5 e)
p 3 Microsoft’

I - mﬁ" J .LI Research

Satisfiability with and without Theories
KR 2010, Toronto

Leonardo de Moura
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning

Microsoft:
Research

Symbolic Reasoning

e Logicis “The Calculus of Computer Undecidable
Science” (Z. Manna).

© High computational complexity senfi¥ecidable

W—Order loglc)
NEXPTime complete

Microsoft

Research

Applications

Test case generation

Predicate Abstraction

Invariant Generation

-
-
C
€
€

Type Checking

Model Based Testing

Microso ft-

Research

Some Applications @ Microsoft

Spect ~ HAVOC | L

Programming System

[Terminator T-2 J

VCC o2
s ‘\./OJ

S Vigilante |

SpecExplorer Pex E7
 SAGE | I—IS

Microso ft-

Research

Test case generation

unsigned GCD(X, v) { (y, > 0) and

requires(y > 0); (M, =%, % Y,) and

while (true SS/
(true) { M\> ot (m

, = 0)and
unsigned m = x % vy;
| (x, =y,) and
if (m == 0) return y;
=y (y, =m,) and

(m, =x, %y,) and

} We want a trace where the loopiis
executed twice.

Xy = 2

Yo =
SOIVEN >

m, =

X, =4

y, =2

m,=0

Microsoft

Research

Type checking

Signhature:
div:int, {x:int|x# 0} —>int

Call site: Subtype

ifa<1anda= b then
return div(a, b)

Verification condition
a <1anda < bimpliesb# 0

Microsoft

Research

What is logic?

e Logic is the art and science of effective reasoning.

e How can we draw general and reliable conclusions
from a collection of facts?

@ Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

e Formal logic makes it possible to calculate
consequences at the symbolic level.

e Computers can be used to automate such symbolic
calculations.

Microsoft

Research

What is logic?

e Logic studies the relationship between language,
meaning, and (proof) method.

e A logic consists of a language in which (well-formed)
sentences are expressed.

e A semantic that distinguishes the valid sentences from
the refutable ones.

@ A proof system for constructing arguments justifying
valid sentences.

e Examples of logics include propositional logic,
equational logic, first-order logic, higher-order logic,
and modal logics.

Microsoft

Research

What is logical language?

= Alanguage consists of logical symbols whose

interpretations are fixed, and non-logical ones whose
Interpretations vary.

© These symbols are combined together to form well-
formed formulas.

@ In propositional logic PL, the connectives A, v, and —
have a fixed interpretation, whereas the constants p, g,
r may be interpreted at will.

Microsoft

Research

Propositional Logic

Formulas: o:=p | o,ve, | o, r@, | =@, | o, = @,

Examples:
pvg=qgvp
pA—g A(=pVQ)

We say p and g are propositional variables.

Exercise: Using a programming language, define a
representation for formulas and a checker for well-
formed formulas.

Microso ft-

Research

Interpretation

An interpretation M assigns truth values {7, L} to
propositional variables.

Let A and B range over PL formulas.

M| is the meaning of ¢ in M and is computed using truth
tables:

¢ |A|B|-A|AVB|AA-A|A=DB|A= (BVA

)

o) | LT T | T 1 T T
)
)

Satisfiability & Validity

o A formula is satisfiable if it has an interpretation that
makes it logically true.

@ |n this case, we say the interpretation is a model.
e A formula is unsatisfiable if it does not have any model.

e A formulais valid if it is logically true in any
interpretation.

@ A propositional formula is valid if and only if its
negation is unsatisfiable.

Satisfiability & Validity: examples

pvVag=qvp

pvaqg=q

pA—q A(—pVQq)

o |A|B|-A|AVB|AN-A|A=B|A= (BVA)
Mu(@d) | L L] T | L 1 T T
Mo(@d) | LI T| T T 1 T T
Ms(o) | T| L] L T 1 1 T
My(o) | T| T | L T 1 T T

Satisfiability & Validity: examples

pvqg=qvVvp VALID
pvag=agqg SATISFIABLE

pA—g A(—pVaQ) UNSATISFIABLE

AVvB | AN-A| A= B | A= (BVA)

S
| =
oy
|
I

1
—

1
—

| }
|
|
A A A
|-
|
N

]
1
1
]

Equivalence

Two formulas A and B are equivalent, A — B, if their
truth values agree in each interpretation.

EXxercise 2 Prove that the following are equivalent

1. —A = A

2. A=B <= —-AVEB

3. -(ANB) < —-AV-B
4. -(AVB) — —-AAN-B

5, " A= B — —-B= A

Equisatisfiable

We say formulas A and B are equisatisfiable if and only if
A is satisfiable if and only if B is.

During this course, we will describe transformations that
preserve equivalence and equisatisfiability.

Microso ft-

Research

Nomal Forms

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is
equivalent to one in NNF, CNF, and DNF.

EXercise 4 Show that every n-ary Boolean function can be
expressed using just — and V.

Nomal Forms

NNF?
(o Vv —=q)A(gV —=(rA—p))

Nomal Forms

NNF? NO
(b v —qg)AlgVv —(rA—p))

Nomal Forms

NNF? NO
(b v —qg)AlgVv —(rA—p))

1. A = A
2. A= B = -AVEB
3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B

Nomal Forms

NNF? NO

(o v —=q)A(gV —=(rA—p))
=

(b v —=g)A(gV(=rv—p)) 1. —A = A
2. A= B < -AVDEB
3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B

Nomal Forms

NNF? NO

(p v —=q) A(g Vv —(rA—p))
e

(v —=q)A(gV (=rv——p)) 1. —A = A
e

2 A= B — -AvVvEB
(b v —g)AlqV(=rvp))

3. (AANB) «<— —-AV-B

4. -(AVvB) = -AAN-B

Nomal Forms

CNF?
(pAS)V(=gAr)A(gyv —pvs)A(—rvs)

Nomal Forms

CNF? NO
(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)

Nomal Forms

CNF? NO
(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)

Nomal Forms

CNF? NO

(bAs)v(mgAan)algy —pvs)A(=rvs)

e

(bAs)v—=g)Anllpas)vr)algy —pvs)A(arvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)

Nomal Forms

CNF? NO

(pAS)V(=gAr))Aalgyv —pvs)A(—rvs)

&

(bAs)v=g)Alloas)vr)algy —pvs)A(=rvs)

&

(pv—g)A(sv—g)A((pAS)vI)A(gV —pVS)A(—rvs)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)

Nomal Forms

CNF? NO

((pAS)V(=gAr))Aa(lgyv—pvs)A(—rvs)

&

(bAs)v—=g))Alloas)vi)algy —pvs)A(=rvs)

&

(pv—g)A(sv—g)A((pAS)vI)A(gy —pVS)A(—rvs)
&

(pv—ag)A(sv—g)A(pVvrIr)A(svr)a(lgy —pVvS)A(—rvs)

Nomal Forms

DNF?
pA(=pVvag)A(—=gvVvr)

Nomal Forms

DNF? NO, actually this formula is in CNF
pA(=pvag)A(—=gvr)

Nomal Forms

DNF? NO, actually this formula is in CNF
pA(=pvag)A(—=gvr)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)

Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pVvag)A(—=gvVvr)
N—

(bA—=p)VvipVva)A(=gvVvr)

Distributivity
1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)

Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pvag)A(—=gvr)

e
((oA—=p)VvipVva)A(=gvr)
Ne—

(bVvag)A(=gvVvr)

Distributivity

1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)
Other Rules

1. An—AS L

2. Avl <A

Nomal Forms

DNF? NO, actually this formula is in CNF

pA(=pVa)A(=gVr)

&

((pA=p)VvipVva))A(=gvr)

&

(pva)A(=gvr)

N Distributivity

((pvag)A—g)Vv(lpvag)Ar) 1. Av(BAC) < (AVvB)A(AVC)
2. AA(BVC) < (AAB)V(AAC)
Other Rules

1. An-AsS L
2. Av1 S A

Nomal Forms

pA(=pVvg)A(—=gVvr)

=
(pA=p)VvipVva)A(=gvVvr)
Ne—

(ovag)A(=gvr)

=
(pbva)A—qg)vilpvag)Aar)
=

(bA—=q)Vv(gAr—=qg)Vvlpvag) Ar)
Ne—

(bA—=q)Vv(pAr)vi(gnar)

CNF (again)

A CNF formula is a conjunction of clauses. A clause is a
disjunction of literals.

Ex: Implement a linear-time decision procedure for 2CNF
(each clause has at most 2 literals).

A clause is trivial if it contains a complementary pair of
literals.

Since the order of the literals in a clause is irrelevant, the
clause can be treated as a set.

A set of clauses is trivial if it contains the empty clause
(false).

CNF (again)

Equivalence rules can be used to translate any formula to

CNF.
eliminate = A= B=-AVvB
reduce the scope of — -(AV B)=-AN-B,

-(AANB)=-AvV-B
apply distributivity Av(BANC)=(AvB)A(AvO),
AN(BVC)=(AANB)V(ANC)

CNF (again)

The CNF translation described in the previous slide is too
expensive (distributivity rule).

However, there is a linear time translation to CNF that
produces an equisatisfiable formula. Replace the
distributivity rules by the following rules:

Fliiop l]
Flzl,x = 1l; op |;
I — Ei‘v'lj

_|33V-'fi VEJ,,_IEEVI..,_I-ZJ VT
= Eihij

ﬁ:rVIi-j—-mv.-fjj—-liV—-ij:ﬂ
(*) x must be a fresh variable.

Ex: Show that the rules preserve equisatisfiability.

CNF translation (example)

Translation of (pA(qVvr))Vi:

(pA(gvr)) Vi
(pAhzy)VExy = qVr

To Vi, xo & pAxy, 21 = qVrT

To VI, =Zo VP, ~ZoVIy,7pV 2y VIg, xS qVr

Lo VI, 2o Vp, 2 VI,pV oz VI, VgVr,-qVIy,rVir

Ex: Implement a CNF translator.

Semantic Trees

A semantic tree represents the set of partial interpretations
for a set of clauses. A semantic tree for

{pv ﬂqv—-r,pw“r'.,p\r’q.,—'p}i

ol

A node N is a failure node if its associated interpretation
falsifies a clause, but its ancestor doesn’'t.

Ex: Show that the semantic tree for an unsatisfiable
(non-trivial) set of clauses must contain a non failure node
such that its descendants are failure nodes.

Resolution

Formula must be in CNF.

Resolution procedure uses only one rule:

CyVp,CyV—p

res
C1Vp,CyV—=p, VG

T he result of the resolution rule is also a clause, it is called
the resolvent. Duplicate literals in a clause and trivial
clauses are eliminated.

There is no branching in the resolution procedure.
Example: The resolvent of pvgvr, and -pvrviisqgVvrVvt.

Termination argument: there is a finite number of distinct
clauses over n propositional variables.

Ex: Show that the resolution rule is sound.

Resolution (example)

A refutation of =pV —qVr, pvVr, gqVr, —r:

—pV-ogVrT

/—.fr qvr /—-r

NN
7

Ex: Implement a naive resolution procedure.

Completeness of Resolution

Let Res(S) be the closure of S under the resolution rule.

Completeness: S is unsatisfiable iff Res(S) contains the
empty clause.

Proof (=):

Assume that S is unsatisfiable, and Res(S) does not contain
the empty clause.

Key points: Res(S) is unsatisfiable, and Res(S) is a non
trivial set of clauses.

The semantic tree of Res(S) must contain a non failure
node N such that its descendants (N,, N_,) are failure
nodes.

Completeness of Resolution

/N

Nop

There is C7 vV —p which is falsified by N,, but not by N.
There is Cy V p which is falsified by N—,, but not by N.

C, v Cy is the resolvent of C; v —p and C5 V p.

Cy Vv Cs is in Res(S), and it is falsified by N (contradiction).

Proof («<): Res(S) is unsatisfiable, and equivalent to S. So,
S is unsatisifiable.

Subsumption

The resolution procedure may generate several irrelevant
and redundant clauses.

Subsumption is a clause deletion strategy for the resolution
procedure.

C1.C, v Oy
C1

sub

Example: pV —q subsumes pV gV r VL.

Deletion strategy: Remove the subsumed clauses.

Unit & Input Resolution

Unit resolution: one of the clauses is a unit clause.

Cvil

a

C,l

unit

Unit resolution always decreases the configuration size
(C vl is subsumed by).

Input resolution: one of the clauses is in S.

Ex: Show that the unit and input resolution procedures are
not complete.

Ex: Show that a set of clauses S has an unit refutation iff it
has an input refutation (hint: induction on the number of

propositions).

Hom Clauses

Each clause has at most on positive literal.
Rule base systems (—=py V...V=p,Vqg = p1 N ... \pp=q).

Positive unit rule:

C'V-p,p
C,p

unit™

Horn clauses are the basis of programming languages as
Prolog.

Ex: Show that the positive unit rule is a complete
procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.

DPLL = Unit resolution 4 Split rule.

r
Lp | Ly=p
C VI,

split p and —p are not in I'.

unat

1

Used in the most efficient SAT solvers.

Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p = (—1X1 \/Xg) N\ (X3 V —|X2) /N (X4 V —'X5) /\ (X5 V —|X4)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xia = (X4 V 7x5) A (X5 V —xs)

Preserve satisfiability, not logical equivalency!

Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p = (—1X1 \/Xg) N\ (X3 V —|X2) /N (X4 V —'X5) /\ (X5 V —|X4)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xia = (X4 V 7x5) A (X5 V —xs)

Preserve satisfiability, not logical equivalency!

DPLL (as a procedure)

» Standard backtrack search

» DPLL(F) :
» Apply unit propagation
» |f conflict identified, return UNSAT
» Apply the pure literal rule
» If F is satisfied (empty), return SAT
» Select decision variable x

» |f DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)

DPLL (example)

(av—-bvd)n(aVv-bVe)A

(b V dV—e)A
(avbvevd)A(aVvbVveVv—d)n
(avbVv-cVve)A(aVbV-cV—e)

(JQ:

DPLL (example)

aVvV-bvd)A(aVv-bVe)A

bV -dV-e)A @
aVbvevd)A(avbVeVad)A
avVbVvV-ocVve)A(aVbV-cV—e)

i]p:

(
(=
(
(

DPLL (example)

aV-bVd)A(aV-bVe)A

bV —dV —e)A @

avbvevd)A(aVvbVveVv-ad)n

avVbV-cVve)A(aVbV-cV—e) f

conflict

(,p:

(
(=
(
(

DPLL (example)

aVvV-bvd)An(aVv-bVve)A

(

(=bV —dV -—e)A @
(.

(

(]Q:

avVbveVvd)A(aVvbVcV-d)A

avVbVvV-cVve)A(aVbV-cV —e) f

conflict

DPLL (example)

aV—-bVvd)An(aV—-bVe)A

bV —=dV-e)A ;CD

avbvecvd)A(aVvbVeV-d)Aa

avVbVvV-cVe)A(aVbV-cV —e) f

conflict)
!
!

(Jp:

(
(-
(
(

DPLL (example)

aV-bVvd)AN(aV—-bVe)A
bV —dV—e)A f()

(
(—
(avbvevd)A(avbVeVv-d)a
(

avVbV-cVe)A(aVbV-cV —e) f

conflict J,
!
!

(]0:

DPLL (example)

aV-abvd)A(aV-bVve)Aa

p = (
(=bV —d VvV —e)A (@\
(avbVvevd)A(aVbVcVad)A
(a2vbV-cVe)A(aVbV-cV—e) f

conflict f
!
!

