Satisfiability with and without Theories KR2010, Toronto

Leonardo de Moura
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

e Logic is "The Calculus of Computer Science" (Z. Manna).

Undecidable ($\mathrm{FOL}+\mathrm{LA}$)

- High computational complexity

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

HAVOC

For μ La

Hyper-V
 Microsoft ${ }^{(4)}$

Terminator T-2
VCC

NModel

Vigilante

SpecExplorer
SAGE

F7

Microsoft ${ }^{*}$
Research

Test case generation

unsigned $\operatorname{GCD}(\mathrm{x}, \mathrm{y})$ \{
requires $(y>0)$;
while (true) \{
SSA unsigned $m=x \% y$;
if ($m==0$) return y;

$$
x=y ;
$$

y = m;
\}
\}
We want a trace where the loop is executed twice.

Type checking

Signature:
div: int, $\{x:$ int $\mid x \neq 0\} \rightarrow$ int

Call site:
if $\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ then
return $\operatorname{div}(a, b)$

Verification condition
$\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ implies $\mathrm{b} \neq 0$

What is logic?

e Logic is the art and science of effective reasoning.
e How can we draw general and reliable conclusions from a collection of facts?
e Formal logic: Precise, syntactic characterizations of well-formed expressions and valid deductions.

- Formal logic makes it possible to calculate consequences at the symbolic level.
e Computers can be used to automate such symbolic calculations.

What is logic?

e Logic studies the relationship between language, meaning, and (proof) method.

- A logic consists of a language in which (well-formed) sentences are expressed.
- A semantic that distinguishes the valid sentences from the refutable ones.
e A proof system for constructing arguments justifying valid sentences.
e Examples of logics include propositional logic, equational logic, first-order logic, higher-order logic, and modal logics.

What is logical language?

e A language consists of logical symbols whose interpretations are fixed, and non-logical ones whose interpretations vary.
e These symbols are combined together to form wellformed formulas.
e In propositional logic PL, the connectives \wedge, \vee, and \neg have a fixed interpretation, whereas the constants p, q, r may be interpreted at will.

Propositional Logic

Formulas: $\varphi:=p\left|\varphi_{1} \vee \varphi_{2}\right| \varphi_{1} \wedge \varphi_{2}\left|\neg \varphi_{1}\right| \varphi_{1} \Rightarrow \varphi_{2}$

Examples:
$p \vee q \Rightarrow q \vee p$
$p \wedge \neg q \wedge(\neg p \vee q)$

We say p and q are propositional variables.

Exercise: Using a programming language, define a representation for formulas and a checker for wellformed formulas.

Interpretation

An interpretation \mathcal{M} assigns truth values $\{\top, \perp\}$ to propositional variables.

Let A and B range over $P L$ formulas.
$\mathcal{M} \llbracket \phi \rrbracket$ is the meaning of ϕ in \mathcal{M} and is computed using truth tables:

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Satisfiability \& Validity

e A formula is satisfiable if it has an interpretation that makes it logically true.

- In this case, we say the interpretation is a model.
e A formula is unsatisfiable if it does not have any model.
- A formula is valid if it is logically true in any interpretation.
- A propositional formula is valid if and only if its negation is unsatisfiable.

Satisfiability \& Validity: examples

$$
p \vee q \Rightarrow q \vee p
$$

$$
p \vee q \Rightarrow q
$$

$$
p \wedge \neg q \wedge(\neg p \vee q)
$$

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Satisfiability \& Validity: examples

$$
p \vee q \Rightarrow q \vee p
$$

VALID

$$
p \vee q \Rightarrow q \quad \text { SATISFIABLE }
$$

$p \wedge \neg q \wedge(\neg p \vee q) \quad$ UNSATISFIABLE

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Equivalence

Two formulas A and B are equivalent, $A \Longleftrightarrow B$, if their truth values agree in each interpretation.

Exercise 2 Prove that the following are equivalent

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$
5. $\neg A \Rightarrow B \Longleftrightarrow \neg B \Rightarrow A$

Equisatisfiable

We say formulas A and B are equisatisfiable if and only if A is satisfiable if and only if B is.

During this course, we will describe transformations that preserve equivalence and equisatisfiability.

Normal Forms

A formula where negation is applied only to propositional atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.
A formula that is a multiary conjunction of multiary disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is equivalent to one in NNF, CNF, and DNF.

Exercise 4 Show that every n-ary Boolean function can be expressed using just \neg and \vee.

Normal Forms

NNF?

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

Normal Forms

NNF? NO

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

Normal Forms

NNF? NO

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

$$
\begin{aligned}
& \text { 1. } \neg \neg A \Longleftrightarrow A \\
& \text { 2. } A \Rightarrow B \Longleftrightarrow \neg A \vee B \\
& \text { 3. } \neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B \\
& \text { 4. } \neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B
\end{aligned}
$$

Normal Forms

NNE? NO
$(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee \neg \neg p))$

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$

Normal Forms

NSF? NO
$(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee \neg \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee p))$

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$

Normal Forms

CNF?
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO

$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO

$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge(p \vee r) \wedge(s \vee r) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

DNF?
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
\Leftrightarrow
$(p \vee q) \wedge(\neg q \vee r)$
Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Other Rules

1. $A \wedge \neg A \Leftrightarrow \perp$
2. $A \vee \perp \Leftrightarrow A$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
\Leftrightarrow
$(p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \vee q) \wedge \neg q) \vee((p \vee q) \wedge r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Other Rules

1. $A \wedge \neg A \Leftrightarrow \perp$
2. $A \vee \perp \Leftrightarrow A$

Normal Forms

DNF? NO, actually this formula is in CNF

```
p\wedge(\negp\veeq)^(\negq\veer)
```

\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
$(p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \vee q) \wedge \neg q) \vee((p \vee q) \wedge r)$
\Leftrightarrow
$(p \wedge \neg q) \vee(q \wedge \neg q) \vee((p \vee q) \wedge r)$
$(p \wedge \neg q) \vee(p \wedge r) \vee(q \wedge r)$

CNF (again)

A CNF formula is a conjunction of clauses. A clause is a disjunction of literals.

Ex: Implement a linear-time decision procedure for 2CNF (each clause has at most 2 literals).

A clause is trivial if it contains a complementary pair of literals.

Since the order of the literals in a clause is irrelevant, the clause can be treated as a set.

A set of clauses is trivial if it contains the empty clause (false).

CNF ((again)

Equivalence rules can be used to translate any formula to CNF.

eliminate \Rightarrow	$A \Rightarrow B \equiv \neg A \vee B$
reduce the scope of \neg	$\neg(A \vee B) \equiv \neg A \wedge \neg B$,
	$\neg(A \wedge B) \equiv \neg A \vee \neg B$
apply distributivity	$A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$,
	$A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$

CNF ((again)

The CNF translation described in the previous slide is too expensive (distributivity rule).

However, there is a linear time translation to CNF that produces an equisatisfiable formula. Replace the distributivity rules by the following rules:

$$
\begin{gathered}
\frac{F\left[l_{i} \text { op } l_{j}\right]}{F[x], x \Leftrightarrow l_{i} \text { op } l_{j}} * \\
x \Leftrightarrow l_{i} \vee l_{j} \\
\hline \neg x \vee l_{i} \vee l_{j}, \neg l_{i} \vee x, \neg l_{j} \vee x \\
x \Leftrightarrow l_{i} \wedge l_{j} \\
\hline \neg x \vee l_{i}, \neg x \vee l_{j}, \neg l_{i} \vee \neg l_{j} \vee x
\end{gathered}
$$

(*) x must be a fresh variable.
Ex: Show that the rules preserve equisatisfiability.

CNF translation (example)

Translation of $(p \wedge(q \vee r)) \vee t$:
$\frac{(p \wedge(q \vee r)) \vee t}{\left(p \wedge x_{1}\right) \vee t, x_{1} \Leftrightarrow q \vee r}$
$\frac{x_{2} \vee t, x_{2} \Leftrightarrow p \wedge x_{1}, x_{1} \Leftrightarrow q \vee r}{\frac{x_{2} \vee t, \neg x_{2} \vee p, \neg x_{2} \vee x_{1}, \neg p \vee \neg x_{1} \vee x_{2}, x_{1} \Leftrightarrow q \vee r}{x_{2} \vee t, \neg x_{2} \vee p, \neg x_{2} \vee x_{1}, \neg p \vee \neg x_{1} \vee x_{2}, \neg x_{1} \vee q \vee r, \neg q \vee x_{1}, \neg r \vee x_{1}}}$

Ex: Implement a CNF translator.

Semantic Trees

A semantic tree represents the set of partial interpretations for a set of clauses. A semantic tree for $\{p \vee \neg q \vee \neg r, p \vee r, p \vee q, \neg p\}:$

A node N is a failure node if its associated interpretation falsifies a clause, but its ancestor doesn't.

Ex: Show that the semantic tree for an unsatisfiable (non-trivial) set of clauses must contain a non failure node such that its descendants are failure nodes.

Resolution

Formula must be in CNF.
Resolution procedure uses only one rule:

$$
\frac{C_{1} \vee p, C_{2} \vee \neg p}{C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}} \text { res }
$$

The result of the resolution rule is also a clause, it is called the resolvent. Duplicate literals in a clause and trivial clauses are eliminated.

There is no branching in the resolution procedure.
Example: The resolvent of $p \vee q \vee r$, and $\neg p \vee r \vee t$ is $q \vee r \vee t$.
Termination argument: there is a finite number of distinct clauses over n propositional variables.

Ex: Show that the resolution rule is sound.

Resolution (example)

A refutation of $\neg p \vee \neg q \vee r, p \vee r, q \vee r, \neg r$:

Ex: Implement a naïve resolution procedure.

Completeness of Resolution

Let $\operatorname{Res}(S)$ be the closure of S under the resolution rule.
Completeness: S is unsatisfiable iff $\operatorname{Res}(S)$ contains the empty clause.

Proof (\Rightarrow):
Assume that S is unsatisfiable, and $\operatorname{Res}(S)$ does not contain the empty clause.

Key points: $\operatorname{Res}(S)$ is unsatisfiable, and $\operatorname{Res}(S)$ is a non trivial set of clauses.

The semantic tree of $\operatorname{Res}(S)$ must contain a non failure node N such that its descendants $\left(N_{p}, N_{\neg p}\right)$ are failure nodes.

Completeness of Resolution

There is $C_{1} \vee \neg p$ which is falsified by N_{p}, but not by N.
There is $C_{2} \vee p$ which is falsified by $N_{\neg p}$, but not by N.
$C_{1} \vee C_{2}$ is the resolvent of $C_{1} \vee \neg p$ and $C_{2} \vee p$.
$C_{1} \vee C_{2}$ is in $\operatorname{Res}(S)$, and it is falsified by N (contradiction).
Proof $(\Leftarrow): \operatorname{Res}(S)$ is unsatisfiable, and equivalent to S. So, S is unsatisifiable.

Subsumption

The resolution procedure may generate several irrelevant and redundant clauses.

Subsumption is a clause deletion strategy for the resolution procedure.

$$
\frac{C_{1}, C_{1} \vee C_{2}}{C_{1}} s u b
$$

Example: $p \vee \neg q$ subsumes $p \vee \neg q \vee r \vee t$.
Deletion strategy: Remove the subsumed clauses.

Unit \& Input Resolution

Unit resolution: one of the clauses is a unit clause.

$$
\frac{C \vee \bar{l}, l}{C, l} u n i t
$$

Unit resolution always decreases the configuration size ($C \vee \bar{l}$ is subsumed by C).

Input resolution: one of the clauses is in S.
Ex: Show that the unit and input resolution procedures are not complete.

Ex: Show that a set of clauses S has an unit refutation iff it has an input refutation (hint: induction on the number of propositions).

Hom Clauses

Each clause has at most on positive literal.
Rule base systems $\left(\neg p_{1} \vee \ldots \vee \neg p_{n} \vee q \equiv p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$.
Positive unit rule:

$$
\frac{C \vee \neg p, p}{C, p} \text { unit }^{+}
$$

Horn clauses are the basis of programming languages as Prolog.

Ex: Show that the positive unit rule is a complete procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.

DPLL

DPLL $=$ Unit resolution + Split rule.

$$
\begin{aligned}
& \frac{\Gamma}{\Gamma, p \mid \Gamma, \neg p} \text { split } \quad p \text { and } \neg p \text { are not in } \Gamma \text {. } \\
& \frac{C \vee \bar{l}, l}{C, l} \text { unit }
\end{aligned}
$$

Used in the most efficient SAT solvers.

Pure Literals

A literal is pure if only occurs positively or negatively.
Example :

$$
\begin{aligned}
& \varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right) \\
& \neg x_{1} \text { and } x_{3} \text { are pure literals }
\end{aligned}
$$

Pure literal rule:
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$
\varphi_{\neg x_{1}, x_{3}}=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

Preserve satisfiability, not logical equivalency!

Pure Literals

A literal is pure if only occurs positively or negatively.
Example :

$$
\begin{aligned}
& \varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right) \\
& \neg x_{1} \text { and } x_{3} \text { are pure literals }
\end{aligned}
$$

Pure literal rule:
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$
\varphi_{\neg x_{1}, x_{3}}=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

Preserve satisfiability, not logical equivalency!

DPLL (as a procedure)

- Standard backtrack search
- DPLL(F) :
- Apply unit propagation
- If conflict identified, return UNSAT
- Apply the pure literal rule
- If F is satisfied (empty), return SAT
- Select decision variable x
- If $\operatorname{DPLL}(F \wedge x)=$ SAT return SAT
- return $\operatorname{DPLL}(F \wedge \neg x)$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

Some Applications

Bit-vector / Machine arithmetic

Let x, y and z be 8-bit (unsigned) integers.

$$
\text { Is } x>0 \wedge y>0 \wedge z=x+y \Rightarrow z>0 \quad \text { valid? }
$$

Is $x>0 \wedge y>0 \wedge z=x+y \wedge \neg(z>0)$ satisfiable?

