg p \lor \neg q

SMT = DPLL + Theories

 Efficient decision procedures for conjunctions of ground atoms.

a=b, a<5 | ¬a=b ∨ f(a)=f(b), a < 5 ∨ a > 10

- Examples:
 - Congruence closure
 - Dual Simplex
 - Bellman-Ford

SMT: many applications at MS...

Verifying Compilers

A verifying compiler uses *automated reasoning* to check the correctness of a program that is compiles.

Correctness is specified by *types, assertions, . . . and other redundant annotations* that accompany the program.

Tony Hoare 2004

Verification conditions: Structure

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
 - ∀ h,o,f:
 IsHeap(h) ∧ o ≠ null ∧ read(h, o, alloc) = t
 ⇒
 read(h,o, f) = null ∨ read(h, read(h,o,f),alloc) = t

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
 - ∀ **o**, **f**:
 - o ≠ null ∧ read(h₀, o, alloc) = t \Rightarrow read(h₁,o,f) = read(h₀,o,f) ∨ (o,f) ∈ M

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
 - $\forall i,j: i \leq j \Rightarrow read(a,i) \leq read(b,j)$

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories
 - ∀ x: p(x,x)
 - $\forall x,y,z: p(x,y), p(y,z) \Longrightarrow p(x,z)$
 - $\forall x,y: p(x,y), p(y,x) \Longrightarrow x = y$

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories
- Solver must be fast in satisfiable instances.

We want to find bugs!

E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).

Example:

E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).

Example:

E-matching: why do we use it?

- Integrates smoothly with DPLL.
- Software verification problems are big & shallow.
- Decides useful theories:
 - Arrays
 - Partial orders

⊜..

- E-matching needs ground seeds.
 - ∀x: p(x),
 - $\forall x: not p(x)$

- E-matching needs ground seeds.
- Bad user provided patterns:

 $\forall x: f(g(x))=x \{ f(g(x)) \}$ g(a) = c, g(b) = c, $a \neq b$

Pattern is too restrictive

- E-matching needs ground seeds.
- Bad user provided patterns:
 - $\forall x: f(g(x))=x \{ g(x) \}$ g(a) = c, g(b) = c, $a \neq b$

More "liberal" pattern

- E-matching needs ground seeds.
- Bad user provided patterns:
 - $\forall x: f(g(x))=x \{ g(x) \}$ g(a) = c, g(b) = c, $a \neq b,$ f(g(a)) = a,f(g(b)) = b a=b

- E-matching needs ground seeds.
- Bad user provided patterns.
- Matching loops:

 $\forall x: f(x) = g(f(x)) \{f(x)\}$ $\forall x: g(x) = f(g(x)) \{g(x)\}$ f(a) = c

- E-matching needs ground seeds.
- Bad user provided patterns.
- Matching loops:

 $\forall x: f(x) = g(f(x)) \{f(x)\}$ $\forall x: g(x) = f(g(x)) \{g(x)\}$ f(a) = cf(a) = g(f(a))

- E-matching needs ground seeds.
- Bad user provided patterns.
- Matching loops:

```
\forall x: f(x) = g(f(x)) \{f(x)\}
\forall x: g(x) = f(g(x)) \{g(x)\}
f(a) = c
f(a) = g(f(a))
g(f(a)) = f(g(f(a)))
```

- E-matching needs ground seeds.
- Bad user provided patterns.
- Matching loops.
- It is not refutationally complete.

Z3: Beyond E-matching

- Decidable fragments:
 - EPR (this morning)
 - Array property fragment
 - More coming soon
- DPLL(Γ): DPLL + Saturation (this talk)

Tight integration: DPLL + Saturation solver.

Inference rule:

$$\frac{C_1 \quad \dots \quad C_n}{C}$$

- DPLL(Γ) is parametric.
- Examples:
 - Resolution
 - Superposition calculus
 - ...

DPLL(Γ): Deduce I

p(a) | p(a) \lor q(a), \forall x: \neg p(x) \lor r(x), \forall x: p(x) \lor s(x)

DPLL(Γ): Deduce I

$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$

DPLL(Γ): Deduce I

$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$

Resolution

$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x), r(x) \lor s(x)$

DPLL(Γ): Deduce II

• Using ground atoms from M:

- Main issue: backtracking.
- Hypothetical clauses:

Track literals from M used to derive C

(hypothesis) Ground literals

(regular) Clause

M | F

DPLL(Γ): Deduce II

DPLL(Γ): Backtracking

$p(a), r(a) | p(a) \lor q(a), \neg p(a) \lor \neg r(a), p(a) \triangleright r(a), ...$

DPLL(Γ): Backtracking

p(a), r(a) | p(a)∨q(a), ¬p(a)∨¬r(a), p()) (a), ...

p(a) is removed from M

¬p(a) | p(a)∨q(a), ¬p(a)∨¬r(a), …

DPLL(Γ): Hypothesis Elimination

$p(a), r(a) | p(a) \lor q(a), \neg p(a) \lor \neg r(a), p(a) \triangleright r(a), \dots$

p(a), r(a) | p(a)∨q(a), ¬p(a)∨¬r(a), **¬p(a)∨r(a)**, ...

DPLL(\Gamma): Improvement

 Saturation solver ignores non-unit ground clauses.

p(a) | p() (a), ¬p(x)∨r(x)

DPLL(\Gamma): Improvement

- Saturation solver ignores non-unit ground clauses.
- It is still refutanionally complete if:
 - Γ has the reduction property.

Kecear

DPLL(\Gamma): Improvement

- Saturation solver ignores non-unit ground clauses.
- It is still refutanionally complete if:
 - Γ has the reduction property.

- Contraction rules are very important.
- Examples:
 - Subsumption
 - Demodulation
 - ⊜ ..
- Contraction rules with a single premise are easy.

- Contraction rules with several premises.
- Example:

 $p(a) \triangleright r(x), r(x) \lor s(x)$

r(x) subsumes $r(x) \lor s(x)$

 Problem: p(a) >r(x) can be deleted during backtracking.

- Contraction rules with several premises.
- Example:
 p(a) >r(x), r(x) vs(x)
- Naïve solution: use hypothesis elimination.
 ¬p(a)∨r(x), r(x)∨s(x)

- Contraction rules with several premises.
- Example:
 p(a) >r(x), r(x)vs(x)
- Solution: disable r(x) vs(x) until p(a) is removed from the partial model M.

DPLL(Γ): Problems

• Interpreted symtbols $\neg(f(a) > 2), f(x) > 5$

Disclaimer: Doesn't occur very often

 Solution: use E-matching for non-ground clauses containing interpreted symbols.

DPLL(Γ): Problems

Transitivity + monotonicity

 $\neg p(x,y) \lor \neg p(y,z) \lor p(x,z)$ $\neg p(x,y) \lor p(f(x), f(y))$

Saturation engine diverges

No satisfactory solution yet.

DPLL(Γ): Problems

Ground equations (duplication of work)

- Superposition
- Congruence closure

Our problems have a huge number of ground equalities

 Partial solution: E-graph (congruence closure) → canonical set of rewriting rules [17].

Related Work

- Harvey
- SPASS + T
- SMELS
- LASCA

Future work

- Better superposition calculus engine
- Variable inactivity (Bonacina)
 - Assumption: saturated set of non-ground clauses is variable inactive and doesn't contain interpreted functions.

Conclusion

- Tight integration: DPLL + Saturation.
- Non-unit ground clauses are delegated to DPLL.
- Good for software verification.
- Detecting unsound set of axioms.
- Implemented in Z3.2.
- Z3.2 won all \forall -divisions in SMT-COMP'08.