DPLL (example)

(avV—-bVvVd)An(aVv—-bVe)A

(—=bV —dV—e)A ,
(avbVvevd)A(aVbVeV—d)A
(aVbV-cVe)A(aVbV-cV —e) f o

conflict / solution
!

{]p:

Some Applications

Bit-vector / Machine anthmetic

Let x, y and z be 8-bit (unsigned) integers.

IsSX>0Ay>0Az=x+y=z>0 valid?

IsSXx>0AYy>0AzZ=X+Yy A —(z>0) satisfiable?

Bit-vector / Machine anthmetic

We can encode bit-vector satisfiability problems in
propositional logic.

|dea 1:

Use n propositional variables to encode n-bit integers.
X 2 (Xq, ey X))

ldea 2:
Encode arithmetic operations using hardware circuits.

Encoding equality

p < g is equivalentto (—p v g) A (=g Vv p)

The bit-vector equation x =y is encoded as:
(X, @y)A . Alx, SVy,)

Encoding addition

We use (ry, ..., r,) to store the result of x +y
p xor g is defined as —(p < q)

xor is the 1-bit adder

o o[pxora |_pc_JENERSTHY
0 0

1 0
1 0
0 1

— O +» O
— O O

Encoding 1-bit full adder

1-bit full adder
Three inputs: x, y, ¢,
Two outputs: r, ¢,

0

0

m, O kP O B O kP O
P P O O kB kB O
P, P P P O O O
m, O O B O Kk kP O
m B P O L O O O

Encoding n-bit adder

We use (r, ..., r,) to store the result of x +y,
and (¢, ..., ¢,)

r; < (x, xory;)

¢, < (X, Ayy)

r, < (x, xor y, xor c,)

C, = (X AY,) VI X, ACy) VY, AC)

r, < (x, xory, xor c, ;)

c, o x,Ay)vix,Ac, vy, Ac,)

Test case generation (again)

unsigned GCD(X, V) {

(yO > O) and XO =2
requires(y > 0); _
q Yy (mO = XO % yo) and yo —
hile (t SS ST
whniie (rue) { JJJL\ > not (mo — O) and JQJVS‘f > S
unsigned m = x % v; °
_ (x, =y,) and X =4
if (m == 0) return v; 1
=y (y, =m,) and y, =2
(m, =x, %y,) and m. =0

} We want a trace where the loopiis
executed twice.

Microsoft

Research

Expernmental Exercises

» The first step is to pick up a SAT solver.
» Play with simple examples
» Translate your problem into SAT

» Experiment

Avallable SAT Solvers

Several open source SAT solvers exist :

Minisat (C++) www.minisat.se Presumably the most widely
used within the SAT community. Used to be the best
general purpose SAT solver. A large community
around the solver.

Picosat (C)/Precosat (C+-+)
http://fmv. jku.at/software/index.html
Award winner in 2007 and 2009 of the SAT
competition, industrial category.

SAT4]J (Java) http://www.satdj.org. For Java users. Far less
efficient than the two others.

UBCSAT (C) http://www.satlib.org/ubcsat/ Very efficient
stochastic local search for SAT.

http://www.satcompetition.org Both the binaries and the

source code of the solvers are made available for research purposes.

Avallable Examples

e Satisfiability library: http://www.satlib.org
e The SAT competion: http://www.satcompetition.org
o Search the WEB: “SAT benchmarks”

http://www.satlib.org/
http://www.satcompetition.org/

Using SAT solvers

All SAT solvers support the very simple DIMACS CNF input
format :

(aVv bV —c)N(=bV —c)

will be translated into

p cnf 3 2
12-30
-2 -3 0

The first line is of the form

p cnf <maxVarId> <number(OfClauses>

Each variable is represented by an integer, negative literals as
negative integers, O is the clause separator.

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable

modulo theory T ?
-

SMT solvers have
specialized algorithms for T

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3),/c-2)) # f(c-b+1)

Arithmetic

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Array Theory

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and|f(read(write(a,b,3), c-2)) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Substituting c by b+2

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b+2-2)) # f(b+2-b+1)

Simplifying

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b)) # f(3)

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =cand f(read(write(a,b,3), b)) # f(3)

Applying array theory axiom
forall a,i,v: read(write(a,i,v), i) = v

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=candf(3) # f(3)

Inconsistent/Unsatisfiable

OOOOOOOO

Repository of Benchmarks
http://www.smtlib.org

Benchmarks are divided in “logics”:

e QF _UF: unquantified formulas built over a signature of
uninterpreted sort, function and predicate symbols.

e QF _UFLIA: unquantified linear integer arithmetic with
uninterpreted sort, function, and predicate symbols.

e AUFLIA: closed linear formulas over the theory of integer
arrays with free sort, function and predicate symbols.

Microsoft

Research

http://www.smtlib.org/

Ground formulas

For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking
Test-Case Generation

Microsoft

Research

Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof

Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof

\ Examples:
SAT Solver Z

Equality solver

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WO0VOWOVOOE

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WOOVVWOOE

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WOOO©

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WOOO©

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Voo

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

VOO E

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

e s

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

e S

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

&

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

&

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

a,b,c,s

Unsatisfiable

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
M(a) = ¢, (assighment)

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Alternative notation:

aM= e,

Model construction
|M ¢,,¢,} (universe, aka domain)
M(a) = ¢, (assighment)

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = o,

Microso ft-

Research

DeC|d|ng Equallty

@ Termination: easy

@ Soundness

e Invariant: all constants in a “ball” are known to be equal.
e The “ball” merge operation is justified by:
e Transitivity and Symmetry rules.
e Completeness
e We can build a model if an inconsistency was not detected.
e Proof template (by contradiction):
e Build a candidate model.

e Assume a literal was not satisfied.
e Find contradiction.

Microsoft

Research

DeC|d|ng Equallty

© Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c = d is not satisfied by our model.
e Thatis, M(c) # M(d).
e This is impossible, c and d must be in the same “ball”.

M(c) = M(d) =

Microsoft

Research

Deciding Equality:

Jer

© Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c # d is not satisfied by our model.
e That is, M(c) = M(d).

e Key property: we only check the disequalities after we
processed all equalities.

e This is impossible, c and d must be in the different “balls”

M(c) = o,
M(d) = ¢,

Microsoft

Research

Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

Congruence Rule:

X; = VYq, - X, =Y, implies f(x,, ..., x,) = flyy, ..., ¥,))

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:

X; = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,))

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v,) = f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v;) # f(b, gle))
vlzg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v) # f(b, v,)
v, =g(d), v, =gle)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v,) # f(b, v,)
v, =g(d), v,=gle)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gle), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gl(e), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

OOV

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f1(a, v;), v, =f(b, v,)

R ICACSSI

Congruence Rule:

X1 =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, .., V)
d = e implies g(d) = g(e)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), vs=f(a, v;), v, =f(b, v,)

OOV

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
d=eimpliesv, =V,

Microso ft-

Research

Deciding Equality +
Unintenpreted) Eunction

a=b,b=c,d=e,b=5s,d=t, 4
V= g(d), vV, = g(e), V3 = f(a, V1) A= f(b, Vz)

TSI

Congruence Rule:

X1 =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, .., V)
d=eimpliesv, =V,

We say:
v, and v, are congruent.

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v,=V,implies f(a, v,) = f(b, v,)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v,=V,impliesvy;=Vv,

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v,=V,impliesvy;=Vv,

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

Unsatisfiable

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,# v,
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Changing the problem

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,# v,
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
vl_g(d) v, =gle), v;="f(a, v;), v, =f(b, v,)

Model construction:
IM| ={¢,,¢,,¢;,¢,}
M(a) = M(b) = M(c) = M(s) =
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research

Decndnng Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Model construction: —
M| =1¢,,9,,¢5,¢4) i :\r/ll’lzs:nrge:tation for
M(a) = M(b) = M(c) = M(s) = &, &7 =P
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research

Deudmg Equality +

= Building the interpretation for function symbols
o M(g) is a mapping from |[M| to |M|
e Defined as:
M(g)(e;) = ¢, if there iS V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)

e Is M(g) well-defined?

Microso ft-

Research

Decndmg Equality +

= Building the interpretation for function symbols
e M(g) is a mapping from |M| to |M|
o Defined as:
M(g)(e;) = ¢, if there is V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)
e |s M(g) well-defined?
e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# ¢, =M(w)
So, is M(g)(®,) = &, or M(g)(¢,) = ¢,?

Microso ft-

Research

Decndlng Equallty -

= Building the interpretation for function symbols

o M(g) is a mapping from |M| to |**
= Defined as: This is impossible because of
M(g)(e;) = ¢, if there iS vV = g the congruence rule!
I\/I(a) = ¢ |a and b are in the same “ball”,
M(Vv) = _ then so are vand w

= ¢,, otherwise (0k|
e Is M(g) well-defined? W

e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# ¢, =M(w)
So,is M(g)(®,)= ¢, orM(g)(e,) = ¢.?

Microsoft

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
vl_g(d) v, =gle), v;="f(a, v;), v, =f(b, v,)

Model construction:
IM| ={¢,,¢,,¢;,¢,}
M(a) = M(b) = M(c) = M(s) =
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v;) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Model construction:

M[=14,,¢,,¢;,¢
IM[={®,,¢,,45,¢,} M(g)(#;) = ¢, if thereisv=g(a)s.t.

M(a) = M(b) = M(c) = M(s) = ¢, J M(a) = ¢
M(d) = M(e) = M(t) = #, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v;=1(a, vy), v, =1(b, v,)

Model construction:

M[=14,,¢,,¢;,¢
IM[={®,,¢,,45,¢,} M(g)(#;) = ¢, if thereisv=g(a)s.t.

M(a) = M(b) = M(c) = M(s) = ¢, J M(a) = ¢
M(d) = M(e) = M(t) = #, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}
M(f)={(®,,¢;)> ¢, else >e}

Microso ft-

Research

Deciding Equality +

What about predicates?

p(a, b), —plc, b)

Microso ft-

Research

Deciding Equality +

What about predicates?

p(a, b), —plc, b)

U

fa,b)=T, f(c,b)=T

Microso ft-

Research

Ackermannization

It is possible to eliminate function symbols using a
method called Ackermannization.

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, = g(e), v;=1(a, vy), v, =f(b, v,)

Y

a=b,b=c,d=e,b=s,d=t,azv, v,ZVv;
dzevyv,=v,,
azV,Vvb#v,Vvv;=v,

Microso ft-

Research

Ackermannization

It is possible to eliminate function symbols using a
method called Ackermannization.

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, = g(e), v;=1(a, vy), v, =f(b, v,)

Y

a=b,b=c,d=e,b=s,d=t,azv, v,ZVv;
dzevyv,=v,,
azV,vb#v,vv;=v,

7

c . : Microso ft
Main Problem: quadratic blowup Research

Deciding Equality +

It is possible to implement our procedure in
O(n log n)

Microso ft-

Research

Deudmg Equallty =

Sets (equivalence classes)

a%x S Membership

Microsoft

Research

Deudmg Equality +

C
4 N
Sets (equivale Key observation:
The sets are disjoint!

. /
a# S Membership

Microso ft-

Research

Union-Find data-structure

Every set (equivalence class) has a root element

(representative).

root

S

b/ r

/N
d N We say: find[c] is b

Microsoft

Research

Deciding Equality +

Union-Find data-structure

R
AN VAN

b
a/ \C I

a/ bY\C

Microso ft-

Research

Deciding Equality +

Tracking the equivalence classes size is important!

dq > dy > d3 —> ... > A1 \J d, =
alH az — a3 — ... T an_l — an

Microsoft

Research

Deadmg Equality +

Tracking the equivalence classes size is important!

C
a2 U an = a2 < a
9 a dn-1 a a
3 : 1 dj n-1

Microsoft

Research

Deudmg Equality +

Tracking the equivalence classes size is important!

N

J

>
We can do n merges in
g~ -3 YU a = a7 as a3 O(n log n)
_
d,
d a a..
Each constant has two fields: find and size. Microsoft

Research

Deudmg Equality +

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iff v=1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

a/b\C) S\

occurrences[b] ={v, =g(b), v, =f(a) }
occurrences[s] = {v; =f(r) }

r

Microsoft

Research

Deciding Equality +

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iff v=1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

b S Inefficient version:
/ r\ J \ for each v in occurrences(b)
] : r for each w in occurrences(s)
if vand w are congruent

occurrences(b) = { v, =g(b), v, =f(a) } add (v,w) to todo queue

occurrences(s) = { v, =f(r) }

A queue of pairs that need to
be merged.

arch

Deadmg Equality +

occurrences[b] ={v, =g(b), v, =f(a) }
occurrences|s] = { vy =f(r) }

We also need to merge occurrences[b] with occurrences|s].
This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

/> Vi~
N\ V3
Microsoft

Research

Avoiding the nested loop:
for each v in occurrences|b]
for each w in occurrences|s]

Use a hash table to store the elements v, =f(a,, ..., a,).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence

class) roots of the arguments.

hash(v,) = hash-tuple(id(f), id(root(a,)), ..., id(root(a,)))

Microsoft

Research

Avoiding the nested loop:
for each v in occurrences(b)
for each w in occurrences(s)

Use a hash table to hash-tuple can be the Jenkin’s - an)_
hash function for strings.
mber).

Each constant has ¢) .
Just adding the ids produces a ,
Compute hash code very bad hash-code! equivalence

class) roots of the a

hash(v,) = hash-tuple(id(f), id(root(a,)), ..., id(root(a,)))

Microsoft

Research

Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a, and a,
Assume a, is smaller than a,

Before merging the equivalence classes: a, and a,

for each v in occurrences|a,]
remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a; and a,
for each v in occurrences|a,]
if there is w congruent to v in the hash-table
add (v,w) to todo queue
else add v to hash-table

Microsoft

Research

Efficient implementation of the congrt

Merging the equivalences classes with aa,
Assume a, is smaller than a,

Trick:
Use dynamic arrays to
represent the occurrences

Before merging the equivalence classes: a, and a,

for each v in occurrences|a,]

remove v from the hash table (its hashcode will change)

After merging the equivalence classes:

for each v in occurrences|a,]

a, and a,

if there is w congruent to v in the hash-table

add (v,w) to todo queue
else add v to hash-table
add v to occurrences(a,)

Microsoft

Research

Deudmg Equality +

The efficient version is not optimal (in theory).
Problem: we may have v=f(a,, ..., a,) with “huge” n.

Solution: currying
Use only binary functions, and represent f(a,, a,,a5,3,) as

f(ay, h(a,, h(as, a,)))

This is not necessary in practice, since the n above is small.