Bit-vector / Machine arithmetic

We can encode bit-vector satisfiability problems in propositional logic.

Idea 1:
Use n propositional variables to encode n-bit integers.

$$
x \rightarrow\left(x_{1}, \ldots, x_{n}\right)
$$

Idea 2:
Encode arithmetic operations using hardware circuits.

Encoding equality

$p \Leftrightarrow q$ is equivalent to $(\neg p \vee q) \wedge(\neg q \vee p)$

The bit-vector equation $\mathrm{x}=\mathrm{y}$ is encoded as:
$\left(x_{1} \Leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \Leftrightarrow y_{n}\right)$

Encoding addifion

We use $\left(r_{1}, \ldots, r_{n}\right)$ to store the result of $x+y$
p xor q is defined as $\neg(p \Leftrightarrow q)$
xor is the 1-bit adder

p	q	p xor q	$p \wedge q$
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

carry

Encoding 1-bit full adder

1-bit full adder

Three inputs: $x, y, c_{\text {in }}$
Two outputs: $r, c_{\text {out }}$

x	y	$c_{\text {in }}$	$r=x$ xor y xor $c_{\text {in }}$	$c_{\text {out }}=(x \wedge y) \vee\left(x \wedge c_{\text {in }}\right) \vee\left(y \wedge c_{\text {in }}\right)$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Encoding n-bit adder

We use $\left(r_{1}, \ldots, r_{n}\right)$ to store the result of $x+y$, and (c_{1}, \ldots, c_{n})
$r_{1} \Leftrightarrow\left(x_{1} \operatorname{xor} y_{1}\right)$
$c_{1} \Leftrightarrow\left(x_{1} \wedge y_{1}\right)$
$r_{2} \Leftrightarrow\left(x_{2} \operatorname{xor} y_{2} \operatorname{xor} c_{1}\right)$
$c_{2} \Leftrightarrow\left(x_{2} \wedge y_{2}\right) \vee\left(x_{2} \wedge c_{1}\right) \vee\left(y_{2} \wedge c_{1}\right)$
$r_{n} \Leftrightarrow\left(x_{n} \operatorname{xor} y_{n} \operatorname{xor} c_{n-1}\right)$
$c_{n} \Leftrightarrow\left(x_{n} \wedge y_{n}\right) \vee\left(x_{n} \wedge c_{n-1}\right) \vee\left(y_{n} \wedge c_{n-1}\right)$

Test case generation (again)

unsigned GCD (x, y) \{
requires $(\mathrm{y}>0$);
while (true) \{
SSA unsigned $m=x \% y$;
if ($m==0$) return y;
$x=y ;$

$$
y=m ;
$$

$$
\}
$$

$$
\begin{array}{ll}
\left(y_{0}>0\right) \text { and } & \begin{array}{l}
x_{0}=2 \\
\left(m_{0}=x_{0} \% y_{0}\right) \text { and } \\
\text { not }\left(m_{0}=0\right) \text { and } \\
\left(x_{1}=y_{0}\right) \text { and } \\
\left(y_{1}=m_{0}\right) \text { and } \\
\left(m_{1}=x_{1} \% y_{1}\right) \text { and }
\end{array} \\
\left(m_{1}=0\right) & m_{0}=2 \\
x_{1}=4 \\
y_{1}=2 \\
m_{1}=0
\end{array}
$$

We want a trace where the loop is executed twice.

Experimental Exercises

- The first step is to pick up a SAT solver.
- Play with simple examples
- Translate your problem into SAT
- Experiment

Available SAT Solvers

Several open source SAT solvers exist :
Minisat ($\mathrm{C}++$) www.minisat.se Presumably the most widely used within the SAT community. Used to be the best general purpose SAT solver. A large community around the solver.
Picosat (C)/Precosat (C++) http://fmv.jku.at/software/index.html Award winner in 2007 and 2009 of the SAT competition, industrial category.
SAT4J (Java) http://www.sat4j.org. For Java users. Far less efficient than the two others.
UBCSAT (C) http://www.satlib.org/ubcsat/ Very efficient stochastic local search for SAT.
http://www.satcompetition.org Both the binaries and the source code of the solvers are made available for research purposes.

Available Examples

e Satisfiability library: http://www.satlib.org
e The SAT competion: http://www.satcompetition.org
e Search the WEB: "SAT benchmarks"

Using SAT solvers

All SAT solvers support the very simple DIMACS CNF input format :

$$
(a \vee b \vee \neg c) \wedge(\neg b \vee \neg c)
$$

will be translated into
p cnf 32
$12-30$
-2 -3 0
The first line is of the form
p cnf <maxVarId> <numberOfClauses>
Each variable is represented by an integer, negative literals as negative integers, 0 is the clause separator.

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable modulo theory T ?

SMT solvers have specialized algorithms for T

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{ead}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(r e a d(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Uninterpreted Functions

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Substituting c by b+2

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), b+2-2)) \neq f(b+2-b+1)
$$

Simplifying

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), b)) \neq f(3)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), b)) \neq f(3)
$$

Applying array theory axiom forall $a, i, v:$ read(write $(a, i, v), i)=v$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(3) \neq f(3)
$$

Inconsistent/Unsatisfiable

SMT-Lib

e Repository of Benchmarks
e http://www.smtlib.org

- Benchmarks are divided in "logics":
- QF_UF: unquantified formulas built over a signature of uninterpreted sort, function and predicate symbols.
- QF_UFLIA: unquantified linear integer arithmetic with uninterpreted sort, function, and predicate symbols.
- AUFLIA: closed linear formulas over the theory of integer arrays with free sort, function and predicate symbols.

Ground formulas

For most SMT solvers: \boldsymbol{F} is a set of ground formulas

Many Applications

Bounded Model Checking
Test-Case Generation

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Microsoft ${ }^{*}$
Research

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Examples:
SAT Solver
Equality solver

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction
$\left.|M|=\left\{\star_{1},\right\rangle_{2}\right\} \quad$ (universe, aka domain)

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}\right\} \quad \text { (universe, aka domain) } \\
M(\mathrm{a})={ }_{1} \text { (assignment) }
\end{gathered}
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction
$\left.|\mathrm{M}|-\left\{\wedge_{1},\right\rangle_{2}\right\} \quad$ (universe, aka domain) $\mathrm{M}(\mathrm{a})=1$ (assignment)

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

$$
\begin{gathered}
|M|=\left\{\rightharpoonup_{1}\right\} \quad \text { (universe, aka domain) } \\
M(a)=M(b)=M(c)=M(s)=\rightharpoonup_{1} \\
M(d)=M(e)=M(t)=\rightharpoonup_{2}
\end{gathered}
$$

Deciding Equality:

Termination, Soundness, Completeness

- Termination: easy
- Soundness
e Invariant: all constants in a "ball" are known to be equal.
- The "ball" merge operation is justified by:
- Transitivity and Symmetry rules.
- Completeness
e We can build a model if an inconsistency was not detected.
- Proof template (by contradiction):
- Build a candidate model.
e Assume a literal was not satisfied.
e Find contradiction.

Deciding Equality:
 Termination, Soundness, Completeness

- Completeness
θ We can build a model if an inconsistency was not detected.
e Instantiating the template for our procedure:
e Assume some literal c = d is not satisfied by our model.
\ominus That is, $M(c) \neq M(d)$.
- This is impossible, c and d must be in the same "ball".

$M(c)=M(d)={ }_{i}$

Deciding Equality:
 Termination, Soundness, Completeness

- Completeness
e We can build a model if an inconsistency was not detected.
e Instantiating the template for our procedure:
e Assume some literal c $\neq \mathrm{d}$ is not satisfied by our model.
- That is, $M(c)=M(d)$.
- Key property: we only check the disequalities after we processed all equalities.
e This is impossible, c and d must be in the different "balls"

$$
\begin{aligned}
& M(c)=\star_{i} \\
& M(d)={ }_{j}
\end{aligned}
$$

Deciding Equality+

 (uninterpreted) Functions$$
a=b, b=c, d=e, b=s, d=t, f(a, g(d)) \neq f(b, g(e))
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality+

 (uninterpreted) Functions$$
a=b, b=c, d=e, b=s, d=t, f(a, g(d)) \neq f(b, g(e))
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f(b, g(e)) \\
v_{1} \equiv g(d)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f(b, g(e)) \\
v_{1} \equiv g(d)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f\left(b, v_{2}\right) \\
v_{1} \equiv g(d), v_{2} \equiv g(e)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f\left(b, v_{2}\right) \\
v_{1} \equiv g(d), v_{2} \equiv g(e)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
a=b, b & =c, d=e, b=s, d=t, v_{3} \neq f\left(b, v_{2}\right) \\
v_{1} & \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{aligned}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
a=b, b & =c, d=e, b=s, d=t, v_{3} \neq f\left(b, v_{2}\right) \\
v_{1} & \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{aligned}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t V_{1}

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t V_{1} v_{2}Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } g(d)=g(e)
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } v_{1}=v_{2}
\end{gathered}
$$

Deciding Equality + (uninterpreted) Functions

We say:

v_{1} and v_{2} are congruent.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{gathered}
$$

a, b, c, s d,e,t

$$
\mathrm{v}_{1}, \mathrm{v}_{2}
$$

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } v_{1}=v_{2}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } f\left(a, v_{1}\right)=f\left(b, v_{2}\right)
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t
$\mathrm{V}_{3}, \mathrm{~V}_{4}$

Unsatisfiable

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Changing the problem

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

a, b, c, s

 d,e,t $v_{1}, v_{2}$$$
v_{3}, v_{4}
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

a, b, c, s

 d,e,t$$
v_{1}, v_{2}
$$

$$
\mathrm{v}_{3}, \mathrm{v}_{4}
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{{ }_{1}, \star_{2}\right\} \\
M(a)=M(b)=M(c)=M(s)={ }_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
|M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\}
$$

$$
M(a)=M(b)=M(c)=M(s)=1
$$

$$
\mathrm{M}(\mathrm{~d})=\mathrm{M}(\mathrm{e})=\mathrm{M}(\mathrm{t})=\stackrel{\rightharpoonup}{2}_{2}
$$

$$
M\left(v_{1}\right)=M\left(v_{2}\right)=*_{3}
$$

$$
M\left(v_{3}\right)=M\left(v_{4}\right)=\psi_{4}
$$

Deciding Equality +

(uninterpreted) Functions

e Building the interpretation for function symbols
e $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $|\mathrm{M}|$

- Defined as:
$\mathrm{M}(\mathrm{g})\left(\boldsymbol{*}_{\mathrm{i}}\right)=\boldsymbol{*}_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)=\star_{i} \\
& M(v)=\star_{j}
\end{aligned}
$$

$=\star_{k}$, otherwise $\left(\star_{k}\right.$ is an arbitrary element)

- Is $\mathrm{M}(\mathrm{g})$ well-defined?

Deciding Equality +

(uninterpreted) Functions

- Building the interpretation for function symbols
e $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $|\mathrm{M}|$
- Defined as:
$\mathrm{M}(\mathrm{g})\left(\star_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)=i_{i} \\
& M(v)={ }_{j}
\end{aligned}
$$

$=\star_{k}$, otherwise $\left(\star_{k}\right.$ is an arbitrary element)
e Is M(g) well-defined?
e Problem: we may have

$$
v \equiv g(a) \text { and } w \equiv g(b) \text { s.t. }
$$

$$
M(a)=M(b)=\diamond_{1} \text { and } M(v)=\star_{2} \neq M(w)
$$

$$
\text { So, is } \mathrm{M}(\mathrm{~g})\left(\diamond_{1}\right)=\star_{2} \text { or } \mathrm{M}(\mathrm{~g})\left(\diamond_{1}\right)=\star_{3} \text { ? }
$$

Deciding Equality +

(uninterpreted) Functions

e Building the interpretation for function symbols

- $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $\left.\right|^{\text {nı1 }}$
- Defined as:

This is impossible because of
$\mathrm{M}(\mathrm{g})\left(\star_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}$ the congruence rule! $\mathrm{M}(\mathrm{a})=\star_{\mathrm{i}} \quad \mathrm{a}$ and b are in the same "ball", $M(v)={ }_{j} \quad$ then so are v and w
$={ }_{k}$, otherwise (\rangle_{k} i_
e Is M(g) well-defined?