Microsoft

Research

Deadmg Equality +

Each constant has now three fields:
find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Microsoft

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Microso ft-

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)

Microso ft-

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)

Too Inefficient!
(exponential blowup)

Microsoft

Research

SMT : Basic Architecture

A

Case Analysis

o Equality + UF
e Arithmetic
® Bit-vectors

e L L

Microso ft-

Research

DPLL
M | F
[Partial nﬁ [&f clauses J

Microso ft-

Research

DPLL

Guessing

pl pva —qvr

@

p,—q|lpvag —qvr

Microso ft-

Research

DPLL

Deducing
plpva —pvs

@

p,s|lpvag —pvs

Microso ft-

Research

DPLL

Backtracking
P, =S, (| pv(q,Ssvqg,—pPVv —(q

@

p,slpvaqg,sva, —pv—q

Microso ft-

Research

Modern DPLL

o Efficient indexing (two-watch literal)
e Non-chronological backtracking (backjumping)
e Lemma learning

Microso ft-

Research

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),
ps=(y>2),p,=(y<1)

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

E? ps=(y>2), py=(y<1)

SAT
Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x=0), p,=(y=x+1),

Y? ps=(y>2), py=(y<1)

Assignment
SAT
[J j‘> p]_l p21 _'p3l p4

Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

p]_l p21 (p3\/ p4) plz(XZO), pZE(y=X+ 1)1

t? ps=(y>2), p,=(y<1)
U

Assignment
SAT x>0,y=x+1,
[Solver J j‘> P P Pa P j‘> —(y>2),y<1

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

Y? ps=(y>2), p,=(y<1)
T AT 2y
Solver vore Ty —(y>2),y<1

v

Unsatisfiable <,i Theory
x>0,y=x+1,y<1 Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ ps=(y>2),p,=(y<1)
SAT j>§ss'§m:ep”tp N X>0,y=x+1,
Solver vore Ty —(y>2),y<1

New Lemma <:j Unsatisfiable <’t Theory
=P VP V=P, Y X20,y=x+1,y<1 Solver

SAT + Theory solvers

New Lemma <:] Unsatisfiable <,i Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict

SAT + Theory solvers: Main loop

procedure SmtSolver(F)

(F,, M) := Abstract(F)

loop
(R, A) := SAT_solver(F)
if R = UNSAT then return UNSAT
S := Concretize(A, M)
(R, S’) := Theory_solver(S)
if R = SAT then return SAT
L := New_Lemma(S’, M)
Add Lto F,

SAT + Theory solvers

FoiPy Py (P3V Py)

Basic Idea

F-x>0,y=x+1,(y>2vy<l1l)
@ Abstract (aka “naming” atoms)

M:p,;=(x20), p,=(y=x+1),

ps=(y>2), p,=(y<1)

SAT
Solver

A: Assighment
p]_l p21 _'p3r p4

L: New Lemma

—|p1V—|p2V—|p4

-

S’: Unsatisfiable <,i
x=>0,y=x+1,y<1

v

S:x=0,y=x+1,
—(y>2),y<1

v

|

Theory
Solver

SAT + Theory solvers

@ Abstract (aka “naming” atoms)

Foi Py P (P3V Py M:p;=(x2>0), p,=(y=x+1),
P3=(y>2), p,=(y<1)

ST o R ment 5o e
Solver v e e —(y>2),y<1

L: New Lemma S’: Unsatisfiable <: Theory
—P, VP, VP, x>0,y=x+1y<1 Solver

procedure SMT_Solver(F)
(F,, M) := Abstract(F)
loop
(R, A) := SAT_solver(F)

if R = UNSAT then return UNSAT
S = Concretize(A, M) “Lazy translation”
(R, S’) := Theory_solver(S) to

if R = SAT then return SAT __ DNF
L := New_Lemma(s, M)
Add Lto F,

SAT + Theory solvers

State-of-the-art SMT solvers implement
many improvements.

SAT + Theory solvers

Incrementality
Send the literals to the Theory solver as they are
assigned by the SAT solver

plE(XZO), sz(y=X+ 1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, Py Pa | Py Py (P3V P, (P Vv —p,)

AN

Partial assignment is already
Theory inconsistent.

SAT + Theory solvers

Efficient Backtracking
We don’t want to restart from scratch after each
backtracking operation.

SAT + Theory solvers

Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1E(XZO)r sz(y=X+ 1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, Po P3Py | P Po (P53 V P4, (P VvV —Py)

J—

—P1VTP,; VTIP3 VTP, Imprecise Lemma

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0),p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, P> | Py P (P53 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, P4 Py Py (P3V P, (P Vv —p,)

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0),p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, P> | Py P (P53 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, P4 Py Py (P3V P, (P Vv —p,)

Tradeoff between precision x performance.

An Architecture: the core

Core

Arithmetic Bit-Vectors Scalar Values

\W

Equality
Uninterpreted
Functions

0

SAT Solver

An Architecture: the core

Core

Arithmetic Bit-Vectors Scalar Values

\W

Equality
Uninterpreted
Functions

$ Case Analysis

SAT Solver

An Architecture: the core

Core
Arithmetic Bit-Vectors Scalar Values
Equality

Uninterpreted

Functions
$ Blackboard:
equalities,

disequalities,
predicates

SAT Solver

Problem: our procedure for Equality + UF does not support:
Incrementality
Efficient Backtracking
Theory Propagation
Lemma Learning

Microsoft

Research

Deadmg Equality +

Incrementality (main problem):

We were processing the disequalities after we processed all
equalities.

P, —Ps P, | Py PV =Py P,V P,

U

a=b,a#c,b=c,

Microsoft

Research

Deadmg Equality +

Incrementality (main problem):

We were processing the disequalities after we processed all
equalities.

P, —Ps P, | Py PV =Py P,V P,

U

a=b,a#c,b=c,

Microsoft

Research

Deadmg Equality +

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

a=b,a#c

b C

/

d

disegs[b]={a#c}
disegs[c]={a#c}

Microsoft

Research

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence
classes, we must merge the sets

/ b C disegs. (circular lists again!)
a

disegs[b]={a#c}
disegs[c]={a#c}

a=b,a#c

Microsoft

Research

Decndlng Equallty =

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence
classes, we must merge the sets
C disegs. (circular lists again!)

,d#*C

/

disegs(b) ={a #c}
disegs(c) ={a #c } Before merging two equivalence
classes, traverse one (the smallest) set

of disegs. (track the size of diseqgs!)

Deudmg Equality +

Backtracking
Option 1: functional data-structures (too slow).
Option 2: trail stack (aka undo stack, fine grain backtracking)
Associate an undo operation to each update operation.
“Log” all update operations in a stack.
During backtracking execute the associated undo operations.

Microsoft

Research

Deudmg Equality +

Backtracking
We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Microsoft

Research

Deudmg Equality +

Backtracking
We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

Before: After:

/ S \ next element
b r T\
VaS 7

Fields: find, size Fields: root, next, size Research

Deciding Equallty =

_ New design possibility:
Backtracking :
We do not need to merge occurrences and disegs.
We can do b \ye can access all occurrences and disegs by

Minimiz traversing the next fields.

Do not t
Let us change the unithure a little bit.
Before: After:

b/s\ next element
A // T\

Fields: find, size Fields: root, next, size Research

Microsoft

Deciding Equality +

Microso ft-

Research

Deciding Equality +

What was updated?

root[s], root[r],
next[b], next[s],
size[b]

Microso ft-

Research

We only need to store
s in the undo stack!

What was updated?
root[c], root][r],
next[b], next[s],
size[b]

Microsoft

Research

What about the congruence table?
hash table used to implement the congruence rule.

Let us use an additional field cg.
It is only relevant for subterms: v; =f(a, v,)
Invariant: a constant (e.g., v5) is in the table iff cg[v;] = v,

Otherwise, cg[v,] contains the subterm congruent to v,

Example:
vy=f(a, v,y), v, =1(b, v,)
Assume v, and v, are congruent (i.e., a = b and vl = v2)

Moreover, v, is in the congruence table. Vicrosoft
Then: cg[v,] = v;and cg[v;] = v, Research

Deciding Equality +

procedure Merge(a, b)
a, := root[a]; b, := root[b]
if a, = b, then return
if not CheckDisegs(a,, b,) then return
if size[a] < size[b] then swap a, b; swap a, b,
AddToTrailStack(MERGE, b,)
RemoveParentsFromHashTable(b,)

c:=b,
do
root[c] := a,
c := next|[c]
whilec #z b,

ReinsertParentsToHashTable(b,)
swap next[a], next[b,]
Microsoft:

size[a,] := size[a,] + size[b,] Research

Deudmg Equallty =

procedure UndoMerge(b,)
a, := root[b,]
size[a,] := size[a,] —size[b,]
swap next[a], next[b,]
RemoveParentsFromHashTable(b,)

c:=b,
do
root[c] := b,
c := next|[c]
whilec #z b,

for each parent p of b,
if p = cg[p] or not congruent(p, cglp])
add p to hash table

cglp]l :=p

Microsoft

Research

procedure UndoMerge(b,)
a, :=root[b]
size[a,] := size[a,] —size[b,]

swap next[a], next[b,]

= o = HashT:

p was in the hash table

before and after the merge

while
for each’}. /ent p of b,

p was in the hash table
before but not after the
merge.

if p = cg[p] or not congruent(p, cglp])

add p to hash table
cglpl :=p

Microsoft

Research

Propagating equalities (and disequalities)
Store the atom occurrences of a constant.

p,=a=b,p,=b=c,
p35d=e, p,=a==c
atom_occs[al ={ py, p, }
atom_occs[b] ={p,, p, }
atom_occs(c] ={ p,, p, }
atom_occs[d] ={p5 }
atom_occs[e] ={ p, }

4

When merging or
adding new
disequalities traverse
these sets.

Microsoft

Research

Deadmg Equallty =

Propagating disequalities (hard case)
v, =f(a, b), v, =f(c, d)
Assume we know that
Vi #V,
a=c
Then, b#d

More about that later.

Microsoft

Research

Deadmg Equality +

Efficient Lemma Generation (computing a small S’)

In EUF (equality + UF) a minimal unsatisfiable set is composed on:
n equalities
1 disequality

It is easy to find the disequality a # b.

So, our problem consists in finding the minimal set of equalities
that implies a = b.

Microsoft

Research

Efficient Lemma Generation (computing a small S’)
First idea:

If a = b isimplied by a set of equalities, then a and b are in the
same equivalence class.

Store all equalities used to “create” the equivalence class.

Too imprecise for

p,=(a=c),p,=(b=c), xS justifying a =b.

ps=(s=r),p,=(c=r) // T\V We need only p,, p,.
«<-b<-Cc<-r

plr p2; p31 p4; | Q <-- V

The equivalence class was “created”
using Py, Py, P3, Py

Microsoft

Research

Deadmg Equallty =

Efficient Lemma Generation (computing a small S’)

Second idea: Store a “proof tree”.
Each constant c has a non-redundant “proof” for ¢ = root|c].

The proof is a path from c to root|c]

p.=(a=c),p,=(b=c),
ps=(s=r), p,=(c=r)

4 \\pz T
b .
> N -
\\\ > S
\ —
/
a < C- I

A

P
Microsoft

Research

Py

Deudmg Equallty =

procedure Merge(a, b, p))
a, := root[a]; b, := root[b]
if a, = b, then return
if not CheckDisegs(a,, b,) then return
if size[a] < size[b] then swap a, b; swap a, b,
InvertPathFrom(b, b,); AddProofEdge(b, a, p;)
AddToTrailStack(MERGE, b, , b)

Microsoft

Research

Deadmg Equality +

Common ancestor in
the proof tree.

Non redundant proof fora=b
P1) -r Py Ags --r Apr

Microsoft

Research

P4

Microsoft

Research

Deadmg Equality +

What about congruence?
New form of justification for an edge in the “proof tree”.

v, = f(b), v, =f(c)

e . C8
\
> V \ ¥
2 . 35)
/ ’l > C ~.
1 \\
1 \
)/ v
d < Vi b /
/4 _____ ’/
Py

Microsoft

Research

Deadmg Equallty =

What about congruence?
New form of justification for an edge in the “proof tree”.

v, = f(b), v, =f(c)

o C8
\
> V \ ¥
2 . 35)
/ " 7 C
'\\
\
________ V: Y
ad -« Vi b)
/4 _____ ’/
Py

When computing the “proof” fora = v,
Recursive call for computing the proof for v, = v,

Result: {py, Pa) ‘Research

Deadmg Equality +

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

f (al) = al— az-lf (ac)
f,(a,) =2a2q—2 a35-2f (as)
f (al) = a3— aﬁf (ac)

qQ s
4(31) =a,=as = f,(a;)

Microsoft

Research

Deadmg Equality +

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

fi(a,) = al— az-lf (a) Two non redundant proofs f,(a,) = f,(ac):
f,(a,) =2a2q—2 a35-2 f,(as) {p,, O, S,} using transitivity

f (al) = a3 = aﬁf (as) {a, a,, 9s, Q) Using congruence a, = ac
f,(a,) = a4q—4 ass-‘" s(ag) Similar for f,, f;, f,.

Microsoft

Research

Deudmg Equality +

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

fi(a,) = al— az-lf (a) Two non redundant proofs f,(a,) = f,(ac):
f,(a,) =2a2q—2 a35-2 f,(as) {p,, O, S,} using transitivity

f (al) = a3 = aﬁf (as) {a, a,, 9s, Q) Using congruence a, = ac
f,(a,) = a4q—4 ass-‘" s(ag) Similar for f,, f;, f,.

So there are 16 proofs for

g(fi(a,), f2(a,), f5(ay), f4(a,)) = 8(f1(as), fy(as), f3(as), f4(as))
The only non redundant is {q,, 9,, a5, a,}

Microsoft

Research

Deadmg Equallty =

Some benchmarks are very hard for our procedure.

P,V a; =Cy —PvVa; =¢, PV by=cy —pyv by =cy,
P,V a, =Cy —pP,V a,=Cy, P,V b,=cy —p,vDb,=cy,
.

P,V a,=Cy—P,va,=¢;, Pp,Vvb,=cy,—p,VvDb, =cy
f(a,, ..., f(a,, a,)...) 2 f(b,,, ..., f(b,, by)...)

Microsoft

Research

Some benchmarks are very hard for our procedure.

p,Vva,=c, —p,va,=c, pyvb, =c,—=p,vb;=cy
P,V a, =Cy —p,vVa,=c, p,vb,=c, —p,vhb,=c,
.

p,va,=c,—p,va,=¢c, p,vb, 6 =c,—p,Vvb,=c,
f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Microsoft

Research

Deudmg Equality +

Some benchmarks are very hard for our procedure.

P,V a,=c, —pva;=c, pyvb, =c, —=p,vb;=cy,
P,V a, =Cy —p,Vv a,=c, p,vb,=cy,—p,vhb,=c,
.

p,va,=c,—p,va,=¢, p,vb, =c,—p,vb, =c,,
f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Solution: congruence rule suggests which new atoms must
be created.

Microsoft

Research

Deudmg Equality +

Some benchmarks are very hard for our procedure.

P,V a,=c, —pva;=c, pyvb, =c, —=p,vb;=cy,

P,V a, =Cy —p,Vv a,=c, p,vb,=cy,—p,vhb,=c,
p,va,=c,—p,va,=¢, p,vb, =c,—p,vb, =c,,

f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Solution: congruence rule suggests which new atoms must
be created.

Whenever, the congruence rules

a, = b;, a; = b, implies f(a;, a;) = f(b, b;)

is used to (|mmed|ately) deduce a conflict. Add the clause:

Microsoft

a;#b,va #b vf(a,a)=f(b,b) Research

Deudmg Equality +

Solution: congruence rule suggests which new atoms must
be created.

Whenever, the congruence rules

3, = b;, a; = b, implies f(a;, a;) = f(b,, b;)

is used to (immediately) deduce a conflict. Add the clause:
a,#b;va #b vi(a, a)=f(b, b)

“Dynamic Ackermannization”

It allows the solver to perform the missing disequality
propagation.

Microsoft

Research

Equality
Uninterpreted
Functions

v

SAT Solver

We can solve the QF _UF SMT-Lib benchmarks!

Linear Arithmetic

@ Many approaches
e Graph-based for difference logic: a—b <3
e Fourier-Motzkin elimination:
t1 <azxr, br <ty = bt; < aty
e Standard Simplex
e General Form Simplex

Microsoft

Research

Difference Logic: a—b<5

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.

Microsoft

Research

Job shop scheduling

d; ; | Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3
mar = 8
Solution

t1,1 = 5, tLQ = 7, fgjl = 2,
to2 =0, t31 =0, t32 =3

Encoding

(t11 2 0)A(lie>2tia+2) A (i +1 <8 A
(tz,l > U) A (52?2 > t2.1 + 3) A (52?2 + 1< 8) A\
(tg,l > U) A (53?2 > 131 + 2) A (53?2 + 3 < 8) A
(11 > to1+3)V(ta1 >t11+2)) A

(trn >ts1+2)V(ts1 >t11+2))

((t2g >tz 1 +2)V (31 >t21+3)) A
(tr12=>taa+ 1)V (taoa >tia+1)) A

(12 >ts2+3)V(tse>tia+1)) A

((tao >1t324+3)V (tza2 >taa+1))

Microsoft

Research

Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

11,1
S
f N0
z — ti1n <0 -2 N
z — ta1 <O | 0 4
z — t31 < 0 21— 2
tgjg — Z < 5 T !
tz1 — 132 < —2 -3 0 ;
t2n — t3n1 < —3 9 ! /
11 — 121 < —2 1"53.,2— — —""t3,1 /
, , - 5

Microsoft

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c +d-e =-1
a,b,c,d e=>0

Microsoft

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d -1
c+d-e =1
a,b,c,d,e>0
ra\
(100-12)|b| [3
010-10|/ c|=|1
\001 1-} d \.1)
e
A$ — b and 7 E () Microsoft’

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 < We say a,b,c are the
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,d e=>0
ra\
(100-12)b| (3]
010-10||c|=|1
Q) 011 -3 d \-1)
e

A:B _ b and T :_> 0 Microsoft:

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 _— Wesayab,carethe
b-d =1 basic (or dependent)
c +d-e =-1 variables

a,b,c,d e=>0 \
ra\
- ~ = We say d,e are the

100-12|| b non-basic (or non-
010-10||cl|=]1 dependent) variables.
Q) 011 -5 d \-1)
e
A:B — b and T :_> 0 Microsoft:

Research

Standard Simplex

e Incrementality: add/remove equations
@ Slow backtracking

e No theory propagation

Microso ft-

Research

Fast Linear Arithmetic

e Simplex General Form

@ Algorithm based on the dual simplex
© Non redundant proofs

e Efficient backtracking

e Efficient theory propagation

@ Support for string inequalities: t > 0
@ Preprocessing step

e Integer problems:
Gomory cuts, Branch & Bound, GCD test

Microso ft-

Research

General Form

General Form: Ax =0 and [; < x; < u;

Example:

r>0,(r4+y<2Vae+2y>6).(r+y=2Var+2y>4)
s
S1 =T+ Y, 8 =+ 2y,
r>0,(8 <2Vsy>6), (s =2V sy >4)
Only bounds (e.g., s1 < 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.

From Definitions to a Tableau

S;=X+Y, S,=X+2y

OOOOOOOO

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

OOOOOOOO

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-Xx-y =0
S, -X-2y=0

Microso ft-

Research

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-x-y =0 s, s, are basic (dependent)
s,-X-2y=0 Xy are non-basic

Microso ft-

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

s, +x+y =0

S,-X-2y=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0
S,-X-2y=0

s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

S;-x-y =0 It is just substituting

52"@\':0 \ equals by equals.
s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research

Definition:

PIVOtIng An assighment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s, and y
s;-X-y =0
S,-X-2y=0

It is just substituting
equals by equals.

s, +x+y =0

3 Key Property:
2 2y ° i If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

-sl+x+y =0
S,-25;+x=0

Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

S17%-y =0 It is just substituting
ch ﬁy =0 equals by equals.
Example:
M(X):l \7'5 +X+y =0 K 5
M(y) =1 S, - X - 2y 0 ey Property:
Mg)) =2 ’ < If an assignment satisfies the
|v|(51) =3 -0 equations before a pivoting
: _Sl rXtY = step, then it will also satisfy

5,725, +x=0 them after!

Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.
Equations + Bounds can be used to derive new bounds.
Example: v =y — 2z, y <2, 2 >3 ~x < —1.

The new bound may be inconsistent with the already known

bounds.

Example: + < —1, = > 0.

“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent

variables.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 :> M(a) =1
M(b) =0 M(b) = 1
M(c) =0 M(c) = 1
M(d) =0 M(d)=0
l<c 1<c

Microsoft

Research

“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables. Of course, we may introduce new “problems”.

a=c—d
b=c+d
M(a)=0
M(b)=0
M(c)=0
M(d) =0
1<c

a<o0

—

a=c—d
b=c+d
M(a) =1
M(b) =1
M(c) =1
M(d) =0
1<c

as<o

Microsoft

Research

“Repairing Models”

If the assignment of a basic variable does not satisfy a

bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a=c—d
b-c+d
M(a) =
M(b) =
Mk%-
M(d) =
1<a

c=a+d
b-a+2d
M(a) =
Mo -0 B
M(c)=0
M(d) =

1<a

c=a+d
b=a+2d
M(a) =
M(b) =
M(c) =
M(d) =
1<a

Microsoft

Research

“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to

pivot.
The value of M(a) is too big. We can
T=b—c reduce it by:

4<0 1<b c<0 - reducing M(b)

’ ’ not possible b is at lower bound
M(a) =1 - increasing M(c)
M(b) =1 not possible cis at upper bound
M(c)=0

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent

e e . Microsoft:
{a<0, 1<a+d, c+d<0, 0<c}isinconsistent Research

Strict Inequalities

The method described only handles non-strict inequalities (e.g.,
r < 2).

For integer problems, strict inequalities can be converted into

non-strict inequalities. © < 1 ~» o < 0.

For rational/real problems, strict inequalities can be converted into

non-strict inequalities usingasmall 0. © < 1 ~» 2 <1 — 0.
We do not compute a 0, we treat it symbolically.

0 is an infinitesimal parameter: (¢, k) = ¢ 4+ kd

» Initial state

s>1.x>0
(y<1ve>22),(v<-2Vev>20),v<—-2Vu<—1)

Model Equations Bounds
M(z) = 0 s = r+y
M(y) = 0 u = xr+2y
M(s) = 0 vo= Ty
M(u) = 0
M(v) = 0

» Assertings > 1

s>1,2 >0

(y<1vev>2)(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = T+
M(y) = 0 u = r+2y
M(s) = 0 vo= -y
M(u) = 0
M(v) = 0

» Asserting s =~ 1 assignment does not satisfy new bound.

s>1.x>0

(y<1lve>22),(v<-=2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 0 s = x4y s > 1
M(y) = 0 u = r+2y
M(s) = 0 vo= r—=y
M(u) = 0
M(v) = 0

» Asserting s > 1 pivot s and 7 (s is a dependent variable).

s>1,2>0

(y<1vev>2)(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = r+vy s > 1
M(y) = 0 u = r+2y
M(s) = 0 vo= r—y
M(u) = 0
M(v) = 0

» Asserting s > 1 pivot s and x (s is a dependent variable).

s>1.x2>0

(y<1vev>2),(v<-2Vv>0),(v <-2Vu<-1)

Model Equations Bounds
M(z) = 0 ro= s—1 s > 1
M(y) = 0 u = x+2y
M(s) = 0 vo= Tr—y
M(u) = 0
M(v) = 0

» Asserting s = 1 pivot s and x (s is a dependent variable).

s>1.x>0

(y<1ve>22),(v<-2Vev2>20),v<-2Vu<—1)

Model Equations Bounds
M(zx) = 0 r o= s—y s > 1
M(y) = 0 u = sty
M(s) = 0 v o= §—2uy
M(u) = 0
M(v) = 0

» Asserting s > 1 update assignment.

s>1.x2 >0

(y<1vev>2)(v<-2Vov>0),(v<-2Vu<—1)

Model Equations Bounds
M(x) = ro= s—y s > 1
M(y) = u = s+uy

vo= s—2y

p—
—~
—_—
W]
o S el e po—
|
o o = o o

» Asserting s > 1 update dependent variables assignment.

s>1,2 >0

(y<1vev>2)(v<-2Vv>0),(v<-2Vu<-—1)

Model Equations Bounds
M(xz) = r = s—y s > 1
M(y) = u = s+vy

vo= s—2y

p—
~
—_
o
T e T T
|
—_ = = D =

» Assertingx > 0

s>1, >0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<—1)

Model Equations Bounds
M(z) = 1 r o= s—y s > 1
M(y) = 0 u = sty
M(s) = 1 vo= s—2y
M(u) = 1
M(v) = 1

» Asserting » > 0 assignment satisfies new bound.

s>1.x>0

(y<1lve>22),(v<-2Ve>20),v<—-2Vu<—1)

Model Equations Bounds
M(z) = 1 r = §—y s > 1
M(y) = 0 U = s+ r > 0
M(s) = 1 vo= Ss—2y
M(u) = 1
Mv) = 1

» Case split -y < 1

s>1l,x >0

(y<1lve>22),(v<-=2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 1 r = Ss—y s > 1
M(y) = 0 u = s+uy r > 0
M(s) = 1 vo= s5— 2y
M(u) = 1
M(v) = 1

» Case split =y < 1 assignment does not satisfies new bound.

s>1l,2 >0

(y<1lvev>2)(v<-2Vev>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = 1 r = s—1 s = 1
M(y) = 0 U = s+vy r = 0

1

()
(Y)
M(s) = 1 vo= §— 2 T
(u)
(v)

» Case split =y < 1 update assignment.

s>1, x>0

Model Equations Bounds
M(z) = 1 r = s—1 s > 1
M(y) = 140 u = s+ r > 0
M(s) = 1 v o= s—2y y > 1

» Case split =y < 1 update dependent variables assignment.

s>1,r>0

(y<1lvev>2)(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(xz) = —0 r o= s—y s > 1
M(y) = 1+9 u = s+uy r > 0
M(s) = 1 vo= s—2y y > 1
M(u) = 2490
M(v) = —1—-2¢

» Bound violation

s>1,r>0

(y<1lvev>2),(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = —0 r = s—1 s = 1
M(y) = 1+ U = s+ r > 0
M(s) = 1 vo= Ss—2y y > 1
M(u) = 249

M) = —1-25

» Bound violation pivot and s (x is a dependent variables).

s>1.2>0

(y<1vev>2),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = —0 ro= s5—1 s = 1
M(y) = 149 u = s+uy r > 0
M(s) = | vo= s—2y y > 1
M(u) = 2409

M) = —1-25

» Bound violation pivot > and s (x is a dependent variables).

s>1,2>0

(y<1lve>22),v<-2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(x) = —0 s = r+uy s = 1
M(y) = 1496 U = s+vy r > 0
M(s) = 1 vo= §— 2y y > 1
M(u) = 249
[(v)

M) = —1-26

» Bound violation pivot and s (7 is a dependent variables).

s>1,2>0

(y<1lve>22),(v<-2Vev2>20),v<-2Vu<-—1)

Model Equations Bounds
M(x) = —0 s = x4y s = 1
M(y) = 140 u o= r+2 r > 0
M(s) = 1 vo= r—y y > 1
M(u) = 2496
M(v) = —1—-2¢

» Bound violation update assignment.

s>1,2>0

(y<1lve>22),v<-2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 0 s = x4y s = 1
M(y) = 1496 U = r+2y r > 0
M(s) = 1 Vo= r—y y > 1
M(u) = 249
[(v)

Mv) = —1—-20

» Bound violation update dependent variables assignment.

s>1.x >0

(y<1lvev>=22),v<-=2Vev2>20),v<-2Vu<—1)

Model Equations Bounds
M(x) = 0 s = r+y s = 1
M(y) = 1409 U = r+2 r > 0
M(s) = 140 vo= xr—y y > 1
M(u) = 2420

M) = —1-34

» Theory propagation x > 0.1

(y<1lvev>2)(v<-2Vv2>0),(v<-2Vu<-1)

M(x)
M(y)
M(s)
M (u)
M(v)

Model

I+4+0

L4+0
2420
—1-9

U

Equations

Ty
xr—+ 2y

r—y

Bounds

s = 1

r = 0

Y

1

\/

» Theory propagation u > 2 ~» —u < —1

s>1.x >0

(y<1lvev>22),v<-=2Vev2>20),v<—-2Vu<—1)

Model Equations Bounds
M(x) = 0 s = x4y s > 1
M(y) = 1409 uw = r+2y r > 0
M(s) = 140 vo= x—Y y > 1
M(u) = 2420 w > 2

M) = —1-356

» Boolean propagation =y < 1 ~~» v >

s>1l.x>0

(y<1vv>2),(v<-2Vv>0),(v<-2Vu<-—1)

Equations
M (z)
r—+ 2y

Bounds

>

Y

r—y
M (u) 2+ 92)

—1-3

VooV

~2 f— (] f—t

» Theory propagation v > 2 ~» v < —2

(y <1V >2), (v

M(x)
M(y)
M(s)
M (u)
M(v)

Model

= 1+
= 1496
= 2420
= —1-4

(&

Equations
= x+2y

Bounds

s >

~
[V

VoV

o = o

» Conflict empty clause

(y<1vwev>2),(v

Model
M(z) = 0
M(y) = 14090
M(s) = 1490
M(u) = 242

M) = —1-3

(&

Equations
= x+2y

Bounds

~
VooV IV
R N e

» Backtracking

s> 1,2 >0

(y<1vev>2),(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = 0 s = x+y s > 1
M(y) = 1409 u = x+2 r > 0
M(s) = 140 vo= xr—1y
M(u) = 2420

M) = —1-34

» Assertingy < 1

s>1.x >0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = x4y s > 1
M(y) = 149 uw = r+2 r > 0
M(s) = 1490 vo= x—1Y
M(u) = 2429

M) = —1-356

» Asserting y < | assignment does not satisfy new bound.

s>1.x >0

(yi1\/2.?22),(U£—2\/1120):(U§_QVulﬁ_1)

Model Equations Bounds
M(x) = 0 s = x4y s > 1
My) = 1+0o u = r+2y r = 0
M(s) = 140 vo= x—Y y < 1

» Asserting y < 1 update assignment.

s>1l,2>20

(y<1vev>2),(v<—-2Vev>0),(v<-2Vu<-1)

Model Equations Bounds
M(xz) = 0 s = x+vy s > 1
My) = 1 u o= r+2y r > 0
M(s) = 1+0 vo= r—y y < 1

» Asserting y < | update dependent variables assignment.

s>1l.x>0

(yi1\/‘1?2Z)ﬂ(?JJ{_:—Q\/?JJEO)‘I(UE_Zvug_1)

Model Equations Bounds
M(zx) = 0 s = x4y s > 1
M(y) = 1 u = xr+2y r > 0
M(s) = 1 Vo= r—y y < 1
M(u) = 2

{

> —1

» Theory propagation s > 1,y <1~ v

Y

s>1.x>0

(yﬂ1\/1"32)*(1’5:_2\/1’20)*(U£—2Vu§—1)

Model Equations Bounds
M(z) = 0 r = s—y s > 1
M(y) = 1 u = s+uy r > 0
M(s) = 1 vo= §— 2y y < 1
M(u) = 2

M(v) = -1

» Theory propagation v > —1 ~» —v < —2

s>1, x>0

(y{_—: 1‘\/’022),@‘ i —2\.,/1120)’(-3_7& oIV U< _1)