- Problem: we may have

$$
v \equiv g(a) \text { and } w \equiv g(b) \text { s.t. }
$$

$$
M(a)=M(b)=\leqslant_{1} \text { and } M(v)=\diamond_{2} \neq M(w)
$$

$$
\text { So, is } \mathrm{M}(\mathrm{~g})\left(\rightharpoonup_{1}\right)=\star_{2} \text { or } \mathrm{M}(\mathrm{~g})\left(\rightharpoonup_{1}\right)=\star_{3} ?
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{{ }_{1}, \star_{2}\right\} \\
M(a)=M(b)=M(c)=M(s)={ }_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{aligned}
& |M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\} \\
& M(a)=M(b)=M(c)=M(s)={ }_{1} \\
& M(d)=M(e)=M(t)={ }_{2} \\
& M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
& M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4} \\
& \mathrm{M}(\mathrm{~g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}} \text { if there is } \mathrm{v} \equiv \mathrm{~g}(\mathrm{a}) \text { s.t. } \\
& M(a)={ }_{i} \\
& M(v)={ }_{j} \\
& ={ }_{k} \text {, otherwise }
\end{aligned}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{aligned}
& |M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\} \\
& M(a)=M(b)=M(c)=M(s)={ }_{1} \\
& M(d)=M(e)=M(t)={ }_{2} \\
& M\left(v_{1}\right)=M\left(v_{2}\right)=*_{3} \\
& M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4} \\
& \mathrm{M}(\mathrm{~g})=\left\{\star_{2} \rightarrow \star_{3}\right\} \\
& \mathrm{M}(\mathrm{~g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}} \text { if there is } \mathrm{v} \equiv \mathrm{~g}(\mathrm{a}) \text { s.t. } \\
& M(a)={ }_{i} \\
& M(v)={ }_{j} \\
& ={ }_{k} \text {, otherwise }
\end{aligned}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{aligned}
& |M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\} \\
& M(a)=M(b)=M(c)=M(s)={ }_{1} \\
& M(d)=M(e)=M(t)={ }_{2} \\
& M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
& M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4} \\
& \mathrm{M}(\mathrm{~g})=\left\{\star_{2} \rightarrow \star_{3}\right\} \\
& \mathrm{M}(\mathrm{~g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}} \text { if there is } \mathrm{v} \equiv \mathrm{~g}(\mathrm{a}) \text { s.t. } \\
& M(a)={ }_{i} \\
& M(v)={ }_{j} \\
& ={ }_{k} \text {, otherwise }
\end{aligned}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2},{ }_{4}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)=\star_{3} \\
\left.M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}, \text { else } \rightarrow{ }_{1}\right\}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)=\star_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}, \star_{4}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)=\star_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)=\star_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)=\star_{4} \\
M(g)=\left\{\star_{2} \rightarrow \text { else } \rightarrow \star_{1}\right\} \\
M(f)=\left\{\left(\star_{1}, \star_{3}\right) \rightarrow \text { else } \rightarrow \star_{1}\right\}
\end{gathered}
$$

$M(g)\left(\diamond_{i}\right)=\star_{j}$ if there is $v \equiv g(a)$ s.t.

$$
\begin{array}{r}
\mathrm{M}(\mathrm{a})=\star_{\mathrm{i}} \\
\mathrm{M}(\mathrm{v})=\star_{\mathrm{j}}
\end{array}
$$

$={ }_{k}$, otherwise

Deciding Equality + (uninterpreted) Functions

What about predicates?

$$
p(a, b), \quad \neg p(c, b)
$$

Deciding Equality + (uninterpreted) Functions

What about predicates?

$$
p(a, b), \quad \neg p(c, b)
$$

$$
f_{p}(a, b)=T, \quad f_{p}(c, b) \neq T
$$

Ackermannization

It is possible to eliminate function symbols using a method called Ackermannization.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right) \\
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
d \neq e \vee v_{1}=v_{2}, \\
a \neq v_{1} \vee b \neq v_{2} \vee v_{3}=v_{4}
\end{gathered}
$$

Ackermannization

It is possible to eliminate function symbols using a method called Ackermannization.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right) \\
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
d \neq e \vee v_{1}=v_{2} \\
a \neq v_{1} \vee b \neq v_{2} \vee v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality + (uninterpreted) Functions

It is possible to implement our procedure in $O(n \log n)$

Deciding Equality + (uninterpreted) Functions

d,e,t Sets (equivalence classes)

$$
d, e
$$

Deciding Equality + (uninterpreted) Functions

d,e,t Sets (equivale Key observation: The sets are disjoint!

$d, e \cup t=d, e, t \quad$ Union

Deciding Equality + (uninterpreted) Functions

Union-Find data-structure
Every set (equivalence class) has a root element (representative).

Deciding Equality + (uninterpreted) Functions

Union-Find data-structure

Microsoft ${ }^{*}$
Research

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

$$
\begin{aligned}
& a_{1} \longrightarrow a_{2} \cup a_{3}=a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \cup a_{4}=a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow a_{4} \\
& \ldots \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow \ldots \longrightarrow a_{n-1} \cup a_{n}= \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow \ldots \longrightarrow a_{n-1} \longrightarrow a_{n}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

$$
\begin{aligned}
& a_{1} \longrightarrow a_{2} \cup a_{3}=a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \\
& a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \cup a_{4}=a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \\
& \ldots \\
& a_{1} a_{a_{4}} a_{a_{3}} \ldots a_{n-1}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

> We can do n merges in $O(n \log n)$

Each constant has two fields: find and size.

Deciding Equality +

 (uninterpreted) FunctionsImplementing the congruence rule.
Occurrences of a constant: we say a occurs in viff $v \equiv f(\ldots, a, \ldots)$
When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

occurrences[b] = $\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$ occurrences[s] = $\left\{\mathrm{v}_{3} \equiv \mathrm{f}(\mathrm{r})\right\}$

Deciding Equality + (uninterpreted) Functions

 Implementing the congruence rule.Occurrences of a constant: we say a occurs in viff $v \equiv f(\ldots, a, \ldots)$
When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

Inefficient version:
for each v in occurrences(b) for each w in occurrences(s) if v and w are congruent add (v, w) to todo queue
occurrences $(b)=\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$ occurrences(s) $=\left\{v_{3} \equiv f(r)\right\}$

A queue of pairs that need to be merged.

Deciding Equality +

 (uninterpreted) Functions
occurrences $[b]=\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$
occurrences $[\mathrm{s}]=\left\{\mathrm{v}_{3} \equiv \mathrm{f}(\mathrm{r})\right\}$
We also need to merge occurrences[b] with occurrences[s]. This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

$$
\binom{v_{1}}{v_{2}} \cup \overparen{v_{3}}=\left(\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right.
$$

Deciding Equality + (uninterpreted) Functions

Avoiding the nested loop: for each v in occurrences[b]
for each w in occurrences[s]

Use a hash table to store the elements $v_{1} \equiv f\left(a_{1}, \ldots, a_{n}\right)$. Each constant has an identifier (e.g., natural number). Compute hash code using the identifier of the (equivalence class) roots of the arguments.
$\operatorname{hash}\left(\mathrm{v}_{1}\right)=$ hash-tuple(id(f), id(root $\left.\left.\left(\mathrm{a}_{1}\right)\right), \ldots, \operatorname{id}\left(\operatorname{root}\left(\mathrm{a}_{\mathrm{n}}\right)\right)\right)$

Deciding Equality + (uninterpreted) Functions

Avoiding the nested loop: for each v in occurrences(b)
for each w in occurrences(s)

Use a hash table to hash-tuple can be the Jenkin's Each constant has a Compute hash cod hash function for strings. Just adding the ids produces a very bad hash-code!
$\left., \ldots, a_{n}\right)$. mber). equivalence class) roots of the argur
$\operatorname{hash}\left(\mathrm{v}_{1}\right)=$ hash-tuple(id(f), id(root $\left.\left.\left(\mathrm{a}_{1}\right)\right), \ldots, \operatorname{id}\left(\operatorname{root}\left(\mathrm{a}_{\mathrm{n}}\right)\right)\right)$

Deciding Equality + (uninterpreted) Functions

Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a_{1} and a_{2} Assume a_{2} is smaller than a_{1}
Before merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right]$
remove v from the hash table (its hashcode will change)
After merging the equivalence classes: a_{1} and a_{2} for each v in occurrences[a_{2}]
if there is w congruent to v in the hash-table add (v, w) to todo queue else add v to hash-table

Deciding Equality +

(uninterpreted) Functi Trick:
Use dynamic arrays to
Efficient implementation of the congrı represent the occurrences
Merging the equivalences classes with roc and a_{2} Assume a_{2} is smaller than a_{1}
Before merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right]$
remove v from the hash table (its hashcode will change)
After merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right]$
if there is w congruent to v in the hash-table add (v, w) to todo queue else add v to hash-table
add v to occurrences $\left(a_{1}\right)$

Deciding Equality + (uninterpreted) Functions

The efficient version is not optimal (in theory).
Problem: we may have $v \equiv f\left(a_{1}, \ldots, a_{n}\right)$ with "huge" n.

Solution: currying
Use only binary functions, and represent $f\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ as
$f\left(a_{1}, h\left(a_{2}, h\left(a_{3}, a_{4}\right)\right)\right)$

This is not necessary in practice, since the n above is small.

Deciding Equality + (uninterpreted) Functions

Each constant has now three fields:
find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Naïve Solution: Convert to DNF

$$
(x \geq 0, y=x+1, y>2) \vee(x \geq 0, y=x+1, y<1)
$$

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Naïve Solution: Convert to DNF

$$
(x \geq 0, y=x+1, y>2) \vee(x \geq 0, y=x+1, y<1)
$$

Too Inefficient!
(exponential blowup)

Microsoft ${ }^{*}$
Research

SMT : Basic Architecture

Microsoft ${ }^{*}$
Research

Partial model

Set of clauses

DPLL

Guessing

$$
p \mid p \vee q, \neg q \vee r
$$

$$
p, \neg q \mid p \vee q, \neg q \vee r
$$

DPLL

Deducing

$$
\begin{aligned}
& p \mid p \vee q, \neg p \vee s \\
& p, s \mid p \vee q, \neg p \vee s
\end{aligned}
$$

DPLL

Backtracking

$$
p, \neg s, q \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

$$
p, s \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

Modern DPLL

© Efficient indexing (two-watch literal)
e Non-chronological backtracking (backjumping)

- Lemma learning

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) \quad p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)
$$

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

Assignment

$$
\begin{aligned}
& x \geq 0, y=x+1, \\
& \neg(y>2), y<1
\end{aligned}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

New Lemma

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

SAT + Theory solvers: Main loop

procedure SmtSolver(F)
$\left(F_{p}, M\right):=\operatorname{Abstract}(F)$

loop

(R, A) := SAT_solver $\left(\mathrm{F}_{\mathrm{p}}\right)$
if $R=$ UNSAT then return UNSAT
S := Concretize(A, M)
($\mathrm{R}, \mathrm{S}^{\prime}$) := Theory_solver(S)
if $R=$ SAT then return SAT
L := New_Lemma(S', M)
Add L to F_{p}

SAT + Theory solvers

Basic Idea

$$
F: x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)
$F_{p}: p_{1}, p_{2},\left(p_{3} \vee p_{4}\right)$
$M: p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)$,

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

A: Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$
$S: x \geq 0, y=x+1$, $\neg(y>2), y<1$

L: New Lemma
$\neg \mathfrak{p}_{1} \vee \neg \mathfrak{p}_{2} \vee \neg \mathfrak{p}_{4}$

S': Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

SAT + Theory solvers

State-of-the-art SMT solvers implement many improvements.

SAT + Theory solvers

Incrementality

Send the literals to the Theory solver as they are assigned by the SAT solver

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2}, p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

Partial assignment is already Theory inconsistent.

SAT + Theory solvers

Efficient Backtracking

We don't want to restart from scratch after each backtracking operation.

SAT + Theory solvers

Efficient Lemma Generation (computing a small S') Avoid lemmas containing redundant literals.

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2}, p_{3}, p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{3} \vee \neg p_{4} \rightleftharpoons \text { Imprecise Lemma }
$$

SAT + Theory solvers

Theory Propagation

It is the SMT equivalent of unit propagation.

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right) \\
& p_{1}, p_{2} \text { imply } \neg p_{4} \text { by theory propagation } \\
& p_{1}, p_{2}, \neg p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

SAT + Theory solvers

Theory Propagation

It is the SMT equivalent of unit propagation.

$$
\begin{aligned}
& \begin{array}{l}
p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
p_{3} \equiv(y>2), \\
p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
p_{2} \mid p_{1}, \\
p_{2}, \\
\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right) \\
p_{1}, p_{2} \text { imply } \neg p_{4} \text { by theory propagation } \\
p_{1}, \neg p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{array}
\end{aligned}
$$

Tradeoff between precision \times performance.

An Architecture: the core

Core

An Architecture: the core

Core

An Architecture: the core

Core

Scalar Values

Blackboard: equalities, disequalities, predicates

Deciding Equality + (uninterpreted) Functions

Problem: our procedure for Equality + UF does not support:
Incrementality
Efficient Backtracking
Theory Propagation
Lemma Learning

Deciding Equality + (uninterpreted) Functions

Incrementality (main problem):
We were processing the disequalities after we processed all equalities.

$$
\begin{aligned}
& p_{1} \equiv a=b, p_{2} \equiv b=c, \\
& p_{3} \equiv d=e, p_{4} \equiv a=c \\
& p_{1}, \neg p_{4}, p_{2} \mid p_{1}, p_{3} \vee \neg p_{4}, p_{2} \vee p_{4} \\
& \\
& a=b, a \neq c, b=c,
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality (main problem):
We were processing the disequalities after we processed all equalities.

$$
\begin{aligned}
& p_{1} \equiv a=b, p_{2} \equiv b=c, \\
& p_{3} \equiv d=e, p_{4} \equiv a=c \\
& p_{1}, \neg p_{4}, p_{2} \mid p_{1}, p_{3} \vee \neg p_{4}, p_{2} \vee p_{4} \\
& \\
& a=b, a \neq c, b=c,
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality

Store the disequalities of a constant.
Very similar to the structure occurrences.

$$
a=b, a \neq c
$$

$$
\begin{aligned}
& \operatorname{diseqs}[b]=\{a \neq c\} \\
& \operatorname{diseqs}[c]=\{a \neq c\}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality

Store the disequalities of a constant.
Very similar to the structure occurrences.