Model Equations Bounds
M(x) = 0 r = s—y s > 1
M(y) = 1 u = s+uy xr = 0
M(s) = 1 v o= §—2uy y < 1
M(u) = 2 vo> —1

M(v) = -1

» Boolean propagation —v < —2~sv >0

s>1, x>0

(y{_i 1\/1}22},({1 < —QV’L-‘EU):('.{‘E —QVH-E _1}

Model Equations Bounds
M(z) = 0 r o= s—y s > 1
M(y) = 1 u = s+ r > 0
M(s) = 1 vo= s—2y y < 1
M(u) = 2 vo> —1

M(v) = -1

» Bound violation assignment does not satisfy new bound.

o = = D

s>1,2>0

(y <1Vwv> 2), (P < —2Vuv > [])ﬂ (-E_f < —2Vu< _1)

(&

Equations

= s5—v
= 54y
= §— 2y

Bounds

S

£X

[V

[V

1
0

Y

A

Y

1
()

» Bound violation pivot © and s (u is a dependent variable).

s>1.x>0

(y<1vev>2),(v<-2Vev>0),(v<-2Vu<-—1)

Model Equations Bounds
M(z) = 0 r o= s—y s > 1
M(y) = 1 u = s+uy r > 0
M(s) = 1 vo= §—2y y < 1
M(u) = 2 > ()

» Bound violation pivot 1 and s (1 is a dependent variable).

s>1,2>0

(y<1vVo>2),(v<—2Vo>0)(v<—

Equations

U+ 2y

TR S Sy W A

()

» Bound violation pivot u and s (1 is a dependent variable).

s>1,x>0

(y<1voev>2),(v<-2Vo>0),(v<—-2Vu<-—1)

o = = D

Equations
r = v+y
U = v+ 3y
s = v+2y

Bounds

¥
[V

R
[V

NS
|/

AYS

0

» Bound violation update assignment.

s>1,z >0

(y <lvwv > 2), (t‘ < —2Vuv > (}): (-g_r < —2Vu< _1)

Model Equations Bounds
M(z) = 0 r = v+y s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 1 s = v+2y y < 1
M(u) = 2 v > 0

» Bound violation update dependent variables assignment.

s>1,z >0

(y<1vVuv>2),(v<—2Vo>0),(v<-2Vu<—1)

Model Equations Bounds
M(z) = 1 r = v+y s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 2 s = v+ 2y y < 1
M(u) = 3 v o> 0

» Boolean propagation —v < =2~ u < —1

s> 1,z >0

(y<1Ve>2),(v<—2Ve20), (< -

Model Equations
M(z) = 1 r = vty
M(y) = 1 u = vt 3y
M(s) = 2 s = v+2y
M(u) = 3
M(v) = 0

Bounds

AVARRAVS

NI
S = | O =

» Bound violation assignment does not satisfy new bound.

s> 1.x>0

(y<1Ve>2),(0<-2Ve>0),@< -

Equations

v+ 3y

v+ 2y

L S e

Bounds
s > 1
r > 0
y < 1

0

(&

U

[V

| A\

» Bound violation pivot © and vy (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2Ve>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r = vty s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 2 s = v+2y y < 1
M(u) = 3 v > 0
M(v) = 0 u < —1

» Bound violation pivot u and y (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2vVe>0),(v<-2Vu<-1)

Model

M (x)
M(y)
M (s)
M (u)
M (v)

Equations Bounds

r = v+y s = 1
y = %u—%t} r = 0
s = v+2y y < 1
v > 0
u < —1

» Bound violation pivot u and y (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2vVe>0),(v<-2Vu<-1)

Model

M(x) =
M(y) =
M(s) =
M(u) =
M(v) =

Equations Bounds
r = %’EL—I—%U s > 1
y = %u—%t} r = 0
s = 2u+3v y < 1

v > 0
u < —1

» Bound violation

Model
M(z) =
M(y) =
M(s) =
M(u) =
M(v) =

update assignment.

s>1,2>0

(y<1vev>2),(v<-2Vv20),(v< -2Vu< -1

Y

Equations

1 2
3“’ 31

1 1
— =3 — =7
315 31

_ 2 1
— 31L+3'v

Bounds
s = 1
r = 0
y < 1
v = 0
u < —1

» Bound violation update dependent variables assignment.

s>1,x>0

(y<1Ve>2),(v< -2V >0),(vs—

Model Equations
M(z) = —1 r o= lu+y
My) = —3 y = tu—1o
M(s) = _g s = %H—F%’U
M(u) = -1
M(v) = 0

Bounds
s = 1
r = 0
y < 1
vo> 0
u < —1

» Bound violations

s>1.2>0

(y<ive=2),(v<-2Ve20),(v<-2vVa<—l)

Model Equations Bounds
M(z) = — r o= fu+2v s > 1
M(y) = —3 Yy = suU—3U r > 0
M(s) = —% s = %u + %fu y < 1
M(u) = -1 v > 0

M(v) =

-
=
A
|
—

» Bound violations pivot s and v (s is a dependent variable).

s>1.2>0

(y<ive=2),(v<-2Ve20),(v<-2vVa<—l)

Model Equations Bounds
M(z) = — r o= fu+2v s = 1
M(y) = —3 Yy = fu—3U r > 0
M(s) = -2 s = 2u+3v y < 1
M(u) = -1 v > 0
M(v) = 0 u < —1

» Bound violations pivot s and v (s is a dependent variable).

s>1,2>0

(y<1Vu>2),(v<—-2Vo>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = —% T o= Fu+2v s > 1
M(y) = —3 Yy = zu—3U r > 0
M(s) = —3 vo= 35— 2u y < 1
M(u) = —1 v > 0
M(v) = 0 u < —1

» Bound violations pivot s and v (s is a dependent variable).

s>1,r >0

(y<ive=2),(v<-2Ve20),(v<-2Vu< 1)

Model Equations Bounds
M(z) = —3 r = 2s—u s > 1
M(y) = —3 y = —s+u r > 0
M(s) = —3 v = 3s5—2u y < 1
M(u) = -1 v > 0
M(v) = 0 u < —1

» Bound violations update assignment.

s>1,2>0

(y<ive=2),(v<-2Vez0),(v<-2va< 1)

Model Equations Bounds
M(z) = — r = 2s—u s > 1
M(y) = —3 y = —s+u r > 0
M(s) = 1 v = 35—2u y < 1
M(u) = -1 v = 0

M(v) = 0 u

A
|
—

» Bound violations update dependent variables assignment.

s>1, x>0

(y<1vev>2),(v<-2Vev>0),(v< —2Vu<—1)

Model
M(z) = 3
M(y) = -2
M(s) = 1
M(u) = -1

M(v) = 5

Y

Equations
= 25—u
= —S+u

= J3s —2u

Bounds
s > 1
r = 0
y < 1
v = 0
u < —1

Bounds

Equations

258 — U

Y,

—S T+ U

Y,

3s — 2u

AVARR VA

A

1
0
1
0

—1

Correctness

Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not
satisfy its bounds, then select the smallest non-basic in the
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of
configurations. Then, any infinite trace will have cycles.

Microsoft

Research

Combining Theories

In practice, we need a combination of theories.
b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
A theory is a set (potentially infinite) of first-order sentences.

Main questions:
Is the union of two theories T1 U T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for
T1UT2?

Microsoft

Research

Disjoint Theories

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0,-1,1,-2,2, ..., +, -, *, > <, 2, <
Array symbols: { read, write }

Microsoft

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), v;=c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

Microsoft

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), v;=c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

U

b+2=c,v,=3,v3;=c-2, v. =c-b+],
v, = write(a, b, v,), v, =read(v,, v;), —
Ve =f(v,), vo = f(ve), ve 2 v, Research

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Microsoft

Research

Important Result

The union of two consistent, disjoint, stably infinite
theories is consistent.

Microsoft

Research

Convexity

A theory T is convex iff
for all finite sets S of literals and
foralla,=b,v..va, =b,
Simpliesa, =b,v..va, =b,
iff
Simplies a,=b, forsome 1<i<n

Microsoft

Research

Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.
formulas of the form s, #r;v ... vs #r vi=t

Linear rational arithmetic is convex.

Microsoft

Research

Convexity: Negative Results

Linear integer arithmetic is not convex
1<a<2,b=1,c=2 impliesa=bva=c

Nonlinear arithmetic

a’=1,b=1,c=-1limpliesa=bva=c

Theory of bit-vectors

Theory of arrays
c, = read(write(a, i, ¢,), j), c; = read(a, j)
impliesc,=c,vc,=¢

Microsoft

Research

Combination of non-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, a, a3) #f(0, 1, 0)

Microsoft

Research

Combination of non-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, a, a3) #f(0, 1, 0)

@ implies

a;z0va,#z1va;#0

Microsoft

Research

Nelson-Oppen Combination

Let 71 and 7 5 be consistent, stably infinite theories over disjoint
(countable) signhatures. Assume satisfiability of conjunction of
literals can decided in O(77(n)) and O(T5(n)) time respectively.
Then,

1. The combined theory 7 is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in 7 can be
decided in O(2"" x (Ty(n) + Ta(n)).

3. If 7, and 7 5 are convex, then so is 7 and satisfiability in 7 is
in O(n® x (T1(n) + Ta(n))).

Microsoft

Research

Nelson-Oppen Combination

The combination procedure:

Initial State: ¢ is a conjunction of literals over X1 U X.o.

Purification: Preserving satisfiability transform ¢ into ¢; A @9,
such that, ¢; € ;.

Interaction: Guess a partition of V(o) M V(¢9) into disjoint
subsets. Express it as conjunction of literals .
Example. The partition {2}, {29, 23}, {24} is represented
as Iy # To, T, F T4.T9 F Ty, To = I3.

Component Procedures : Use individual procedures to decide
whether ¢; A 1) is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Microsoft:

Research

Soundness

Each step is satisfiability preserving.
Say ¢ is satisfiable (in the combination).
» Purification: ¢ A @9 is satisfiable.
» Iteration: for some partition 10, &1 A &9 A 1) is satisfiable.
» Component procedures: ¢ A 1’ and ¢y A 1) are both
satisfiable in component theories.
» Therefore, if the procedure return unsatisfiable, then ¢ is

unsatisfiable.

Microsoft

Research

Completeness

Suppose the procedure returns satisfiable.

»

»

Let 1/ be the partition and A and 3 be models of 71 A 1 A
and TQ A E)g A ’l_*
The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

A| and | B| such that
h(A(z)) = B(x) for each shared variable.

Let /1 be a bijection between

Extend B to B by interpretations of symbols in X

B(f)(b1.....bn) = h(A(f)(R7 (b1). ..., A7 (bn)))

B is a model of:

Tl A\ (_;':-3'1 A\ TZ AN, 5 . A .ET___-']
oft’

Research

NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.

Interaction: Deduce an equality r — -
TiF (= 2=y

Update ¢9 := @9 A 2 = 1. And vice-versa. Repeat until no
further changes.

Component Procedures : Use individual procedures to decide
whether ¢, is satisfiable.

Remark: 7; F (&; = x = y) iff ¢; A\ 2 # y is not satisfiable in

TE') ‘osoft
Kesearch

NO deterministic procedure

Assume the theories are convex.
» Suppose ¢; is satisfiable.
» Let £ be the set of equalities 7; = 2, (J # k) such that,
T,V ¢i = vj = Tk
» By convexity, 7, I/ ¢; = \/ p x; = 4.
» 0; N \p xj # 11 is satisfiable.
» The proof now is identical to the nondeterministic case.

» Sharing equalities is sufficient, because a theory 7 can
assume that 2% = y” whenever 2 = v is not implied by 7 5
and vice versa.

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays

b+2-=c, v, = write(a, b, v,),
v, =3, v, =read(v,, vs)

V3 =C-2,

Ve = C-b+1

EUF

ve = f(v,),
v, = f(ve),
Vg % Vs

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2-=c, v, = write(a, b, v,), ve = f(v,),
v, =3, v, = read(v,, v;) v, = f(ve),
V3 =C-2, Ve # V7

Ve = C-b+1

Substituting ¢

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v;=b, Ve # V5

Ve =3

Propagating v;=Db

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, V), v, = f(vs),
v; = b, v3=b Vg # Vs,
Ve = 3 Vy =

Deducing v, = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v; = b, V3 =h, Vg # V-,
Ve = 3 V=V, Vy =

Propagating v, = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, = read(v,, v;), v, = f(ve),
v; = b, V3 =h, Vg # V-,
v, =3, Va=Vq V3 =D,
V, =V, V, =V,

Propagating v. = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF

b+2=c, Vv, = write(a, b, Vl)' Vg = f(V4),

v, =3, v, =read(v,, v3), v, = f(vg),

vy =b, V3= b, Ve # V7,

Ve =3, Va=Va V3 =D,

Va=Vq Va=Vy
Vs =V,

Congruence: v, =V,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v; = b, V3 =h, Vg % V5,
Ve =3, Vo=V V3 =D,
Va=Vq Va =V
Ve =V,

Unsatisfiable

Microsoft

Research

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

0<a<1,0<b<1,0<c<],
f(a) # f(b),
f(a) # f(c),
f(b) = f(c)

Microso ft-

Research

Combining Procedures in Practice

Propagate all implied equalities.
» Deterministic Nelson-Oppen.
» Complete only for convex theories.

» It may be expensive for some theories.

Delayed Theory Combination.
» Nondeterministic Nelson-Oppen.

» Create set of interface equalities (r =) between shared
variables.
» Use SAT solver to guess the partition.

» Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables. Microsoft

Research

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which

equalities are propagated.
Model-based Theory Combination
» Optimistic approach.
» Use a candidate model M; for one of the theories 7 ; and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.
if M, =7,UT;U{u=uv} then propagate u = v .
» If not, use backtracking to fix the model.

» Itis cheaper to enumerate equalities that are implied in a

particular model than of all models.

Microsoft

Research

Example

r=fly—1),f(z) # f(y),0<2r<10<y<1
Purifying

Microso ft-

Research

Example

r=[f(2),flx)# f(y),0<r<1,0<y <1,z

y—1

Microso ft-

Research

TE Ta

Literals Eq. Classes | Model Literals Model
r=f() |{2.f()} |E@) = 0<a<l|A@)=0
@) # f() | {v) E(y) = % 0<y<1|Ay) =0

{z} E(2) = *3 z=y—1]A(z) =-1

{fl)p | E(f) ={x1— x4

()} *9 = kg

*3 > ¥]

Assume X =y

Example

else — *4|

TE T4
Literals Eq. Classes Model Literals Model
v=f() |[{z.u.f()} | B@)=x 0<a<1|Ad2)=0
fla) # fly) | 1z} E(y) = #1 0<y<1]A(y)=0
=1y (@), f(y)} | E(2) = *9 z=y—1]A(2)=-1
E(f)={n+ |z=y
9 T ¥,

Unsatisfiable

Example

TE T A
Literals Eq. Classes | Model Literals Model
r = f(2) {x, f(2)} | E(x) =% 0<z<1|Ax)=0
flz) # f(y) | {y} E(y) = 2 0<y<1]Aly =0
x# Y 12} E(z) = z=y—1]1A()=-1
()} E(f)z{*w—wa; x# Y
(W)} k9 = ks,
*3 = ¥,
else — g}

Backtrack, and assert = # .
7 4 model need to be fixed.

Example

TE Ta
Literals Eq. Classes | Model Literals Model
r=f(z) |H{zf(2)} | E®)=m O0<a<1|A(r)=0
flx) # f(y) | {y} E(y) = 2 0<y<1]|A(y =1
r#y {2} E(z) = *3 z2=y—1]|A(2)=0
{f(x)} E(f)={x1—x*1, |2#y
{f()} k9 = k5,
*3 — *1,
else — ¢}

Assume x =2

Tk T 4

Literals Eq. Classes | Model Literals Model
r= f(2) {x, 2, E(x) =% O0<aer<1]|A(x)=0
fla) # fy) | flx), f(2)} | E(y) =% 0<y<1|Ay)=1
r#Y {y} E(z) == z=y—1|A(2)=0
T =z ()} E(f)={x1—*. |z#y

ko = %3 r ==z

else — 4}

Satisfiable

Example

Tk T A

Literals Eq. Classes | Model Literals Model
r= f(2) {z, 2, E(x) =% O<az<1|A(x)=0
fla) # fly) | f(2), f(2)} | E(y) = *2 O0<y<1]Ay =1
T Fy {y} E(z) == z=y—1]A()=0
r ==z {f(y)} E(f)=1{x1—*1, |x#yY

%o b= *3, | X =2

else — 4}

Let /1 be the bijection between || and |A|.

h-:{?leD,?kQH 1,$31—>—1,$4i—?’2,...}

Example

TE Ta

Literals Model Literals Model

r = f(2) E(z) = % 0<z<1|A(x)=

flx) # f(y) | E(y) = *2 O0<y<1|Ay =1

r £y E(z) =% >=y—1|A(2)=0

r ==z E(f)={xs1—=*, |z2#Y A(f)={0~0
%o — %3 r==z 1— -1
else — *4} else — 2}

Extending A using 5.

/’1-:{1#:1?—}-0,#:2?—}]_,3*:31—2*—1,:#:41—}2,...}

Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?

Solution: add a predicate fS-bV(f[f) to the bit-vector theory (intuition:

is-bv(x) is true iff 2 is a bitvector).

The result of the bit-vector operation op(:zt, y) is not specified if

—is-bv(a) or —is-bv(y).

The new bit-vector theory is stably-infinite.

Reduction Functions

A reduction function reduces the satifiability problem for a
complex theory into the satisfiability problem of a simpler
theory.

Ackermannization is a reduction function.

Reduction Functions

Theory of commutative functions.
» Vay.fz.y) = fy, z)
» Reduction to EUF
» Forevery f(a,b)ing,do¢:=o A fla,b) = f(b,a).

Applications

Test case generation

Predicate Abstraction

Invariant Generation

-
-
C
€
€

Type Checking

Model Based Testing

Microso ft-

Research

Theorem Provers/Satisfiability Checkers

A formula F is valid

ff

—F is unsatisfiable

-

N

Theorem Prover/
Satisfiability Checker

~

/

Satisfiable
Model

Unsatisfiable
Proof

Microso ft-

Research

Theorem Provers/Satisfiability Checkers

=

A formula F is valid

ff

—F is unsatisfiable

-

o

Theorem Prover/
Satisfiability Checker

~

4

Timeout

v Vv

Memout

Satisfiable
Model

Unsatisfiable
Proof

Microso ft-

Research

I' ("

Template”

\erification/Analysis Too

@ Problem
N

p
Verification/Analysis
Tool
o)
@ Logical Formula
4)

Theorem Prover/

Satisfiability Checker
o)

i Q Satisfiable v Unsatisfiable

(Counter-example) Research

SMIT @Miicrosoft; Solver

e 73 is a new solver developed at Microsoft Research.
e Development/Research driven by internal customers.
© Free for academic research.

© |nterfaces:

e http://research.microsoft.com/projects/z3

Microsoft

Research

Test case generation

Test case generation

e Test (correctness + usability) is 95% of the deal:
o Dev/Test is 1-1 in products.
e Developers are responsible for unit tests.

° Tools:
e Annotations and static analysis (SAL + ESP)
© File Fuzzing
e Unit test case generation

Microsoft

Research

@ Security bugs can be very expensive:
e Cost of each MS Security Bulletin: S600k to SMillions.
e Cost due to worms: SBillions.
e The real victim is the customer.
e Most security exploits are initiated via files or packets.
e Ex: Internet Explorer parses dozens of file formats.

e Security testing: hunting for million dollar bugs

e

e

e

Write A/V

Read A/V

Null pointer dereference
Division by zero

Microsoft

Research

Hunting for Security Bugs.

e Two main techniques used by “black hats”:

e Code inspection (of binaries). ‘

e Black box fuzz testing.
e Black box fuzz testing:

e A form of black box random testing.

@ Randomly fuzz (=modify) a well formed input.

e Grammar-based fuzzing: rules to encode how to fuzz.
@ Heavily used in security testing

e At MS: several internal tools.

@ Conceptually simple yet effective in practice

Microsoft

Research

Directed Automated Random Testing (DART)

Run Test and Monitor Execution Path Condition
Path

d Test
SEE Inputs Known

New input '

Constraint
System

Microso ft-

Research

DARTIsh projects at Microsoft

Implements DART for .NET.

Implements DART for x86 binaries.

Implements DART to check the feasibility
of program paths generated statically.

o Partially implements DART to dynamically
generate worm filters.

Vigilante

Microsoft

Research

What is Pex?

e Test input generator
e Pex starts from parameterized unit tests
e Generated tests are emitted as traditional unit tests

Microsoft

Research

Arraylist: The Spec

msdn
-

NET Framework Developer Center

Home Learn Downloads

IE:* Printer Friendly Version '=||]=' Add To Favorites [Send @ Add Cont

e
Microsoft.Ink h .MET Framework Class Library

MierosoftInieT ' ArrayList.Add Method

Microsoft.1Scri| =
Microsoft.1Scri| Adds an object to the end of the ArravList.

l I Sdn M5DM Home reveloper Cent
-

Microsoft.Mana Namespace: Svstem.Collections

Microsoft.Mana Assembly: mscorlib (in mscodib.dil)

AFEMEBBEBGECE

NET Framework Developer Center

Hormne Learn Downloads Support Community

I.-'I'__-:lpi Printer Friendly Version '{IF Add To Favorites [Send @ Add Content...

Microsoft.Ink & [F] Remarks Click to Rate and Give Feedback <77

Arravlist accepts a null reference (Nothing in Visual Basic) as a valid value and allows

Microsoft.Ink.T(=:
I duplicate elements.

Microsoft.JScri)|

Microsoft.JScri| If Count already equals Capacity, the capacity of the ArravList is increased by
automatically reallocating the internal array, and the existing elements are copied to the
new array before the new element is added.

Microsoft.Mana
Microsoft.Mana
Microsoft.Mana If Count iz less than Capacity, this method iz an O(1) operation. If the capacity needs to
bhe increased to accommaodate the new element, this method becomes an O(n) operation,
where n is Count.

Microsoft.Servi

AHEHHEHEBEREBE

Microsoft.Servi .
Microsoft:

Research

ArrayList: Addltem Test

class ArraylListTest {

[PexMethod] . . msdn
void AddItem(int c, object item) { o
V?r\ list - new Arraylist(c); NET Framework Developer Center
1ist.Add (ltem) > . Home Learn Downloads
Assert(list[@] == item); } :
} I:E';n Printer Friendly Version '=||]=' Add To Favorites [Send @ Add Cont
> ’ Microsoft.Ink I I .MET Framework Class Library
/ ™

MierosoftInieT ' ArrayList.Add Method

class ArraylList { Microsoft.JScri| =
object[] items;

int count;

Microsoft.1Scri| Adds an object to the end of the ArravList.

Microsoft.Mana Namespace: Svstem.Collections

Microsoft.Mana Assembly: mscorlib (in mscodib.dil)
Microsoft.Mana

AHEHEBEEBEBECE

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Starting Pex...

class ArraylListTest {
[PexMethod]
void AddItem(int c, object item) {
var list = new ArraylList(c);
list.Add(item);
Assert(list[@] == item); }

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Run 1, (O,null)

class ArraylListTest {

[PexMethod]

void AddItem(int c, object item) { (0,null)
var list = new ArraylList(c);
list.Add(item);
Assert(list[@] == item); }

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed
[PexMethod] Constraints
void AddItem(int c, object item) {
var list = new ArrayList(c); (0,null) !(c<0)
list.Add(item);
Assert(list[@] == item); }

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...; c <@ > false
items = new object[capacity]; -

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed

[PexMethod] Constraints
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) ' (c<@) && @==c
list.Add(item);
Assert(list[@] == item); }

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) @
ResizeArray();

- true

1l
1l
0

items[this.count++] = item; }

Microsoft

Research

ArrayList: Run 1, (O,null)

class ArraylListTest { Inputs Observed

[PexMethod] Constraints
void AddItem(int c, object item) {

var list = new ArraylList(c); (0,null) {Edw) Kk Bee
list.Add(item);
Assert(list[@] == item); } .)
} item == item -> true
L -
p '

class ArraylList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Picking the next branch to cover

class ArraylListTest { Constraints to Inputs Observed

[PexMethod] solve Constraints
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) (c<0) && 0==
list.Add(item);
Assert(list[@] == item); }

I(cc@) && 0O!=c

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

\

ArrayList: Solve constraints using SMT solver

class ArraylListTest {
[PexMethod]
void AddItem(int c, object item) {
var list = new ArraylList(c);
list.Add(item);
Assert(list[@] == item); }
}

Observed
Constraints

I (cc0) && 0==c

Constraints to
solve

Inputs

(0,null)

I(cc@) && O!=c (1,null)

-

class ArraylList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

' m

Microsoft

Research

ArrayList: Run 2, (1, null)

class ArraylListTest { Constraints to Inputs Observed

[PexMethod] solve Constraints
void AddItem(int c, object item) {
(0,null) !(c<0@) && 0O==

var list = new ArraylList(c);
I(cc@) && O!=c (1,null) !(c<0@) && O!=c

list.Add(item);
Assert(list[@] == item); }

}

\

e N
class ArraylList {

object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) @ == ¢ > false
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

class ArraylList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

L/ @
class ArraylListTest { 0 3 0 0 Observed
[PexMethod] olve 0 0
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) I'(c<@) && B==c
list.Add(item); ' I — | |
Assert(list[@] == item);)} I(cc@) && O!=c (1,null) !(c<0@) && O!=c
} c<0
-

Microsoft

Research

class ArraylList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

class ArraylListTest { 0 3 0 0 Observed
[PexMethod] 0lve N 5
void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) I'(c<@) && B==c
list.Add(item); ' I — | |
Assert(list[@] == item);)} I(cc@) && O!=c (1,null) !(c<0@) && O!=c
} c<0 (-1,null)
-

Microsoft

Research

class ArraylListTest { 0
[PexMethod]

void AddItem(int c, object item) { I
var list = new ArraylList(c); (0,null) I{eqw) 6 Bome

list.Add(item); | . : -
Assert(list[@] == item); } I'(c<@) && 0!=c (1,null) !(c<@) && 0@!=c

} c<0 (-1,null) c<@

e N

class ArraylList {
object[] items;
int count;

ArraylList(int capacity) {
if (capacity < 0) throw ...; c<0O > ftrue
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

Microsoft

Research

ArrayList: Run 3, (-1, null)

class ArraylListTest { 0 3 0 0 Observed
[PexMethod] olve 0 :

void AddItem(int c, object item) {
var list = new ArraylList(c); (0,null) !(c<0@) & 0O==c
list.Add(item); | [: .
Assert(1list[0] == item); } I(cc@) && O!=c (1,null) I(cc@) && 0!=c
} c<0 (-1,null) c<o
e 2

class ArraylList {
object[] items;
int count;

Login Join Twitter!

ArraylList(int capacity) {

if (capacity < @) throw ...; . Once again, Pex blows my mind. It's
items = new object[capacity];

} utterly amazing the bugs that it can
find :).

void Add(object item) { about 7 hours ago from Twee

if (count == items.Length)

ResizeArray(); jasonbock

Jason Bock

items[this.count++] = item; }
Microsoft

> ‘ Research

White box testing in practice

How to test this code?
(Real code from .NET base class libraries.)

[SecuritvPerpis=stopltiribpte (Secyrd ftvhiction. LinkDemand, Flags=SecurityPermissionFlag.SerializationFormatter)]
public |EesourceReader (Stream stream)

if (2tream——null)
throw new LArgumentHullException("stream™):;
if (!stream.CanBRead)
throw new ArgumentException (Envirconment.GetResourceString ("Argument StreamMotBReadable™))

_resCache = new Dictionary<itring, Resourcelocator> (FastResourceComparer.Default):;

_store = new BinaryReader (stream, Encoding.UTF8}:

Ff We have a faster code path for reading rescurce files from an assembly.

_ums = stream as UnmanagedMemoryStream;

BCLDebug.Lﬂg:"RESHFRFILEFGRHAT", "REesourceReader .ctor(Stream). UnmanagedMemoryStream: "+ (ums!=null)):
REeadRe=ocurces () ;

White box testing in practice

ff Reads in the header information for a .resources file. Verifies =some
ff of the assumptions about this resource set, and builds the class table
ff for the default resource file format.

BCLDebug. BEoC —gtore ™= null, "ResourceReader is closzed!"):

BinaryFormatter bf = new BinaryFormatter (null, new StreamingContext (StreamingContextStates.File |

#if !FEATURE PAL
_typelLimitingBinder = new TypelimitingDeserializationBinder():
bBf.Binder = typelimitingBinder:

#endif
_objFormatter = bi:
try {
S/ BRead ResourceManager headesr

int magicHum = store.ReadInt32(}:
if (magicHum !'= ERescourceManager.MagicHumber)
throw new ArgumentException (Environment.GetResourceString ("Resources StreamMotValid™)):

=il et S R et e LUHEJ-UJ-J-I
ff after the wersion number there iz a number of bytes to skip
/f to bypass the rest of the ResMgr header.
int resMgrHeaderVersion = _store.ReadInt32(};
if (resMgrHeaderVersion > 1) {
int numBytesToSkip = store.ReadInt32():

ANk N i) I — _

BCLDebug.Assert (numBytesToSkip > 0, "numBytesToSkip in ResMgr header should be positive!™

SUIEH | IS Ty W) i NI N [PV 0 L Y e R L L Ll e R L L LI

}oelse {
BCLDebug.Log ("RESMGEFILEFORMAT™, "ReadResources: Parsing BesMgr header wl.™):
SkipInt32(): f/f We don't care about nunBytesToSkip.

// BRead in type name for a suitable ResourceBReader

A T S ™ _ _TT__ - . _ __ - . o I . Py R P N - [P

White box testing in practice

ff Reads in the header information for a .resources file. Verifies =some
ff of the assumptions about this resource set, and builds the class table
ff for the default resource file format.