Deciding Equality + (uninterpreted) Functions

Incrementality

Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence classes, we must merge the sets diseqs. (circular lists again!)
diseqs $(b)=\{a \neq c\}$ diseqs $(c)=\{a \neq c\}$

Before merging two equivalence classes, traverse one (the smallest) set of diseqs. (track the size of diseqs!)

Deciding Equality + (uninterpreted) Functions

Backtracking

Option 1: functional data-structures (too slow).
Option 2: trail stack (aka undo stack, fine grain backtracking) Associate an undo operation to each update operation.
"Log" all update operations in a stack.
During backtracking execute the associated undo operations.

Deciding Equality + (uninterpreted) Functions

Backtracking

We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Deciding Equality + (uninterpreted) Functions

Backtracking

We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

Before:

Fields: find, size

After:

Fields: root, next, size

Deciding Equality +

(uninterpreted) Functions

Backtracking

We can do b Minimiz traversing the next fields. Do not t

New design possibility:
We do not need to merge occurrences and diseqs.
We can access all occurrences and diseqs by

Let us change the union-fina

Fields: find, size
ructure a little bit.

Fields: root, next, size

Deciding Equality + (uninterpreted) Functions

New union-find:

Deciding Equality + (uninterpreted) Functions

New union-find:

> What was updated? root[s], root[r], next[b], next[s], size[b]

Deciding Equality + (uninterpreted) Functions

New union-find:

Deciding Equality + (uninterpreted) Functions

What about the congruence table?
hash table used to implement the congruence rule.
Let us use an additional field cg .
It is only relevant for subterms: $\mathrm{v}_{3} \equiv \mathrm{f}\left(\mathrm{a}, \mathrm{v}_{1}\right)$
Invariant: a constant (e.g., v_{3}) is in the table iff $\mathrm{cg}\left[\mathrm{v}_{3}\right]=\mathrm{v}_{3}$
Otherwise, $\mathrm{cg}\left[\mathrm{v}_{3}\right]$ contains the subterm congruent to v_{3}
Example:
$v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)$
Assume v_{3} and v_{4} are congruent (i.e., $a=b$ and $v 1=v 2$)
Moreover, v_{3} is in the congruence table.
Then: $\operatorname{cg}\left[\mathrm{v}_{4}\right]=\mathrm{v}_{3}$ and $\operatorname{cg}\left[\mathrm{v}_{3}\right]=\mathrm{v}_{3}$

Deciding Equality +

(uninterpreted) Functions

procedure Merge (a, b)
$a_{r}:=\operatorname{root}[a] ; b_{r}:=\operatorname{root}[b]$
if $a_{r}=b_{r}$ then return
if not CheckDiseqs $\left(a_{r}, b_{r}\right)$ then return if size[a] < size[b] then swap a, b; swap a_{r}, b_{r} AddToTrailStack(MERGE, b_{r})
RemoveParentsFromHashTable(b_{r})
$\mathrm{c}:=\mathrm{b}_{\mathrm{r}}$
do

$$
\begin{aligned}
& \operatorname{root}[c]:=a_{r} \\
& c:=\operatorname{next}[c]
\end{aligned}
$$

while $c \neq b_{r}$
ReinsertParentsToHashTable(b_{r})
swap next[a_{r}], next[b_{r}]
$\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]+\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right]$

Deciding Equality +

(uninterpreted) Functions

procedure UndoMerge $\left(b_{r}\right)$
$a_{r}:=\operatorname{root}\left[b_{r}\right]$
$\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]-\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right]$
swap next[a_{r}], next[b_{r}]
RemoveParentsFromHashTable(b_{r})
$\mathrm{c}:=\mathrm{b}_{\mathrm{r}}$
do

$$
\begin{aligned}
& \operatorname{root}[c]:=b_{r} \\
& c:=\operatorname{next}[c]
\end{aligned}
$$

while $c \neq b_{r}$
for each parent p of b_{r}

$$
\text { if } p=c g[p] \text { or not congruent(} p, c g[p])
$$

add p to hash table
cg[p] := p

Deciding Equality + (uninterpreted) Functions

procedure UndoMerge $\left(b_{r}\right)$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{r}}:=\operatorname{root}\left[\mathrm{b}_{\mathrm{r}}\right] \\
& \operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]-\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right] \\
& \operatorname{swap} \operatorname{next}\left[\mathrm{a}_{\mathrm{r}}\right], \operatorname{next}\left[\mathrm{b}_{\mathrm{r}}\right]
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Propagating equalities (and disequalities)
Store the atom occurrences of a constant.

$$
\begin{aligned}
& \mathrm{p}_{1} \equiv \mathrm{a}=\mathrm{b}, \mathrm{p}_{2} \equiv \mathrm{~b}=\mathrm{c} \\
& \mathrm{p}_{3} \equiv \mathrm{~d}=\mathrm{e}, \mathrm{p}_{4} \equiv \mathrm{a}=\mathrm{c}
\end{aligned}
$$

$$
\text { atom_occs[a] }=\left\{p_{1}, p_{4}\right\}
$$

$$
\text { atom_occs }[b]=\left\{p_{1}, p_{2}\right\}
$$

$$
\text { atom_occs }[\mathrm{c}]=\left\{\mathrm{p}_{2}, \mathrm{p}_{4}\right\}
$$

$$
\text { atom_occs[d] = \{ } \left.p_{3}\right\}
$$

$$
\text { atom_occs }[e]=\left\{p_{4}\right\}
$$

Deciding Equality +
 (uninterpreted) Functions

Propagating disequalities (hard case)
$v_{1} \equiv f(a, b), v_{2} \equiv f(c, d)$
Assume we know that

$$
\begin{aligned}
& v_{1} \neq v_{2} \\
& a=c
\end{aligned}
$$

Then, $b \neq d$

More about that later.

Deciding Equality +

 (uninterpreted) FunctionsEfficient Lemma Generation (computing a small S')
In EUF (equality + UF) a minimal unsatisfiable set is composed on:
n equalities
1 disequality

It is easy to find the disequality $\mathrm{a} \neq \mathrm{b}$.
So, our problem consists in finding the minimal set of equalities that implies $\mathrm{a}=\mathrm{b}$.

Deciding Equality+

(uninterpreted) Functions

Efficient Lemma Generation (computing a small S')
First idea:
If $a=b$ is implied by a set of equalities, then a and b are in the same equivalence class.

Store all equalities used to "create" the equivalence class.

$$
\begin{aligned}
& p_{1} \equiv(a=c), p_{2} \equiv(b=c), \\
& p_{3} \equiv(s=r), p_{4} \equiv(c=r) \\
& p_{1}, p_{2}, p_{3}, p_{4}, \ldots \mid \ldots
\end{aligned}
$$

Too imprecise for justifying $\mathrm{a}=\mathrm{b}$. We need only p_{1}, p_{2}.

The equivalence class was "created" using $p_{1}, p_{2}, p_{3}, p_{4}$

Deciding Equality +

(uninterpreted) Functions

Efficient Lemma Generation (computing a small S')
Second idea: Store a "proof tree".
Each constant c has a non-redundant "proof" for $\mathrm{c}=\operatorname{root}[\mathrm{c}]$.
The proof is a path from c to root[c]

$$
\begin{aligned}
& p_{1} \equiv(a=c), p_{2} \equiv(b=c), \\
& p_{3} \equiv(s=r), p_{4} \equiv(c=r)
\end{aligned}
$$

Microsoft ${ }^{*}$
Research

Deciding Equality +

 (uninterpreted) Functionsprocedure Merge(a, b, p_{i})
$a_{r}:=\operatorname{root}[a] ; b_{r}:=\operatorname{root}[b]$
if $a_{r}=b_{r}$ then return
if not CheckDiseqs $\left(a_{r}, b_{r}\right)$ then return
if size[a] < size[b] then swap a, b; swap a_{r}, b_{r} InvertPathFrom(b, b_{r}); AddProofEdge(b, a, p_{i})
AddToTrailStack(MERGE, b_{r}, b)

Deciding Equality + (uninterpreted) Functions

Microsoft ${ }^{*}$
Research

Deciding Equality + (uninterpreted) Functions

Extract a non redundant proof for $\mathrm{a}=\mathrm{r}, \mathrm{a}=\mathrm{b}$ and $\mathrm{a}=\mathrm{s}$.

Deciding Equality + (uninterpreted) Functions

What about congruence?
New form of justification for an edge in the "proof tree".

$$
v_{1} \equiv f(b), v_{2} \equiv f(c)
$$

Deciding Equality +

(uninterpreted) Functions

What about congruence?
New form of justification for an edge in the "proof tree".

$$
v_{1} \equiv f(b), v_{2} \equiv f(c)
$$

When computing the "proof" for $\mathrm{a}=\mathrm{v}_{2}$ Recursive call for computing the proof for $v_{1}=v_{2}$ Result: $\left\{p_{1}, p_{2}\right\}$

Deciding Equality +

(uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{a}_{1}\right) \stackrel{\underline{p}_{1}}{=} \mathrm{a}_{1} \stackrel{\mathrm{q}_{1}}{=} \mathrm{a}_{2} \stackrel{\mathrm{~S}_{1}}{=} \mathrm{f}_{1}\left(\mathrm{a}_{5}\right) \\
& \mathrm{f}_{2}\left(\mathrm{a}_{1}\right) \stackrel{\mathrm{p}_{2}}{=} \mathrm{a}_{2} \stackrel{\mathrm{q}_{2}}{=} \mathrm{a}_{3}{ }^{\mathrm{S}_{2}} \mathrm{f}_{2}\left(\mathrm{a}_{5}\right) \\
& f_{3}\left(a_{1}\right) \stackrel{\underline{p}_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4} \stackrel{S_{3}}{=} f_{3}\left(a_{5}\right) \\
& \mathrm{f}_{4}\left(\mathrm{a}_{1}\right) \stackrel{\mathrm{p}_{4}}{=} \mathrm{a}_{4} \stackrel{\mathrm{q}_{4}}{=} \mathrm{a}_{5}{ }^{\mathrm{s}_{4}} \mathrm{f}_{4}\left(\mathrm{a}_{5}\right)
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver $f_{1}\left(a_{1}\right) \stackrel{p_{1}}{=} a_{1} q_{1} a_{2} \stackrel{S_{1}}{=} f_{1}\left(a_{5}\right) \quad$ Two non redundant proofs $f_{2}\left(a_{1}\right)=f_{2}\left(a_{5}\right)$: $f_{2}\left(a_{1}\right) \stackrel{p_{2}}{=} a_{2} \stackrel{q_{2}}{=} a_{3}=f_{2}\left(a_{5}\right) \quad\left\{p_{2}, q_{2}, s_{2}\right\}$ using transitivity $f_{3}\left(a_{1}\right) \stackrel{\underline{p}_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4}=f_{3}\left(a_{5}\right) \quad\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ using congruence $a_{1}=a_{5}$ $f_{4}\left(a_{1}\right) \stackrel{p_{4}}{=} a_{4} \stackrel{q_{4}}{=} a_{5}{ }^{S_{4}}=f_{4}\left(a_{5}\right) \quad$ Similar for f_{1}, f_{3}, f_{4}.

Deciding Equality +
 (uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver
$f_{1}\left(a_{1}\right) \stackrel{p_{1}}{=} a_{1} \stackrel{q_{1}}{=} a_{2} \stackrel{S_{1}}{=} f_{1}\left(a_{5}\right) \quad$ Two non redundant proofs $f_{2}\left(a_{1}\right)=f_{2}\left(a_{5}\right)$: $f_{2}\left(a_{1}\right){ }^{p_{2}} a_{2}=a_{3}=f_{2}\left(a_{5}\right) \quad\left\{p_{2}, q_{2}, s_{2}\right\}$ using transitivity $f_{3}\left(a_{1}\right) \stackrel{p_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4}=f_{3}\left(a_{5}\right) \quad\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ using congruence $a_{1}=a_{5}$ $f_{4}\left(a_{1}\right) \stackrel{p_{4}}{=} a_{4}=a_{5}=f_{4}\left(a_{5}\right) \quad$ Similar for f_{1}, f_{3}, f_{4}.

So there are 16 proofs for $g\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{1}\right), f_{3}\left(a_{1}\right), f_{4}\left(a_{1}\right)\right)=g\left(f_{1}\left(a_{5}\right), f_{2}\left(a_{5}\right), f_{3}\left(a_{5}\right), f_{4}\left(a_{5}\right)\right)$ The only non redundant is $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$

Deciding Equality +

 (uninterpreted) FunctionsSome benchmarks are very hard for our procedure.

$$
\begin{aligned}
& p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, \quad p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
& p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, \\
& p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1}, \\
& \ldots, \\
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Deciding Equality +

(uninterpreted) Functions

Some benchmarks are very hard for our procedure.

$$
\begin{aligned}
& p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, \quad p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
& p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, \quad p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1}, \\
& \ldots, \\
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Deciding Equality +
 (uninterpreted) Functions

Some benchmarks are very hard for our procedure.

$$
\begin{array}{ll}
p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, & p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, & p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1},
\end{array}
$$

$$
\begin{aligned}
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!
Solution: congruence rule suggests which new atoms must be created.

Deciding Equality +
 (uninterpreted) Functions

Some benchmarks are very hard for our procedure.

$$
\begin{array}{ll}
p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, & p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, & p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1},
\end{array}
$$

$$
\begin{aligned}
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Solution: congruence rule suggests which new atoms must be created.
Whenever, the congruence rules
$a_{i}=b_{i}, a_{j}=b_{j}$ implies $f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)$
is used to (immediately) deduce a conflict. Add the clause:

$$
a_{i} \neq b_{i} \vee a_{j} \neq b_{j} \vee f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)
$$

Deciding Equality + (uninterpreted) Functions

Solution: congruence rule suggests which new atoms must be created.
Whenever, the congruence rules
$a_{i}=b_{i}, a_{j}=b_{j}$ implies $f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)$
is used to (immediately) deduce a conflict. Add the clause:
$a_{i} \neq b_{i} \vee a_{j} \neq b_{j} \vee f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)$
"Dynamic Ackermannization"
It allows the solver to perform the missing disequality propagation.

Summary

We can solve the QF_UF SMT-Lib benchmarks!

Linear Arithmetic

- Many approaches
- Graph-based for difference logic: $a-b \leq 3$
e Fourier-Motzkin elimination:

$$
t_{1} \leq a x, \quad b x \leq t_{2} \Rightarrow b t_{1} \leq a t_{2}
$$

- Standard Simplex
- General Form Simplex

Difference Logic: $a-b \leq 5$

Very useful in practice!

Most arithmetical constraints in software verification/analysis are in this fragment.

$$
\begin{gathered}
\mathrm{x}:=\mathrm{x}+1 \\
\mathrm{x}_{1}=\mathrm{x}_{0}+1 \\
\mathrm{x}_{1}-\mathrm{x}_{0} \leq 1, \mathrm{x}_{0}-\mathrm{x}_{1} \leq-1
\end{gathered}
$$

Job shop scheduling

$d_{i, j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

$\max =8$

Solution

$t_{1,1}=5, t_{1,2}=7, t_{2,1}=2$,
$t_{2,2}=6, t_{3,1}=0, t_{3,2}=3$
Encoding
$\left(t_{1,1} \geq 0\right) \wedge\left(t_{1,2} \geq t_{1,1}+2\right) \wedge\left(t_{1,2}+1 \leq 8\right) \wedge$
$\left(t_{2,1} \geq 0\right) \wedge\left(t_{2,2} \geq t_{2,1}+3\right) \wedge\left(t_{2,2}+1 \leq 8\right) \wedge$
$\left(t_{3,1} \geq 0\right) \wedge\left(t_{3,2} \geq t_{3,1}+2\right) \wedge\left(t_{3,2}+3 \leq 8\right) \wedge$
$\left(\left(t_{1,1} \geq t_{2,1}+3\right) \vee\left(t_{2,1} \geq t_{1,1}+2\right)\right) \wedge$
$\left(\left(t_{1,1} \geq t_{3,1}+2\right) \vee\left(t_{3,1} \geq t_{1,1}+2\right)\right) \wedge$
$\left(\left(t_{2,1} \geq t_{3,1}+2\right) \vee\left(t_{3,1} \geq t_{2,1}+3\right)\right) \wedge$
$\left(\left(t_{1,2} \geq t_{2,2}+1\right) \vee\left(t_{2,2} \geq t_{1,2}+1\right)\right) \wedge$
$\left(\left(t_{1,2} \geq t_{3,2}+3\right) \vee\left(t_{3,2} \geq t_{1,2}+1\right)\right) \wedge$
$\left(\left(t_{2,2} \geq t_{3,2}+3\right) \vee\left(t_{3,2} \geq t_{2,2}+1\right)\right)$

Research

Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

Microsoft ${ }^{*}$
Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{array}{ll}
a-d+2 e & =3 \\
b-d & =1 \\
c+d-e & =-1 \\
a, b, c, d, e \geq 0 &
\end{array}
$$

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{aligned}
& a-d+2 e=3 \\
& b-d \quad=1 \\
& c+d-e=-1 \\
& a, b, c, d, e \geq 0 \\
& \left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 2 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \\
& A x=b \text { and } x \geq 0 .
\end{aligned}
$$

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}-\mathrm{d}+2 \mathrm{e} & =3 \\
\mathrm{~b}-\mathrm{d} & =1 \\
\mathrm{c}+\mathrm{d}-\mathrm{e} \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \geq 0
\end{array} & =-1
\end{array}
$$

We say a,b,c are the basic (or dependent) variables

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}-\mathrm{d}+2 \mathrm{e} & =3 \\
\mathrm{~b}-\mathrm{d} & =1 \\
\mathrm{c}+\mathrm{d}-\mathrm{e} & =-1
\end{array} \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \geq 0
\end{array}
$$

Standard Simplex

e Incrementality: add/remove equations

- Slow backtracking
- No theory propagation

Fast Linear Arithmetic

- Simplex General Form
- Algorithm based on the dual simplex
- Non redundant proofs
e Efficient backtracking
- Efficient theory propagation
- Support for string inequalities: $\mathrm{t}>0$
e Preprocessing step
- Integer problems:

Gomory cuts, Branch \& Bound, GCD test

General Form

General Form: $A x=0$ and $l_{j} \leq x_{j} \leq u_{j}$
Example:

$$
\begin{aligned}
& x \geq 0,(x+y \leq 2 \vee x+2 y \geq 6),(x+y=2 \vee x+2 y>4) \\
& \rightsquigarrow \\
& s_{1} \equiv x+y, s_{2} \equiv x+2 y \\
& x \geq 0,\left(s_{1} \leq 2 \vee s_{2} \geq 6\right),\left(s_{1}=2 \vee s_{2}>4\right)
\end{aligned}
$$

Only bounds (e.g., $s_{1} \leq 2$) are asserted during the search.
Unconstrained variables can be eliminated before the beginning of the search.

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{aligned}
& s_{1}=x+y, \\
& s_{2}=x+2 y
\end{aligned}
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{gathered}
s_{1}=x+y, \\
s_{2}=x+2 y \\
\square \\
s_{1}-x-y=0 \\
s_{2}-x-2 y=0
\end{gathered}
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{aligned}
& s_{1}=x+y, \\
& s_{2}=x+2 y
\end{aligned}
$$

$$
s_{1}-x-y=0 \quad s_{1}, s_{2} \text { are basic (dependent) }
$$

$$
s_{2}-x-2 y=0 \quad x, y \text { are non-basic }
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{aligned}
& s_{1}-x-y=0 \\
& s_{2}-x-2 y=0
\end{aligned}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-\square \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0
\end{gathered}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
- \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
\square \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

It is just substituting equals by equals.

Pivoting

Definition:

An assignment (model) is a mapping from variables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
- \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
\square \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

It is just substituting equals by equals.

Key Property:
If an assignment satisfies the equations before a pivoting step, then it will also satisfy them after!

Pivoting

Definition:

An assignment (model) is a mapping from variables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{2} and y

Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.
The assignment of non dependent variables implies the assignment of dependent variables.

Equations + Bounds can be used to derive new bounds.
Example: $x=y-z, y \leq 2, z \geq 3 \rightsquigarrow x \leq-1$.
The new bound may be inconsistent with the already known bounds.

Example: $x \leq-1, x \geq 0$.

"Repairing Models"

If the assignment of a non-basic variable does not satisfy a bound, then fix it and propagate the change to all dependent variables.

$$
\begin{array}{ll}
a=c-d & a=c-d \\
b=c+d & b=c+d \\
M(a)=0 & M(a)=1 \\
M(b)=0 & M(b)=1 \\
M(c)=0 & M(c)=1 \\
M(d)=0 & M(d)=0 \\
1 \leq c & 1 \leq c
\end{array}
$$

"Repairing Models"

If the assignment of a non-basic variable does not satisfy a bound, then fix it and propagate the change to all dependent variables. Of course, we may introduce new "problems".

$$
\begin{array}{ll}
a=c-d & a=c-d \\
b=c+d & \\
M(a)=0 & b=c+d \\
M(b)=0 & M(a)=1 \\
M(c)=0 & M(b)=1 \\
M(d)=0 & M(c)=1 \\
1 \leq c & M(d)=0 \\
a \leq 0 & 1 \leq c \\
M & a \leq 0
\end{array}
$$

"Repairing Models"

If the assignment of a basic variable does not satisfy a bound, then pivot it, fix it, and propagate the change to its new dependent variables.

$$
\begin{array}{lll}
a=c-d \\
b=c+d \\
M(a)=0 \\
M(b)=0 \\
M(c)=0 \\
M(d)=0 \\
1 \leq a & b=a+2 d \\
M(a)=0 \\
M(b)=0 \\
M(c)=0 \\
M(d)=0 \\
1 \leq a & C=a+d \\
M(a)=1 \\
M(b)=1 \\
M(c)=1 \\
M(d)=0 \\
1 \leq a
\end{array}
$$

"Repairing Models"

Sometimes, a model cannot be repaired. It is pointless to pivot.

The value of $M(a)$ is too big. We can reduce it by:

- reducing $M(b)$
not possible b is at lower bound
- increasing $\mathrm{M}(\mathrm{c})$
not possible c is at upper bound

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0
\end{aligned}
$$

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0 \\
& \left\{a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c\right\} \text { is inconsistent }
\end{aligned}
$$

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0 \\
& \left\{a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c\right\} \text { is inconsistent }
\end{aligned}
$$

$\{\mathrm{a} \leq 0,1 \leq \mathrm{a}+\mathrm{d}, \mathrm{c}+\mathrm{d} \leq 0,0 \leq \mathrm{c}\}$ is inconsistent

Strict Inequalities

The method described only handles non-strict inequalities (e.g., $x \leq 2$).

For integer problems, strict inequalities can be converted into non-strict inequalities. $x<1 \rightsquigarrow x \leq 0$.

For rational/real problems, strict inequalities can be converted into non-strict inequalities using a small $\delta . x<1 \rightsquigarrow x \leq 1-\delta$.

We do not compute a δ, we treat it symbolically.
δ is an infinitesimal parameter: $(c, k)=c+k \delta$

Example

- Initial state

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & s=x+y \\
M(y)=0 & u=x+2 y \\
M(s)=0 & v=x-y \\
M(u)=0 &
\end{array}
$$

Example

- Asserting $s \geq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & s=x+y \\
M(y)=0 & u=x+2 y \\
M(s)=0 & v=x-y \\
M(u)=0 & \\
M(v)=0 &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & s=x+y & s \geq 1 \\
M(y)=0 & u=x+2 y & \\
M(s)=0 & v=x-y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & s=x+y & s \geq 1 \\
M(y)=0 & u=x+2 y & \\
M(s)=0 & v=x-y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=s-y & s \geq 1 \\
M(y)=0 & u=x+2 y & \\
M(s)=0 & v=x-y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=0 \\
& M(s)=0 \\
& M(u)=0 \\
& M(v)=0
\end{aligned}
$$

Example

- Asserting $s \geq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=s-y & s \geq 1 \\
M(y)=0 & u=s+y & \\
M(s)=1 & v=s-2 y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=s-y \\
M(y)=0 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=1 &
\end{array}
$$

Example

- Asserting $x \geq 0$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & \\
M(y)=0 & \\
M=s-y \\
M(s)=1 & \\
M=s+y \\
M(u)=1 &
\end{array}
$$

Example

- Asserting $x \geq 0$ assignment satisfies new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{lll}
M(x)=1 & x=s-y & s \geq 1 \\
M(y)=0 & u=s+y & x \geq 0 \\
M(s)=1 & v=s-2 y & \\
M(u)=1 & & \\
M(v)=1 & &
\end{array}
$$

Bounds

Example

- Case split $\neg y \leq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=s-y \\
M(y)=0 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=1 &
\end{array}
$$

Bounds
$s \geq 1$
$x \geq 0$
Bounds

Example

- Case split $\neg y \leq 1$ assignment does not satisfies new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=s-y \\
M(y)=0 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=1 &
\end{array}
$$

Equations

Bounds

$$
\begin{array}{r}
s \geq 1 \\
x \geq 0 \\
\hline y>1
\end{array}
$$

Example

- Case split $\neg y \leq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
M(x) & =1 \\
M(y) & =1+\delta \\
M(s) & =1 \\
M(u) & =1 \\
M(v) & =1
\end{aligned}
$$

Equations
Bounds

$$
x=s-y
$$

$$
s \geq 1
$$

$$
u=s+y
$$

$$
x \geq 0
$$

$$
v=s-2 y
$$

$$
y>1
$$

Example

- Case split $\neg y \leq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

$$
\begin{aligned}
& x=s-y \\
& u=s+y \\
& v=s-2 y
\end{aligned}
$$

Bounds

Equations

$$
s \geq 1
$$

$s \geq 1$
$x \geq 0$
$y>1$

$$
\begin{aligned}
& x \geq 0 \\
& \hline y>1
\end{aligned}
$$

Example

- Bound violation

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
x & =s-y & s \geq 1 \\
u & =s+y & x \geq 0 \\
v & =s-2 y & y>1
\end{array}
$$

Bounds

$$
1 \quad v=s-2 y
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & >1
\end{aligned}
$$

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{aligned}
& s \geq 1, x \geq 0 \\
& (y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
& \text { Model } \\
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta \\
& \text { Bounds } \\
& x=s-y \\
& u=s+y \\
& v=s-2 y \\
& s \geq 1 \\
& x \geq 0 \\
& y>1
\end{aligned}
$$

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

Bounds

$$
\begin{array}{lll}
s=x+y & s \geq 1 \\
u & =s+y & x \geq 0 \\
v & =s-2 y & y>1
\end{array}
$$

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{aligned}
& s \geq 1, x \geq 0 \\
& (y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
& \text { Model } \\
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta \\
& \begin{array}{l}
s=x+y \\
u=x+2 y \\
v=x-y
\end{array} \\
& \begin{array}{l}
s=x+y \\
u=x+2 y \\
v=x-y
\end{array} \\
& \begin{array}{ll}
\delta & s=x+y \\
-\delta & u=x+2 y \\
v & =x-y
\end{array} \\
& \text { Bounds }
\end{aligned}
$$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)= \\
& M(v)=
\end{aligned}
$$