BCLDebug. BEoC —gtore ™= null, "ResourceReader is closzed!"):

BinaryFormatter bf = new BinaryFormatter (null, new StreamingContext (StreamingContextStates.File |

#if !FEATURE PAL
_typelLimitingBinder = new TypelimitingDeserializationBinder():
bBf.Binder = typelimitingBinder:

#endif
_objFormatter = bi:
try {
S/ BRead ResourceManager headesr

int magicHum = store.ReadInt32(}:]
if|public wvirtual int ReadInt32() {

if (m_isMemoryStream) J
7 s o T R N I =30 P R =1 L N o P = R =
Iy MemoryStream mStream = m_stream as MemoryStream:
fr BCLDebug.Assert (mStream '= null, "m stream as MemoryStream !'= null"):;
imnf B
if return mStream.InternalReadInt32 () :;

}

else

{

FillBuffer(4}):

o9 return (int) (m buffer[0] | m buffer[l] << 8 | m buffer[2] << 16 | m buffer[3] << 24);

Pex—Test Input Generation

" TestProjectl - Microsoft Visual Studio

File Edit View Refactor Project Build Debug Data Tools Test Window Community Help

- SE @ %[99 -F-5] b Dby - -

Fig /ﬁesourceﬂeaderTestLﬁ*] - X
-.-%j <ﬁf".-'1suz:uzl-rliI:}Tv.=_~sts.F‘u?.;u:l-l.]ru::v.=_~F‘u?_a|::|v.=_~rTv.=_~sI:s v =iy ParameterizedTest(byte(] a) -
* public class EResourceReaderTests
m ~
13 i
=] [FexTest]
= public unsafe void ParameterizedTest@Mbyce[] a)
b {
E' Pexlfiz=sume . IsNotHull (a) ;
(=]
=3 fizxed (byte® p = a)
=]
= using (stream = new UnmanagedMemoryStream{p, a.Length)} f . \
¢ Test input,
var reader = new ResourceBeader (st
readEntries (reader) ; generated by Pex
' |::f_g Pexit Ctrl + F8 | byte[] a = new byte[l1l4]:
: Pex > a[0] = 206&;
H = .
Refactor 3 all] 202;
al2] = 239;
4 C=-L Insert Snippet... 3:3: = 130:
Head],r -=_,_ Surrcound With... a[7] = &4:
L3 Go To Definition N — o
Find All References ParameterizedTest (a):
Breakpoint * \ ‘
*= Run Teo Cursor
£ Cut
Ea Copy

Cutlining 2

Test Input Generatlon by

No false warnings

Result: small test suite,
high code coverage

Finds only real bugs j

PEX & Z3

Rich Linear - Free
Combination arithmetic Elbvector AlTays Functions

Model used as test inputs

Used to model custom theories (e.g., .NET type
system)

Y-Quantifier

Huge number of small problems. Textual interface is
too inefficient.

Microsoft

Research

PEX & Z3

Rich Linear - Fiee
Arithmetic Bitvector Arrays VN

. Used to model custom theories (e.g., .NET type

V-Quantifier system)

Undecidable (in general)

Microsoft

Research

PEX & Z3

Rich Linear - Aiee
Arithmetic Bitvector Arrays VN

Used to model custom theories (e.g., .NET type
© system)

' V-Quantifier |

Undecidable (in general)
Solution:
Return “Candidate” Model
Check if trace is valid by executing it

Microsoft

Research

PEX & Z3

Rich Linear - Aiee
Arithmetic Bitvector Arrays VN

Used to model custom theories (e.g., .NET type
- system)

V-Quantifier

Undecidable (in general)
Refined solution:
Support for decidable fragments.

Microsoft

Research

e Apply DART to large applications (not units).
e Start with well-formed input (not random).

e Combine with generational search (not DFS).

© Negate 1-by-1 each constraint in a path constraint.
e Generate many children for each parent run.

— @) @ mum) @) @) @ parent

Microsoft

Research

e Apply DART to large applications (not units).
e Start with well-formed input (not random).

@ Combine with generational search (not DFS).

@ Negate 1-by-1 each constraint in a path constraint.
© Generate many children for each parent run.

_—) @ mum) @ mum) @ O @ narent

Microsoft

Research

Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
@ SAGE generates a crashing test for Medial parser

00000000h:
00000010h:
00000020h:
00000030h:

00000040h:
00000050h:
00000060h:

Generation 0 — seed file

Microsoft

Research

Zero to Crash in 10 Generations

e Starting with 100 zero bytes ...
@ SAGE generates a crashing test for Medial parser

00000000h: xxoHkk k20 00
00000010h: 00 00 00 00 00
00000020h: 00 00 00 00 00
00000030h: 00 00 00 00 76

00000040h: B2 [[E_16_234) 28
00000050h: 00 00 00 00 01
00000060h:

Generation 10 — CRASH

Microsoft

Research

SAGE (cont.)

e SAGE is very effective at finding bugs.

© Works on large applications.

e Fully automated

e Easy to deploy (x86 analysis — any language)
e Used in various groups inside Microsoft

© Powered by Z3.

Microso ft-

Research

SAGE<—> Z3

© Formulas are usually big conjunctions.
e SAGE uses only the bitvector and array theories.

© Pre-processing step has a huge performance impact.
@ Eliminate variables.
= Simplify formulas.

e Early unsat detection.

Microsoft

Research

Static Driver Verifier

Static Driver Verifier

e Z3is part of SDV 2.0 (Windows 7)
e |tis used for:
e Predicate abstraction (c2bp)
e Counter-example refinement (newton)

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

Overview

e http://research.microsoft.com/slam/

e SLAM/SDV is a software model checker.

= Application domain: device drivers.

e Architecture:
c2bp C program - boolean program (predicate abstraction).
bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)

e SMT solvers are used to perform predicate abstraction and to
check path feasibility.

@ c2bp makes several calls to the SMT solver. The formulas are
relatively small.

—
Do this code

obey the looking
rule?

do {
KeAcquireSpinLock() ;

nPacketsOld = nPackets;

1f (request) {
request = request->Next;
KeReleaseSpinLock() ;
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock () ;

—
Model checking

Boolean program

do { ,
KeAcquireSpinLock() ;

L 1F (%)

w |
KeReleaseSpinLock() ;
W
}
@ } while (*);
W

KeReleaseSpinLock () ;

—

Is error path

feasible?

do {
KeAcquireSpinLock() ;

nPacketsOld = nPackets;

1f (request) {
request = request->Next;
KeReleaseSpinLock() ;
nPackets++;

}
} while (nPackets !'= nPacketsOld);

KeReleaseSpinLock () ;

—

Add new predicate to

Boolean program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

nPacketsOld = nPackets;

| ¥ .
D = Cctrue,

1f (request) {

request = request->Next;
KeReleaseSpinLock() ;
nPackets++;
) b ="b 2" false : *;
} while (nPackets !'= nPacketsOld);
3 o)

KeReleaseSpinLock () ;

—

Model Checking

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

b = true;

b 1f(*) {
b
KeReleaseSpinLock() ;
b b =Db ? false : *;
}
b } while (!'b);

KeReleaseSpinLock () ;

—

Model Checking

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

b = true;

b 1f(*) {
b
KeReleaseSpinLock() ;
b b =Db ? false : *;
}
b b } while (!'b);
b KeReleaseSpinLock () ;

—

Model Checking

Refined Program
: (nPacketsOld == nPackets)

do {
KeAcquireSpinLock() ;

b = true;

b 1f(*) {
b
KeReleaseSpinLock() ;
b b =Db ? false : *;
}
b b } while (!'b);
L
b KeReleaseSpinLock () ;

Observations about SLAM

e Automatic discovery of invariants

= driven by property and a finite set of (false) execution paths
» predicates are not invariants, but observations

e abstraction + model checking computes inductive invariants (Boolean
combinations of observations)

e A hybrid dynamic/static analysis
© newton executes path through C code symbolically
» c2bp+bebop explore all paths through abstraction

© A new form of program slicing

e program code and data not relevant to property are dropped
e non-determinism allows slices to have more behaviors

Predicate Abstraction: c2bp

e

Given a Cprogram Pand F={p,, ..., p }.
Produce a Boolean program B(P, F)

@ Same control flow structure as P.

@ Boolean variables {b,, ..., b} to match {p,, ..., p,}.
@ Properties true in B(P, F) are true in P.

Each p; is a pure Boolean expression.

Each p, represents set of states for which p; is true.
Performs modular abstraction.

Abstracting Expressions via F

e Implies, (e)
e Best Boolean function over F that implies e.

e ImpliedBy, (e)
e Best Boolean function over F that is implied by e.
e ImpliedBy, (e) = not Implies, (not e)

Implies-(e) and ImpliedBy(e)

ImpliedByc(e)

Computing Implies{e)

© mintermm=/,and ... and |, where |.=p,, or |.= not p..
© Implies(e): disjunction of all minterms that imply e.
@ Naive approach

@ Generate all 2" possible minterms.

e For each minterm m, use SMT solver to check
validity of m implies e.

@ Many possible optimizations

Computing Implies{e)

o F={x<y, x=2}

©e:y>1

e Minterms over F
o Ix<y, Ix=2 implies y>1
° X<y, Ix=2 implies y>1
o Ix<y, x=2 implies y>1
e x<y, x=2 impliesy>1

Computing Implies{e)

o F={x<y, x=2}

©e:y>1

e Minterms over F
o Ix<y, Ix=2 impliesy>1 ©
o x<vy, Ix=2 impliesy>1 ©
o Ix<y, x=2 impliesy>1 @
e x<y, x=2 impliesy>1 ¥~

Computing Implies{e)

o F={x<y, x=2}

©e:y>1

e Minterms over F
o Ix<y, Ix=2 impliesy>1 ©
o x<vy, Ix=2 impliesy>1 ©
o Ix<y, x=2 impliesy>1 @
e x<y, x=2 impliesy>1 ¥~

Implies (y>1) = x<y A x=2

Computing Implies{e)

o F={x<y, x=2}

©e:y>1

e Minterms over F
o Ix<y, Ix=2 impliesy>1 ©
o x<vy, Ix=2 impliesy>1 ©
o Ix<y, x=2 impliesy>1 @
e x<y, x=2 impliesy>1 ¥~

Implies(y>1) = b, A b,

e

e

Given an error path p in the Boolean program B.

Is p a feasible path of the corresponding C program?
e Yes: found a bug.

e No: find predicates that explain the infeasibility.
Execute path symbolically.

Check conditions for inconsistency using SMT solver.

/3 & Static Driver Verifier

o AllI-SAT

e Better (more precise) Predicate Abstraction
e Unsatisfiable cores

e Why the abstract path is not feasible?

@ Fast Predicate Abstraction

Microso ft-

Research

Bit-precise Scalable
Static Analysis

PREfix [Moy, Bjorner, Sielaff 2009]

What is wrong here”?

while (low <= high)
{

// Find middle value
Int val = arr[mid];

else high = mid-1;
}

return -1;

int binary_search(int[] arr, int low,
int high, int key)

int mid = (low + high) / 2;

If (val == key) return mid,;
If (val < key) low = mid+1,;

Package: java.util.Arrays

Function: binary _search

void itoa(int n, char* s) {
if (n<0){
*s++ = -
n=-n;
}
// Add digits to s

-

Book: Kernighan and Ritchie

Function: itoa (integer to ascii)

PROGRAMMING
LANGUAGE

\What is wrong here?

3(INT_MAX+1)/4 +

Int binary_s (INT_MAX+1)/4)id itoa(int n, char* s) {
= INT_MIN i (n < O) {
while (low <= . *ghd = s
{ n=-n;
// Find middle vaitue)
n \T;f: ;:f["r;i;]';“gh) /2 I Add digits to s
If (val == key) return mid,;
If (val < key) low = mid+1; m
else high = mid-1; f’
J g
return -1;

Package: java.util.Arrays

Book: Kernighan and Ritchie
Function: binary _search

Function: itoa (integer to ascii)

What is wrong here”?

3(INT_MAX+1)/4 +

int binary_s (INT_MAX+1)/4)id itoa(int n, (ar*s) {
= INT_MIN if (n < O) {Q
while (low <= . *g+ = o
{ . . n=-n
// Find middle vaitue)
Int mid = (low + high) / 2; I/ Add digits to s
Int val = arr[mid];
If (val == key) return mid,;
If (val < key) low = mid+1,; R,
else high = mid-1; @=
} PHONGUAGE
return -1;

Package: java.util.Arrays

Book: Kernighan and Ritchie
Function: binary _search

Function: itoa (integer to ascii)

The PREfix Static Analysis Engine

int init_name(char **outname, uint n)
{
if (n ==0) return O;
else if (n > UINT16_MAX) exit(1);
else if ((*outname = malloc(n)) == NULL) {
return 0xC0000095; // NT_STATUS_NO_MEM;
}

return O;

int get_name(char* dst, uint size)
{

char* name;

int status = 0;

status = init_name(&name, size);

if (status !=0) {

goto error;

1

strcpy(dst, name);
error:

return status;

}

C/C++ functions

The PREfix Static Analysis Engine

int init_name(char **outname, uint n)

{
if (n ==0) return O; .
else if (n > UINT16_MAX) exit(1);
else if ((*outname = malloc(n)) == NULL) {

return 0xC0000095; // NT_STATUS_NO_MEM,;
}

return O;

int get_name(char* dst, uint size)

{

model for function init name

outcome init_name_0:
guards:; n ==
results: result ==
outcome init_name_1:
guards: n > 0; n <= 65535
results: result == 0xC0000095
outcome init_name_2:
guards: n > 0]; n <= 65535
constraints: valid(outname)
results: result == 0; init(*outname)

char* name;
int status = 0;
status = init_name(&name, size);
if (status !=0) {
goto error;
1
strcpy(dst, name);
error:
return status;

C/C++ functions

models

The PREfix Static Analysis Engine

int init_name(char **outname, uint n)

{
if (n ==0) return O;
else if (n > UINT16_MAX) exit(1);

=’
else if ((*outname = malloc(n)) == NULL) {

return 0xC0000095; // NT_STATUS_NO_MEM,;
}

return O;

int get_name(char* dst, uint size)

{

model for function init name

outcome init_name_0:
guards:; n ==
results: result ==
outcome init_name_1:
guards: n > 0; n <= 65535
results: result == 0xC0000095
outcome init_name_2:
guards: n > 0]; n <= 65535
constraints: valid(outname)
results: result == 0; init(*outname)

char* name;

int status = 0;

status = init_name(&name, %

if (status !=0) {
goto error;

}

strcpy(dst, name);

\

path for function get name

guards: size ==

constraints:

facts: init(dst); init(size); status == 0

error:
return status;

C/C++ functions

pre-condition for function strcpy
init(dst) and valid(name)

models

paths

Overflow on unsignhed addition

m_nSize == m_nMaxSize == UINT_MAX

iElement = m_nSize; 7

if(iElement >= m_nMaxSize)
{ IElement + 1 ==
bool bSuccess = GrowBuffer(iElement+1);
}
::new(m_pData+iElement) E(element); _
M nSizest- Code was written ——

for address space

Write in <l < 4GB

unallocated ~

memory

Using an overflown value as allocation size

Overflow check

ULONG AllocationSize;
while (CurrentBuffer != NULL) {
if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {

\ return NULL; Increment and exit
from loo
NumberOfBuffers++; P

CurrentBuffer = CurrentBuffer->NextBuffer;

}
AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers; -

UserBuffersHead = malloc(AllocationSize); Possible

overflow N

— wy |
L \ Microsoft*

Ul aTee e lI . Research
! e | o N0 e

Verifying Compilers

Annotated Verification

Program Condition F

pré/post conditions
Invariants
and other annotations

Annotations: Example

class C {
private int a, z,
iInvariant z > 0

public void M()
requiresa!=0

{
z = 100/a;

}

Research

Spec# Approach for a Verifying Compiler

® Source Language

© CH# + goodies = Spec#
e Specifications

e method contracts,

Spec# (annotated C#)

Spec# Compiler

® jnvariants, Boogie PL

e field and type annotations. VC Generator
® Program Logic: |

e Dijkstra’s weakest preconditions. Formulas

e Automatic Verification
e type checking,
e verification condition generation (VCG),