Bounds

$$
\begin{array}{rlrl}
s & =x+y & s \geq 1 \\
u & =x+2 y & x \geq 0 \\
v & =x-y & y>1
\end{array}
$$

Equations

Example

- Bound violation update dependent variables assignment.

$$
\begin{array}{cc}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
\text { Model } & \text { Equations } \\
M(x)=0 & s=x+y \\
M(y)=1+\delta & u=x+2 y \\
M(s)=1+\delta & v=x-y \\
M(u)=2+2 \delta & \\
M(v)=-1-\delta & \\
M
\end{array}
$$

Example

- Theory propagation $x \geq 0, y>1 \rightsquigarrow u>2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Bounds

$$
s \geq 1
$$

$$
x \geq 0
$$

$$
y>1
$$

Example

- Theory propagation $u>2 \rightsquigarrow \neg u \leq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Example

- Boolean propagation $\neg y \leq 1 \rightsquigarrow v \geq 2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Example

- Theory propagation $v \geq 2 \rightsquigarrow \neg v \leq-2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

Example

- Conflict empty clause

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{array}{cl}
\text { Equations } & \text { Bounds } \\
s=x+y & s \geq 1 \\
u=x+2 y & x \geq 0 \\
v=x-y & y>1 \\
u>2
\end{array}
$$

Example

- Backtracking

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
s & =x+y & s \geq 1 \\
u & =x+2 y & & x \geq 0
\end{array}
$$

Bounds

$$
v=x-y
$$

ex

Example

- Asserting $y \leq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

Example

- Asserting $y \leq 1$ assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

$$
s \geq 1
$$

$$
x \geq 0
$$

$$
y \leq 1
$$

Example

- Asserting $y \leq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1 \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Bounds

s	≥ 1
x	≥ 0
y	≤ 1

Example

- Asserting $y \leq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
M(x) & =0 \\
M(y) & =1 \\
M(s) & =1 \\
M(u) & =2 \\
M(v) & =-1
\end{aligned}
$$

Equations

$s=x+y$
$u=x+2 y$
$v=x-y$
Bounds

Example

- Theory propagation $s \geq 1, y \leq 1 \rightsquigarrow v \geq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & x=s-y \\
M(y)=1 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=2 &
\end{array}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1
\end{aligned}
$$

Example

- Theory propagation $v \geq-1 \rightsquigarrow \neg v \leq-2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & x=s-y \\
M(y)=1 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=2 &
\end{array}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq-1
\end{aligned}
$$

Example

- Boolean propagation $\quad \neg v \leq-2 \rightsquigarrow v \geq 0$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations

$$
\begin{aligned}
& x=s-y \\
& u=s+y \\
& v=s-2 y
\end{aligned}
$$

Bounds

$$
M(u)=2
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq-1
\end{aligned}
$$

$$
M(v)=-1
$$

Example

- Bound violation assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{llrl}
M(x) & =0 & x & =s-y \\
M(y) & =1 & u=s+y & s \geq 1 \\
M(s) & =1 & v=s-2 y & x \geq 0 \\
M(u) & =2 & & y \geq 1 \\
M(v) & =-1 & & v
\end{array}
$$

Bounds

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & x=s-y \\
M(y)=1 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=2 &
\end{array}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq 0
\end{aligned}
$$

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{gathered}
\text { Model } \\
M(x)=0 \\
M(y)=1 \\
M(s)=1 \\
M(u)=2 \\
M(v)=-1
\end{gathered}
$$

Equations
Bounds

$$
\begin{aligned}
& x=s-y \\
& u=s+y \\
& s=v+2 y
\end{aligned}
$$

$$
s \geq 1
$$

$$
\begin{aligned}
& x \geq 0 \\
& \hline y \leq 1
\end{aligned}
$$

$$
v \geq 0
$$

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=v+y & s \geq 1 \\
M(y)=1 & u=v+3 y & x \geq 0 \\
M(s)=1 & s=v+2 y & y \leq 1 \\
M(u)=2 & v \geq 0 \\
M(v)=-1 & &
\end{array}
$$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=v+y & s \geq 1 \\
M(y)=1 & u=v+3 y & x \geq 0 \\
M(s)=1 & s=v+2 y & y \leq 1 \\
M(u)=2 & & v \geq 0 \\
M(v)=0 & &
\end{array}
$$

Example

- Bound violation update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=v+y \\
M(y)=1 & u=v+3 y \\
M(s)=2 & s=v+2 y \\
M(u)=3 &
\end{array}
$$

Equations

$$
\begin{array}{cl}
\text { Equations } & \text { Bounds } \\
x=v+y & s \geq 1 \\
u=v+3 y & x \geq 0 \\
s=v+2 y & y \leq 1 \\
v \geq 0
\end{array}
$$

Example

- Boolean propagation $\quad \neg v \leq-2 \rightsquigarrow u \leq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=v+y \\
M(y)=1 & u=v+3 y \\
M(s)=2 & s=v+2 y \\
M(u)=3 &
\end{array}
$$

Equations

$$
\begin{array}{rlrl}
x & =v+y & s & \geq 1 \\
u & =v+3 y & x & \geq 0 \\
s & =v+2 y & y & \leq 1 \\
v & \geq 0
\end{array}
$$

Bounds

Example

- Bound violation assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
& x=v+y \\
& u=v+3 y \\
& s=v+2 y
\end{aligned}
$$

s	≥ 1
x	≥ 0
y	≤ 1
v	≥ 0
u	≤-1

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
x & =v+y & s & \geq 1 \\
u & =v+3 y & x & \geq 0 \\
s & =v+2 y & y & \leq 1 \\
& v & \geq 0 \\
u & \leq-1
\end{array}
$$

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations

$M(x)=1$	$x=v+y$	$s \geq 1$
$M(y)=1$	$y=\frac{1}{3} u-\frac{1}{3} v$	$x \geq 0$
$M(s)=2$	$s=v+2 y$	$y \leq 1$
$M(u)=3$		$v \geq 0$
$M(v)=0$		$u \leq-1$

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Bounds

$$
y=\frac{1}{3} u-\frac{1}{3} v
$$

$$
s=\frac{2}{3} u+\frac{1}{3} v
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations
$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$s=\frac{2}{3} u+\frac{1}{3} v$
$M(s)=2$
$M(u)=-1$
$M(v)=0$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violation update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations
$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$s=\frac{2}{3} u+\frac{1}{3} v$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Bound violations

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
M(x) & =-\frac{1}{3} \\
M(y) & =-\frac{1}{3} \\
M(s) & =-\frac{2}{3} \\
M(u) & =-1 \\
M(v) & =0
\end{aligned}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Bounds

$$
s=\frac{2}{3} u+\frac{1}{3} v
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations

$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$v=3 s-2 u$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
M(x) & =-\frac{1}{3} \\
M(y) & =-\frac{1}{3} \\
M(s) & =-\frac{2}{3} \\
M(u) & =-1 \\
M(v) & =0
\end{aligned}
$$

Equations

Bounds

$$
x=2 s-u
$$

$$
y=-s+u
$$

$$
v=3 s-2 u
$$

s	≥ 1
x	≥ 0
y	≤ 1
v	≥ 0
u	≤-1

Example

- Bound violations update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=1 \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Bounds

s	≥ 1
x	≥ 0
y	≤ 1
v	≥ 0
u	≤-1

Example

- Bound violations update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=3 \\
& M(y)=-2 \\
& M(s)=1 \\
& M(u)=-1 \\
& M(v)=5
\end{aligned}
$$

Equations

$x=2 s-u$
$y=-s+u$
$v=3 s-2 u$
$s \geq 1$
$x \geq 0$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Found satisfying assignment

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=3 & x=2 s-u \\
M(y)=-2 & y=-s+u \\
M(s)=1 & v=3 s-2 u \\
M(u)=-1 &
\end{array}
$$

Equations

$s \geq 1$
$x \geq 0$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Correctness

Completeness: trivial
Soundness: also trivial
Termination: non trivial.
We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.
Bland's rule: select the smallest basic variable c that does not satisfy its bounds, then select the smallest non-basic in the row of c that can be used for pivoting.
Too technical.
Uses the fact that a tableau has a finite number of configurations. Then, any infinite trace will have cycles.

Combining Theories

In practice, we need a combination of theories.
$b+2=c$ and $f(r e a d(w r i t e(a, b, 3), c-2)) \neq f(c-b+1)$

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories T1 \cup T2 consistent?
Given a solvers for T1 and T2, how can we build a solver for
T1 \cup T2?

Disjoint Theories

Two theories are disjoint if they do not share function/constant and predicate symbols.
= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: $\left\{0,-1,1,-2,2, \ldots,+,-,{ }^{*},>,<, \geq, \leq\right\}$ Array symbols: \{read, write \}

Purification

It is a different name for our "naming" subterms procedure.

$$
b+2=c, f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

$$
b+2=c, v_{6} \neq v_{7}
$$

$$
v_{1} \equiv 3, v_{2} \equiv \operatorname{write}\left(a, b, v_{1}\right), v_{3} \equiv c-2, v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right)
$$

$$
v_{5} \equiv c-b+1, v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right)
$$

Purification

It is a different name for our "naming" subterms procedure.

$$
b+2=c, f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

$$
\begin{aligned}
& b+2=c, v_{6} \neq v_{7} \\
& v_{1} \equiv 3, v_{2} \equiv \text { write }\left(a, b, v_{1}\right), v_{3} \equiv c-2, v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right), \\
& v_{5} \equiv c-b+1, v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right)
\end{aligned}
$$

$$
b+2=c, v_{1} \equiv 3, v_{3} \equiv c-2, v_{5} \equiv c-b+1,
$$

$$
v_{2} \equiv \text { write }\left(a, b, v_{1}\right), v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right)
$$

$$
v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right), v_{6} \neq v_{7}
$$

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Important Result

The union of two consistent, disjoint, stably infinite theories is consistent.

Convexity

A theory T is convex iff
for all finite sets S of literals and
for all $a_{1}=b_{1} \vee \ldots \vee a_{n}=b_{n}$
Simplies $a_{1}=b_{1} \vee \ldots \vee a_{n}=b_{n}$
iff
Simplies $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}$ for some $1 \leq \mathrm{i} \leq \mathrm{n}$

Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex. formulas of the form $\mathrm{s}_{1} \neq \mathrm{r}_{1} \vee \ldots \vee \mathrm{~s}_{\mathrm{n}} \neq \mathrm{r}_{\mathrm{n}} \vee \mathrm{t}=\mathrm{t}^{\prime}$

Linear rational arithmetic is convex.

Convexity: Negative Results

Linear integer arithmetic is not convex

$$
1 \leq a \leq 2, b=1, c=2 \text { implies } a=b \vee a=c
$$

Nonlinear arithmetic

$$
a^{2}=1, b=1, c=-1 \text { implies } a=b \vee a=c
$$

Theory of bit-vectors

Theory of arrays

$$
\begin{aligned}
& c_{1}=\operatorname{read}\left(\operatorname{write}\left(a, i, c_{2}\right), j\right), c_{3}=\operatorname{read}(a, j) \\
& \text { implies } c_{1}=c_{2} \vee c_{1}=c_{3}
\end{aligned}
$$

Combination of non-convex theories

EUF is convex $(O(n \log n))$
IDL is non-convex ($O(n m)$)

EUF $\cup I D L$ is NP-Complete
Reduce 3CNF to EUF \cup IDL
For each boolean variable p_{i} add $0 \leq a_{i} \leq 1$
For each clause $p_{1} \vee \neg p_{2} \vee p_{3}$ add

$$
f\left(a_{1}, a_{2}, a_{3}\right) \neq f(0,1,0)
$$

Combination of non-convex theories

EUF is convex $(\mathrm{O}(\mathrm{n} \log \mathrm{n}))$
IDL is non-convex ($O(n m)$)

EUF $\cup I D L$ is NP-Complete
Reduce 3CNF to EUF \cup IDL
For each boolean variable p_{i} add $0 \leq a_{i} \leq 1$
For each clause $p_{1} \vee \neg p_{2} \vee p_{3}$ add

$$
f\left(a_{1}, a_{2}, a_{3}\right) \neq f(0,1,0)
$$

implies

$$
a_{1} \neq 0 \vee a_{2} \neq 1 \vee a_{3} \neq 0
$$

Nelson-Oppen Combination

Let \mathcal{T}_{1} and \mathcal{T}_{2} be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O\left(T_{1}(n)\right)$ and $O\left(T_{2}(n)\right)$ time respectively. Then,

1. The combined theory \mathcal{T} is consistent and stably infinite.
2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O\left(2^{n^{2}} \times\left(T_{1}(n)+T_{2}(n)\right)\right.$.
3. If \mathcal{T}_{1} and \mathcal{T}_{2} are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O\left(n^{3} \times\left(T_{1}(n)+T_{2}(n)\right)\right)$.

Nelson-Oppen Combination

The combination procedure:
Initial State: ϕ is a conjunction of literals over $\Sigma_{1} \cup \Sigma_{2}$.
Purification: Preserving satisfiability transform ϕ into $\phi_{1} \wedge \phi_{2}$, such that, $\phi_{i} \in \Sigma_{i}$.

Interaction: Guess a partition of $\mathcal{V}\left(\phi_{1}\right) \cap \mathcal{V}\left(\phi_{2}\right)$ into disjoint subsets. Express it as conjunction of literals ψ.
Example. The partition $\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{4}\right\}$ is represented as $x_{1} \neq x_{2}, x_{1} \neq x_{4}, x_{2} \neq x_{4}, x_{2}=x_{3}$.

Component Procedures : Use individual procedures to decide whether $\phi_{i} \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Soundness

Each step is satisfiability preserving.
Say ϕ is satisfiable (in the combination).

- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.
- Iteration: for some partition $\psi, \phi_{1} \wedge \phi_{2} \wedge \psi$ is satisfiable.
- Component procedures: $\phi_{1} \wedge \psi$ and $\phi_{2} \wedge \psi$ are both satisfiable in component theories.
- Therefore, if the procedure return unsatisfiable, then ϕ is unsatisfiable.

Completeness

Suppose the procedure returns satisfiable.

- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
- Let h be a bijection between $|A|$ and $|B|$ such that $h(A(x))=B(x)$ for each shared variable.
- Extend B to \bar{B} by interpretations of symbols in Σ_{1} :

$$
\bar{B}(f)\left(b_{1}, \ldots, b_{n}\right)=h\left(A(f)\left(h^{-1}\left(b_{1}\right), \ldots, h^{-1}\left(b_{n}\right)\right)\right)
$$

- \bar{B} is a model of:

$$
\mathcal{T}_{1} \wedge \phi_{1} \wedge \mathcal{T}_{2} \wedge \phi_{2} \wedge \psi
$$

NO deterministic procedure (for convex theories)

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.
Interaction: Deduce an equality $x=y$:

$$
\mathcal{T}_{1} \vdash\left(\phi_{1} \Rightarrow x=y\right)
$$

Update $\phi_{2}:=\phi_{2} \wedge x=y$. And vice-versa. Repeat until no further changes.

Component Procedures : Use individual procedures to decide whether ϕ_{i} is satisfiable.

Remark: $\mathcal{T}_{i} \vdash\left(\phi_{i} \Rightarrow x=y\right)$ iff $\phi_{i} \wedge x \neq y$ is not satisfiable in \mathcal{T}_{i}.

NO deterministic procedure Completeness

Assume the theories are convex.

- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}$.
- By convexity, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow \bigvee_{E} x_{j}=x_{k}$.
- $\phi_{i} \wedge \bigwedge_{E} x_{j} \neq x_{k}$ is satisfiable.
- The proof now is identical to the nondeterministic case.
- Sharing equalities is sufficient, because a theory \mathcal{T}_{1} can assume that $x^{B} \neq y^{B}$ whenever $x=y$ is not implied by \mathcal{T}_{2} and vice versa.

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv c-2$,
$v_{5} \equiv c-b+1$

Arrays
$\mathrm{v}_{2} \equiv$ write $\left(\mathrm{a}, \mathrm{b}, \mathrm{v}_{1}\right)$,
$\mathrm{v}_{4} \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
b+2 = \mathbf{c},
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv c-2$,
$v_{5} \equiv c-b+1$

Substituting c

Arrays
$\mathrm{v}_{2} \equiv$ write $\left(\mathrm{a}, \mathrm{b}, \mathrm{v}_{1}\right)$,
$v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right)$
EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$\mathbf{v}_{\mathbf{3}} \equiv \mathrm{b}$,
$\mathrm{v}_{5} \equiv 3$

Propagating $\mathrm{v}_{3}=\mathrm{b}$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$

Deducing $\mathrm{v}_{4}=\mathrm{v}_{1}$

Arrays

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{2}} \equiv \operatorname{write}\left(\mathrm{a}, \mathbf{b}, \mathrm{v}_{1}\right), \\
& \mathbf{v}_{4} \equiv \operatorname{read}\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right), \\
& \mathbf{v}_{3}=\mathrm{b}
\end{aligned}
$$

EUF

$$
\begin{aligned}
\mathrm{v}_{6} & \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
\mathrm{v}_{7} & \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
\mathrm{v}_{6} & \neq \mathrm{v}_{7}, \\
\mathrm{v}_{3} & =\mathrm{b}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}, \\
& \mathrm{v}_{3}=\mathrm{b}
\end{aligned}
$$

Propagating $\mathrm{v}_{4}=\mathrm{v}_{1}$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathbf{v}_{1} \equiv \mathbf{3}$,
$\mathrm{v}_{3} \equiv \mathrm{~b}$,
$\mathbf{v}_{5} \equiv 3$,
$\mathrm{v}_{4}=\mathrm{v}_{1}$

Arrays

$$
\begin{aligned}
& \mathrm{v}_{2} \equiv \operatorname{write}\left(\mathrm{a}, \mathrm{~b}, \mathrm{v}_{1}\right), \\
& \mathrm{v}_{4} \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}
\end{aligned}
$$

Propagating $\mathrm{v}_{5}=\mathrm{v}_{1}$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$,
$\mathrm{v}_{4}=\mathrm{v}_{1}$
Congruence: $\mathrm{v}_{6}=\mathrm{v}_{7}$

Arrays

$$
\begin{aligned}
& \mathrm{v}_{2} \equiv \operatorname{write}\left(\mathrm{a}, \mathrm{~b}, \mathrm{v}_{1}\right), \\
& \mathrm{v}_{4} \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}
\end{aligned}
$$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathbf{v}_{\mathbf{4}}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathbf{v}_{\mathbf{5}}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathbf{v}_{\mathbf{4}}=\mathbf{v}_{\mathbf{1}}, \\
& \mathbf{v}_{\mathbf{5}}=\mathbf{v}_{\mathbf{1}}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$\mathrm{v}_{3} \equiv \mathrm{~b}$,
$\mathrm{v}_{5} \equiv 3$,

$$
v_{4}=v_{1}
$$

$\mathrm{v}_{4}=\mathrm{v}_{1}$
Unsatisfiable

Arrays

$$
\begin{aligned}
v_{2} & \equiv \text { write }\left(a, b, v_{1}\right), \\
v_{4} & \equiv \operatorname{read}\left(v_{2}, v_{3}\right), \\
v_{3} & =b, \\
v_{4} & =v_{1}
\end{aligned}
$$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathbf{v}_{\mathbf{6}} \neq \mathbf{v}_{\mathbf{7}}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}, \\
& \mathrm{v}_{5}=\mathrm{v}_{1}, \\
& \mathbf{v}_{\mathbf{6}}=\mathbf{v}_{\mathbf{7}}
\end{aligned}
$$

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.
$0 \leq a \leq 1,0 \leq b \leq 1,0 \leq c \leq 1$,
$f(a) \neq f(b)$,
$f(a) \neq f(c)$,
$f(b) \neq f(c)$

Combining Procedures in Practice

Propagate all implied equalities.

- Deterministic Nelson-Oppen.
- Complete only for convex theories.
- It may be expensive for some theories.

Delayed Theory Combination.

- Nondeterministic Nelson-Oppen.
- Create set of interface equalities $(x=y)$ between shared variables.
- Use SAT solver to guess the partition.
- Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which equalities are propagated.

Model-based Theory Combination

- Optimistic approach.
- Use a candidate model M_{i} for one of the theories \mathcal{T}_{i} and propagate all equalities implied by the candidate model, hedging that other theories will agree.

$$
\text { if } M_{i} \models \mathcal{T}_{i} \cup \Gamma_{i} \cup\{u=v\} \text { then propagate } u=v
$$

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

Example

$$
x=f(y-1), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1
$$

Purifying

Example

$$
x=f(z), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1, z=y-1
$$

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$\begin{aligned} & x=f(z) \\ & f(x) \neq f(y) \end{aligned}$	$\{x, f(z)\}$ $\{y\}$ $\{z\}$ $\{f(x)\}$ $\{f(y)\}$	$\begin{aligned} E(x)= & *_{1} \\ E(y)= & *_{2} \\ E(z)= & *_{3} \\ E(f)= & \left\{*_{1} \mapsto *_{4},\right. \\ & *_{2} \mapsto *_{5}, \\ & *_{3} \mapsto *_{1}, \\ & \text { else } \left.\mapsto *_{6}\right\} \end{aligned}$	$\begin{aligned} & 0 \leq x \leq 1 \\ & 0 \leq y \leq 1 \\ & z=y-1 \end{aligned}$	$\begin{aligned} & A(x)=0 \\ & A(y)=0 \\ & A(z)=-1 \end{aligned}$

Assume $\mathrm{x}=\mathrm{y}$

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, y, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{z\}$	$E(y)=*_{1}$	$0 \leq y \leq 1$	$A(y)=0$
$x=y$	$\{f(x), f(y)\}$	$E(z)=*_{2}$	$z=y-1$	$A(z)=-1$
		$E(f)=\left\{*_{1} \mapsto *_{3}\right.$,	$x=y$	
		$*_{2} \mapsto *_{1}$,		
		else $\left.\mapsto *_{4}\right\}$		

Unsatisfiable

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{y\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=0$
$x \neq y$	$\{z\}$	$E(z)=*_{3}$	$z=y-1$	$A(z)=-1$
	$\{f(x)\}$	$E(f)=\left\{*_{1} \mapsto *_{4}\right.$,	$x \neq y$	
	$\{f(y)\}$	$*_{2} \mapsto *_{5}$,		
		$*_{3} \mapsto *_{1}$,		
		else $\left.\mapsto *_{6}\right\}$		

Backtrack, and assert $x \neq y$.
\mathcal{T}_{A} model need to be fixed.

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{y\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{z\}$	$E(z)=*_{3}$	$z=y-1$	$A(z)=0$
	$\{f(x)\}$	$E(f)=\left\{*_{1} \mapsto *_{4}\right.$,	$x \neq y$	
	$\{f(y)\}$	$*_{2} \mapsto *_{5}$,		
		$*_{3} \mapsto *_{1}$,		
		else $\left.\mapsto *_{6}\right\}$		

Assume $x=z$

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		e/se $\left.\mapsto *_{4}\right\}$		

Satisfiable

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		else $\left.\mapsto *_{4}\right\}$		

Let h be the bijection between $|E|$ and $|A|$.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Example

\mathcal{T}_{E}		\mathcal{T}_{A}	
Literals	Model	Literals	Model
$x=f(z)$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	$A(f)=\{0 \mapsto 0$
	$*_{2} \mapsto *_{3}$,	$x=z$	$1 \mapsto-1$
	else $\left.\mapsto *_{4}\right\}$		
			else $\mapsto 2\}$

Extending A using h.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?
Solution: add a predicate is-bv (x) to the bit-vector theory (intuition:
is-bv (x) is true iff x is a bitvector).
The result of the bit-vector operation $o p(x, y)$ is not specified if
$\neg i s-b v(x)$ or $\neg i s-b v(y)$.
The new bit-vector theory is stably-infinite.

Reduction Functions

A reduction function reduces the satifiability problem for a complex theory into the satisfiability problem of a simpler theory.

Ackermannization is a reduction function.

Reduction Functions

Theory of commutative functions.

- $\forall x, y \cdot f(x, y)=f(y, x)$
- Reduction to EUF
- For every $f(a, b)$ in ϕ, do $\phi:=\phi \wedge f(a, b)=f(b, a)$.

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Theorem Provers/Satisfiability Checkers

A formula F is valid Iff
$\neg \mathrm{F}$ is unsatisfiable

Microsoft ${ }^{*}$
Research

Theorem Provers/Satisfiability Checkers

A formula F is valid Iff
$\neg \mathrm{F}$ is unsatisfiable

Microsoft ${ }^{\circ}$
Research

Verification/Analysis Tool: "Template"

Problem

Verification/Analysis Tool

Logical Formula

Theorem Prover/ Satisfiability Checker

SMT@Microsoft: Solver

e Z3 is a new solver developed at Microsoft Research.
e Development/Research driven by internal customers.
e Free for academic research.
e Interfaces:

e http://research.microsoft.com/projects/z3

Microsoft ${ }^{-}$
Research

Test case generation

Test case generation

e Test (correctness + usability) is 95% of the deal:

- Dev/Test is 1-1 in products.
e Developers are responsible for unit tests.
e Tools:
- Annotations and static analysis (SAL + ESP)
- File Fuzzing
- Unit test case generation
- Security bugs can be very expensive:
e Cost of each MS Security Bulletin: \$600k to \$Millions.
- Cost due to worms: \$Billions.
e The real victim is the customer.
- Most security exploits are initiated via files or packets.
© Ex: Internet Explorer parses dozens of file formats.
- Security testing: hunting for million dollar bugs
e Write A/V
- Read A/V
- Null pointer dereference
e Division by zero

Hunting for Security Bugs.

e Two main techniques used by "black hats":
e Code inspection (of binaries).
e Black box fuzz testing.

- Black box fuzz testing:
e A form of black box random testing.
e Randomly fuzz (=modify) a well formed input.
e Grammar-based fuzzing: rules to encode how to fuzz.
e Heavily used in security testing
e At MS: several internal tools.
e Conceptually simple yet effective in practice

Directed Automated Random Testing (DART)

Microsoft ${ }^{*}$
Research

DARTish projects at Microsoft

PEX
Implements DART for .NET.

SAGE

Implements DART for $x 86$ binaries.

YOGI
Implements DART to check the feasibility of program paths generated statically.

Partially implements DART to dynamically generate worm filters.

What is Pex?

- Test input generator
- Pex starts from parameterized unit tests
e Generated tests are emitted as traditional unit tests

ArrayList：The Spec

msdn
NET Framewo
Home
Printer Friendly V
田 Microsoft．Ink＾
田 Microsoft．Ink．T
田 Microsoft．JScril
田 Microsoft．JScril
田 Microsoft．Mana
田 Microsoft．Mana
田 Microsoft．Mana
T Microsoft．Servi
¢7 Microsoft．Servi

Microsoft
Research

ArrayList: Addltem Test

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

ArrayList: Starting Pex...