° S M T Microsoft:
Research

SMT Solver

Command language

e Xx:=E e assert P
e Xx:=x+1
e
oy =10 assume P
e havoc x °SUT

ST

Reasoning about execution traces

© Hoare triple {P}S {Q} says that

every terminating execution trace of S that
starts in a state satisfying P

© does not go wrong, and
e terminates in a state satisfying Q

Reasoning about execution traces

= Hoare triple {P}s{Q} says that

every terminating execution trace of S that
starts in a state satisfying P

e does not go wrong, and
e terminates in a state satisfying Q

e Given S and Q, what is the weakest P’ satisfying
{P'}S{Q}?
o P'is called the weakest precondition of S with
respect to Q, written wp(S, Q)

e to check {P} S {Q}, check P = P’

Weakest preconditions

wp(x:=E, Q)=
wp(havocx, Q) =
wp(assert P, Q) =
wp(assume P, Q) =
wp(S;T, Q)=
wp(SLIT, Q)=

Q[E/x]

(Vxe Q)

PAQ

P=Q

wp(S, wp(T, Q))
wp(S, Q) Awp(T, Q)

Structured if statement

if EthenSelseTend =

assumekE; S
[]
assume -E; T

While loop with loop invariant

while E
Invariant J where x denotes the
do assignment targets of S
S
end
L check that the loop invariant holds initially
= assert];
. . “fast forward” to an arbitrary
havoc x; assume J; iteration of the loop
(assume E; S; assertJ; assume false
1 assume -E i
) check that the loop invariant is

maintained by the loop body

Microsoft

Research

Spec# Chunker.NextChunk translation

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));

/I in-parameter: target object

free requires $Heap[this, $allocated];

requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[this, $ownerRef], $inv] <: $Heap[this, SownerFrame]) ||
$Heap[$Heap[this, $ownerRef], $localinv] == $BaseClass($Heap[this, SownerFrame])) && (forall $pc: ref :: $pc = null && $Heap[$pc, $allocated]
&& $Heap[$pc, $ownerRef] == $Heaplthis, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[this, $ownerFrame] ==> $Heap[$pc, $inv] ==
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

/I out-parameter: return value

free ensures $Heap[$result, $allocated];

ensures ($Heap[$result, SownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, $ownerRef], $inv] <: $Heap[$result, SownerFrame]) ||
$Heap[$Heap[$result, SownerRef], $localinv] == $BaseClass($Heap[$result, SownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc,
$allocated] && $Heap[$pc, SownerRef] == $Heap[$result, SownerRef] && $Heap[$pc, SownerFrame] == $Heap[$result, SownerFrame] ==>
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

Il user-declared postconditions

ensures $StringLength($result) <= $Heap[this, Chunker.ChunksSize];

/l frame condition

modifies $Heap;

free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f I= $inv && $f I= $localinv && $f = $FirstConsistentOwner && (!IsStaticField($f) ||
lisDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder ||
I(old($Heap)[old($Heap)[$o, $ownerRef], $inv] <: old($Heap)[$o, SownerFrame]) || old($Heap)[old($Heap)[$o, SownerRef], $localinv] ==
$BaseClass(old($Heap)[$o, $ownerFrame])) && old($o != this || !(Chunker <: DeclType($f)) || !$IncludedinModifiesStar($f)) && old($o != this || $f
I= $exposeVersion) ==> old($Heap)[$o, $f] == $Heap[$o, $f]);

/I boilerplate

free requires $BeingConstructed == null;

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { SHeap[$o, $inv] } $o != null && lold($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==>
$Heap[$o, $inv] == $typeof($0) && $Heap[$o, $localinv] == $typeof($0));

free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==
$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$0, $FirstConsistentOwner] == $Heap[$o,
$FirstConsistentOwner));

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { SHeap[$o, $inv] } old($Heap)[$o, Sallocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] &&
old($Heap)[$o, $localinv] == $Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot,
$ownerFrame] } { $Heap[$ot, SownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, SownerFrame] != $PeerGroupPlaceholder ==>
old($Heap)[$ot, $ownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, SownerFrame] == $Heap[$ot, SownerFrame]) &&
old($Heap)[$BeingConstructed, $NonNullFieldsArelnitialized] == $Heap[$BeingConstructed, $NonNullFieldsArelnitialized];

Verification conditions: Structure

Y AXioms
(non-ground)

Control & Data
Flow

Hypervisor: A Manhattan Project

Hypervisor

Hardware

e Meta OS: small layer of software
between hardware and OS

e Mini: 100K lines of non-trivial
concurrent systems C code

e Critical: must provide functional resource abstraction
e Trusted: a verification grand challenge

HV Correctness: Simulation

A partition cannot distinguish (with some exceptions)
whether a machine instruction is executed

a) through the HV OR b) directly on a processor

Partition Operating System

Wtio Wtruction
ov EAX ov EAX,

Hypervisor

Hypervisor Implementation

© real code, as shipped with Windows Server 2008
@ ca. 100 000 lines of C, 5 000 lines of x64 assembly

@ concurrency
@ spin locks, r/w locks, rundowns, turnstiles

e |ock-free accesses to volatile data and hardware covered by
implicit protocols

e scheduler, memory allocator, etc.

@ access to hardware registers (memory management,
virtualization support)

Hypervisor Verification (2007 —2010)

Partners:

e European Microsoft Innovation Center
@ Microsoft Research

@ Microsoft’s Windows Div.

_ . XT
e Universitat des Saarlandes E"’saft

co-funded by the German Ministry of Education and Research
http://www.verisoftxt.de

Challenges for Venfication of

1. Memory model that is adequate and efficient to
reason about

2. Modular reasoning about concurrent code
3. Invariants for (large and complex) C data structures

4. Huge verification conditions to be proven
automatically

5. “Live” specifications that evolve with the code

The Microsoft Venfying C Compiler (VCC)

@ Source Language
e ANSIC+
e Design-by-Contract Annotations +
e Ghost state +
e Theories +
© Metadata Annotations

® Program Logic
e Dijkstra’s weakest preconditions

e Automatic Verification

e verification condition generation
(VCG)

e automatic theorem proving (SMT)

VVCC Architecture

#include <vcc2.h>

| $ref cnt(old($s), #p) == $ref cnt(%s, #p) |
Annotated C && $ite.bool($set in(#p, $owns(old($s),
typedef struct _BITMAP { owner)),
UINT32 Size; /f Number of bits [

$ite.bool($set_in(#p, owns),
$st_eq(old(3s), $s, #p),
wrapped($s, #p, $typ(#p)) &&
$timestamp is now(%s, #p)),
$ite.bool($set in(#p, owns),
$owner($s, #p) == owner && $closed

PUINT32 Buffer; // Memory to store &C
{{ private invariants

invariant(5ize > 8 && Size % 32 == @)

erated Boogie
tassumption owner)),
(forall (2x Int) (2y Int) $ite.bool($set_in(#p, owns),
(iff | $st_eq(old($s), $s, #p),
(= (IntEqual ?x ?y) boolTrue $wrapped($s, #p, $typ(#p)) &&
(= 2x 2y))) $timestamp is now($s, #p)),
:formula $ite.bool(%$set_in(#p, owns),

Sowner($s, #p) == owner && -
$closed(%s,

\ VCC Prelude

Available at http://vcc.codeplex.com/

Contracts / Modular Verification

int foo (int x) void bar (int y; int *z)
requires(x > 5) // precond writes (z) // framing
ensures (result > x) // postcond requires (y > 7)

{ maintains (*z > 7) // invariant

{

*z = foo(y);

}

assert (*z > 7);

« function contracts: pre-/postconditions, framing
« modularity: bar only knows contract (but not code) of
foo

advantages:

« modular verification: one function at a time
 no unfolding of code: scales to large applications

Hypervisor: Some Statistics

@ VCs have several Mb
e Thousands of non ground clauses
@ Developers are willing to wait at most 5 min per VC

Microso ft-

Research

Hypervisor: Some Statistics

e \/Cs have several Mb

@ Thousands of non ground clauses
@ Developers are willing to wait at most 5 min per VC

/

o

\

Are you willing to wait more than

5 min for your compiler?

4

Microso ft-

Research

\erification Attempt Time vs.

By Michal Moskal (VCC Designer and Software Verification Expert)

Why did my proof attempt fail?

1. My annotations are not strong enough!
weak loop invariants and/or contracts

2. My theorem prover is not strong (or fast) enough.
Send “angry” email to Nikolaj and Leo.

Microsoft

Research

Challenge

e Quantifiers, quantifiers, quantifiers, ...

© Modeling the runtime

Y h,o,f:
IsHeap(h) A o # null A read(h, o, alloc) =t
—
read(h,o, f) = null v read(h, read(h,o,f),alloc) =t

Microso ft-

Research

Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

® Frame axioms

Y o, f:
o # null Aread(h,, o, alloc) =t =
read(h,,0,f) = read(h,,0,f) v (0,f) e M

Microso ft-

Research

Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

° Frame axioms

e User provided assertions

Vi,j:i<j=read(a,i) <read(b,j)

Microso ft-

Research

Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime
 Frame axioms
e User provided assertions
e Theories
vV Xx: p(x,x)
v xy,2: p(x,y), p(y,z) = p(x,z)
vV xy:p(xy), ply,x) = x=y

Microso ft-

Research

Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

© Frame axioms

@ User provided assertions

e Theories
e Solver must be fast in satisfiable instances.

We want to find bugs!

Microsoft

Research

Bad news

There is no sound and refutationally complete
procedure for
linear integer arithmetic + free function symbols

AU

/\ A\ /\//

(U

Microso ft-

Research

Many Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

'Becugag le fragmen!s

Model based quantifier instantiation

Microsoft

Research

Challenge: Modeling Runtime

e |s the axiomatization of the runtime consistent?
o False implies everything

e Partial solution: SMT + Saturation Provers

© Found many bugs using this approach

Microso ft-

Research

Challenge: Robustness

e Standard complain

“I made a small modification in my Spec, and
Z3 is timingout”

@ This also happens with SAT solvers (NP-complete)
© In our case, the problems are undecidable
e Partial solution: parallelization

Microso ft-

Research

Parallel Z3

e Joint work with Y. Hamadi (MSRC) and C. Wintersteiger
e Multi-core & Multi-node (HPC)
e Different strategies in parallel “Strateqy

Strategy
: 1
@ Collaborate exchanging lemmas e

Strategy‘
5

Strategy. Strategy
4 3
< W

=

Microsoft

Research

Hey, | don’t trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.

Microso ft-

Research

Hey, | don’t trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.

The Axiomatization of the runtime may be buggy or
Inconsistent.

Yes, this is true. We are working on new techniques for
proving satisfiability (building a model for these axioms)

Microso ft-

Research

Hey, | don’t trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.

The Axiomatization of the runtime may be buggy or
Inconsistent.

Yes, this is true. We are working on new techniques for
proving satisfiability (building a model for these axioms)

The VCG generator is buggy (i.e., it makes the wrong
assumptions)

Do you trust your compiler?

Microso ft-

Research

Engineer Perspective

These are bug-finding tools!

When they return “Proved”, it just means they cannot
find more bugs.

| add Loop invariants to speedup the process.

| don’t want to waste time analyzing paths with 1,2,...,k,...
Iiterations.

They are successful if they expose bugs not exposed by
regular testing.

Microso ft

Research

Conclusion

Powerful, mature, and versatile tools like SMT solvers can now be

exploited in very useful ways.

The construction and application of satisfiability procedures is an

active research area with exciting challenges.
SMT is hot at Microsoft.
Z3 is a hew SMT solver.

Main applications:
» Test-case generation.
» Verifying compiler.

» Model Checking & Predicate Abstraction.

Microsoft:

Research

Books

@ Bradley & Manna: The Calculus of Computation

e Kroening & Strichman: Decision Procedures, An
Algorithmic Point of View

e Chapter in the Handbook of Satisfiability

Microsoft

Research

Web Links

Z3:

http://research.microsoft.com/projects/z3

http://research.microsoft.com/~leonardo

» Slides & Papers
http://www.smtlib.org
http://www.smtcomp.org

Microsoft

Research

References

[Ack54] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation of
NMathematics, 1954

[ABC+U2] . Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach
for solving formulas over boolean and linear mathematical propositions. In Froc. of CADE0Z, 2002

[BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th
International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 79-97. Springer-Verlag, 2000

[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition.
In Int. Conference on Computer Aided Verification (CAV'05), pages 20-23. Springer, 2005

[BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental
translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, Froceedings of the 14th
International Conference on Computer Aided Verification (CAV '02), volume 2404 of Lecture Notes in
Computer Science, pages 236—249._ Springer-Verlag, July 2002. Copenhagen, Denmark

[BBC"‘DQ M. Bozzano, R. Bruftomesso, A Cimatti, T. Junttila, P. van Rossum, S. Ranise, and
R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In fnt. Conf. on
Computer-Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005

[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, 1983

References

[CG96] B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In Evraopean Symposium on
Algorithms, pages 349-363, 1996

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394-397, July 1962

[DNSO03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, 2003

[DST80] P J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem.
Journal of the Association for Computing Machinery, 27(4). 758771, 1980

[dMRO02] L. de Moura and H. Ruelt. Lemmas on demand for satisfiability solvers. In Froceedings of the
Fitth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002).
Cincinnati, Ohio, 2002

[DdMO06] B. Dutertre and L. de Moura. Integrating simplex with DPLL(T"). Technical report, CSL, SRI
International, 2006

[dMBO7b] L. de Moura and N. Bjerner. Efficient E-Matching for SMT solvers. In CADE-21, pages
183198, 2007

References

[dMBO7¢] L. de Moura and M. Bjerner. Model Based Theory Combination. In SMT07, 2007

[dMBO7a] L. de Moura and N. Bjerner. Relevancy Propagation . Technical Report MSR-TR-2007-140,
Microsoft Research, 2007

[dMBO08a] L. de Moura and N. Bjerner. Z3: An Efficient SMT Solver. In TACAS 08, 2008
[dMBO08c] L. de Moura and N. Bjerner. Engineering DPLL(T) + Saturation. In [JCAR'08, 2008

[dMB08b] L. de Moura and N. Bjerner. Deciding Effectively Propositional Logic using DPLL and
substitution sets. In IJCAR08, 2008

[GHN+E4] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editors, Int. Conference on Computer Aided Verification (CAV
04), volume 3114 of LNCS, pages 175-188. Springer, 2004

[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In Proc.
of ICCAD 96, 1996

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions
on Programming Languages and Systems, 1(2):245-257, 1979

[NO0O5] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to
difference logic. In Int. Conference on Computer Aided Verification (CAV'05), pages 321-334.
Springer, 2005

References

[Opp80] D. Oppen. Reasoning about recursively defined data structures. J ACM, 27(3):403-411, 1980

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small
domains instantiations. Lecture Notes in Computer Science, 1633:455—-469, 1999

[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis. In Communications of the ACM, volume 8, pages 102-114, August 1992

[RT03] 5. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st
International Workshop on Pragmatics of Decision Procedures in Automated Reasoning
(PDFPAR'03), Miami, Florida, pages 94—111, 2003

[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium on Logic in
Computer Science, pages 19-28, June 2001

[SLBO3] 5. Seshia, S. Lahin, and R. Bryant. A hybrid SAT-based decision procedure for separation logic
with uninterpreted functions. In Proc. 40th Design Automation Conference, pages 425-430. ACM
Press, 2003

[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769-779, October 1981

References

[dMB09] L. de Moura and N. Bjgrner. Generalized and Efficient Array Decision Procedures.
FMCAD, 2009.

[GdMO09] VY. Ge and L. de Moura. Complete Quantifier Instantiation for quantified SMT
formulas, CAV, 2009.