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...;
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length)
            ResizeArray();
        items[this.count++] = item; }
```


ArrayList: Run 1, (0,null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

Inputs

(0, null)

ArrayList: Run 1, (0,null)

Inputs	Observed Constraints
$(0$, null $)$	$!(c<0)$

Inputs Observed Constraints

$$
(0, \text { null }) \quad!(c<0)
$$

```
class ArrayListTest {
```

class ArrayListTest {
[PexMethod]
[PexMethod]
void AddItem(int c, object item) {
void AddItem(int c, object item) {
var list = new ArrayList(c);
var list = new ArrayList(c);
list.Add(item);
list.Add(item);
Assert(list[0] == item); }
Assert(list[0] == item); }
}

```
}
```

```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...; c < 0 }->\mathrm{ false
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length)
            ResizeArray();
        items[this.count++] = item; }
```


ArrayList: Run 1, (0,null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```


Inputs

(0, null) $\quad!(c<\theta) \& \& \theta==c$

```
class ArrayList {
```

class ArrayList {
object[] items;
object[] items;
int count;
int count;
ArrayList(int capacity) {
ArrayList(int capacity) {
if (capacity < 0) throw ...;
if (capacity < 0) throw ...;
items = new object[capacity];
items = new object[capacity];
}
}
void Add(object item) {
void Add(object item) {
if (count == items.Length) 0 == c -> true
if (count == items.Length) 0 == c -> true
ResizeArray();
ResizeArray();
items[this.count++] = item; }

```
        items[this.count++] = item; }
```


ArrayList: Run 1, (0,null)


```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...;
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length)
            ResizeArray();
        items[this.count++] = item; }
```


Array List: Picking the next branch to cover

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

Constraints to Inputs Observed solve

Constraints
(0, null) $\quad!(c<\theta) \& \& \theta==c$
$!(c<0) \& \& \theta!=c$

Arraylist: Solve constraints using SMT solver

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

Constraints to Inputs Observed solve

	$(0$, null $) \quad!(c<0) \& \& \theta==c$
$!(c<0) \& \& \theta!=c \quad(1$, null $)$	

ArrayList: Run 2, (1, null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

Constraints to Inputs Observed solve

	$(0$, null $)$	$!(c<0) \& \& ~ 0==c$
$!(c<0) \& \& \theta!=c$	$(1$, null $)$	$!(c<0) \& \& \theta!=c$

```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...;
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length) 0 == c -> false
            ResizeArray();
        items[this.count++] = item; }
```


ArrayList: Pick new branch

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

Constraints to Inputs Observed solve

	$(0$, null $)$	$!(c<\theta) \& \& \theta==c$
$!(c<0) \& \& \theta!=c$	$(1$, null $)$	$!(c<0) \& \& \theta!=c$

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

ArrayList: Run 3, (-1, null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

Constraints to Inputs solve

	$(0$, null $)$	$!(c<0) \& \& \theta==c$
$!(c<0) \& \& \theta!=c$	$(1$, null $)$	$!(c<0) \& \& \theta!=c$
$c<0$	$(-1$, null $)$	

class ArrayList \{
object[] items;
int count;
ArrayList(int capacity) \{
if (capacity < 0) throw ...;
items = new object[capacity];
\}
void Add(object item) \{
if (count == items.Length)
ResizeArray();
items[this.count++] = item; \}

ArrayList: Run 3, (-1, null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

Constraints to Inputs Observed solve

	$(0$, null $)$	$!(c<0) \& \& \theta==c$
$!(c<0) \& \& \theta!=c$	$(1$, null $)$	$!(c<0) \& \& \theta!=c$
$c<0$	$(-1, n u l l)$	$c<0$

```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...; c < 0 
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length)
            ResizeArray();
        items[this.count++] = item; }
```


ArrayList: Run 3, (-1, null)

```
class ArrayListTest {
    [PexMethod]
    void AddItem(int c, object item) {
        var list = new ArrayList(c);
        list.Add(item);
        Assert(list[0] == item); }
}
```

Constraints to Inputs Observed solve

Constraints

	$(0$, null $)$	$!(c<\theta) \& \& \theta==c$
$!(c<0) \& \& \theta!=c$	$(1$, null $)$	$!(c<\theta) \& \& \theta!=c$
$c<0$	$(-1$, null $)$	$c<0$

```
class ArrayList {
    object[] items;
    int count;
    ArrayList(int capacity) {
        if (capacity < 0) throw ...;
        items = new object[capacity];
    }
    void Add(object item) {
        if (count == items.Length)
            ResizeArray();
        items[this.count++] = item; }
```

Once again, Pex blows my mind. It's utterly amazing the bugs that it can find:).
about 7 hours ago from TweetDeck

jasonbock
Jason Bock

Ewofter

White box testing in practice

How to test this code?
 (Real code from .NET base class libraries.)

```
[SecuritvPermissionAttribute(SecurityAction.LinkDemand, Flags=SecurityPermissionFlag.SerializationFormatter)]
public ResourceReader(Stream stream)
{
    if (stream==null)
        throw new ArgumentNullException("stream");
    if (!stream.CanRead)
        throw new ArgumentException(Environment.GetResourceString("Argument_StreamNotReadable"));
    _resCache = new Dictionary<String, ResourceLocator>(FastResourceComparer.Default);
    _store = new BinaryReader(stream, Encoding.UTF8);
    // We have a faster code path for reading resource files from an assembly.
    _ums = stream as UnmanagedMemoryStream;
    BCLDebug.Log("RESM&GRFILEFORMAT", "ResourceReader .ctor(Stream). UnmanagedMemoryStream: "+(_ums!=null));
    ReadResources();
```

\}

White box testing in practice

```
    // Reads in the header information for a .resources file. Verifies some
    // of the assumptions about this resource set, and builds the class table
    // for the default resource file format.
    private voi& ReadResources()
    BCLDebug.ASSEIT_store != null, "ResourceReader is closed!");
    BinaryFormatter bf = new BinaryFormatter(null, new StreamingContext(StreamingContextStates.File |
#if !FEATURE_PAL
    _typeLimitingBinder = new TypeLimitingDeserializationBinder();
    bf.Binder = _typeLimitingBinder;
#endif
    _objFormatter = bf;
    try {
        // Read ResourceManager header
            // Check for macric number
        int magicNum = _store.ReadInt32();
        if (magicNum != ResourceManager.MagicNumber)
            throw new ArgumentException(Environment.GetResourceString("Resources_StreamNotValid"));
            // after the version number there is a number of bytes to skip
            // to bypass the rest of the ResMgr header.
            int resMgrHeaderVersion = store.ReadInt32();
            if (resMgrHeaderVersion > 1) {
                int numBytesToSkip = _store.ReadInt32();
```



```
                    BCLDebug.Assert (numBytesToSkip >=0, "numBytesToSkip in ResMgr header should be positive!"
```



```
            } else {
                BCLDebug.Log("RESMGRFILEFORMAT", "ReadResources: Parsing ResMgr header v1.");
                SkipInt32(); // We don't care about numBytesToSkip.
                // Read in type name for a suitable ResourceReader
```


White box testing in practice

```
    // Reads in the header information for a .resources file. Verifies some
    // of the assumptions about this resource set, and builds the class table
    // for the default resource file format.
    private void ReadResources()
    BCLDebug.Assert(_store != null, "ResourceReader is closed!");
    BinaryFormatter \overline{bf}=\mathrm{ new BinaryFormatter(null, new StreamingContext(StreamingContextStates.File |}
#if !FEATURE_PAL
    _typeLimitingBinder = new TypeLimitingDeserializationBinder();
    bf.Binder = _typeLimitingBinder;
#endif
    _objFormatter = bf;
    try {
        // Read ResourceManager header
        // Check for macic number
        int magicNum = _store.ReadInt32();
        if public virtual int ReadInt32() {
        if (m_isMemoryStream) {
            %/f read difectly Itom NemuryJtream ivulfel
        MemoryStream mStream = m_stream as MemoryStream;
        BCLDebug.Assert(mStream != null, "m_stream as MemoryStream != null");
        return mStream.InternalReadInt32();
            }
            else
            {
                FillBuffer(4);
            }
                    return (int) (m_buffer[0] | m_buffer[1] << 8 | m_buffer[2] << 16 | m_buffer[3] << 24);
            }
        }
        // Read in type name for a sultable ResourceReader
```


Pex-Test Input Generation

Test Input Generation by

Dynamic Symbolic Execution

Result: small test suite, high code coverage

Finds only real bugs
No false warnings

$\operatorname{PEX} \leftrightarrow Z 3$

Rich
Combination arithmetic

Bitvector

Undecidable (in general)

$\operatorname{PEX} \leftrightarrow Z 3$

Rich
Linear arithmetic

Bitvector
Arrays
Functions
\forall-Quantifier Used to model custom theories (e.g., .NET type system)

Undecidable (in general)

Solution:

Return "Candidate" Model
Check if trace is valid by executing it

$\operatorname{PEX} \leftrightarrow Z 3$

Rich
Linear arithmetic

Bitvector
Arrays
Functions
\forall-Quantifier
Used to model custom theories (e.g., .NET type system)

Undecidable (in general)

Refined solution:

Support for decidable fragments.

SAGE

- Apply DART to large applications (not units).
e Start with well-formed input (not random).
e Combine with generational search (not DFS).
- Negate 1-by-1 each constraint in a path constraint.
- Generate many children for each parent run.

SAGE

- Apply DART to large applications (not units).
- Start with well-formed input (not random).
- Combine with generational search (not DFS).
- Negate 1-by-1 each constraint in a path constraint.
- Generate many children for each parent run.

Zero to Crash in 10 Generations

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser

Generation 0 - seed file

Zero to Crash in 10 Generations

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser

Generation 10 - CRASH

SAGE (cont.)

e SAGE is very effective at finding bugs.

- Works on large applications.
- Fully automated
e Easy to deploy (x86 analysis - any language)
- Used in various groups inside Microsoft
- Powered by Z3.

SAGE $\leftrightarrow \mathrm{Z3}$

- Formulas are usually big conjunctions.
e SAGE uses only the bitvector and array theories.
e Pre-processing step has a huge performance impact.
- Eliminate variables.
- Simplify formulas.
- Early unsat detection.

Static Driver Verifier

Static Driver Verifier

e Z3 is part of SDV 2.0 (Windows 7)

- It is used for:
- Predicate abstraction (c2bp)
e Counter-example refinement (newton)

Overview

e http://research.microsoft.com/slam/

- SLAM/SDV is a software model checker.
- Application domain: device drivers.
- Architecture:
c2bp C program \rightarrow boolean program (predicate abstraction). bebop Model checker for boolean programs. newton Model refinement (check for path feasibility)
e SMT solvers are used to perform predicate abstraction and to check path feasibility.
e c2bp makes several calls to the SMT solver. The formulas are relatively small.

Example

Do this code obey the looking rule?

do \{

KeAcquireSpinLock () ;

```
    nPacketsOld = nPackets;
    if(request){
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++;
    }
} while (nPackets != nPacketsOld);
```

KeReleaseSpinLock () ;

Example

Model checking

 Boolean programdo \{
KeAcquireSpinLock();
if(*) \{

KeReleaseSpinLock () ;
\}
\} while (*);

KeReleaseSpinLock();

Example

do \{
KeAcquireSpinLock () ;

```
    nPacketsOld = nPackets;
    if(request){
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++;
    }
} while (nPackets != nPacketsOld);
```

KeReleaseSpinLock () ;

Example

do \{
KeAcquireSpinLock () ;
nPacketsOld = nPackets;
b = true;
if(request) \{

$$
\text { request }=\text { request->Next; }
$$

KeReleaseSpinLock () ;
nPackets++;
\} $\quad b=b$? false: *;
\} while (nPackets != nPacketsOld); ! b

KeReleaseSpinLock () ;

Example

do \{

KeAcquireSpinLock () ;

$$
\begin{aligned}
& \mathrm{b}=\text { true; } \\
& \text { if }(*)\{
\end{aligned}
$$

KeReleaseSpinLock () ;

 $\mathrm{b}=\mathrm{b}$? false : *;\}
\} while (!b);

KeReleaseSpinLock () ;

Example

do \{

KeAcquireSpinLock () ;

$$
\begin{aligned}
& b=\text { true; } \\
& \text { if }(*)\{
\end{aligned}
$$

KeReleaseSpinLock () ;

$$
\mathrm{b}=\mathrm{b} \text { ? false: } *
$$

$$
\}
$$

\} while (!b);

KeReleaseSpinLock () ;

Example

Model Checking Refined Program : (nPacketsOld == nPackets)
do \{
KeAcquireSpinLock () ;

$$
\mathrm{b}=\text { true }
$$

if (*) \{
KeReleaseSpinLock () ;

$$
\mathrm{b}=\mathrm{b} \text { ? false: *; }
$$

$$
\}
$$

\} while (!b);

KeReleaseSpinLock () ;

Observations about SLAM

e Automatic discovery of invariants
e driven by property and a finite set of (false) execution paths

- predicates are not invariants, but observations
e abstraction + model checking computes inductive invariants (Boolean combinations of observations)
- A hybrid dynamic/static analysis
- newton executes path through C code symbolically
e c2bp+bebop explore all paths through abstraction
- A new form of program slicing
- program code and data not relevant to property are dropped
- non-determinism allows slices to have more behaviors

Predicate Abstraction: c2bp

© Given a C program P and $F=\left\{p_{1}, \ldots, p_{n}\right\}$.
e Produce a Boolean program $B(P, F)$

- Same control flow structure as P.
© Boolean variables $\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}\right\}$ to match $\left\{p_{1}, \ldots, p_{n}\right\}$.
- Properties true in $B(P, F)$ are true in P.
- Each p_{i} is a pure Boolean expression.
- Each p_{i} represents set of states for which p_{i} is true.
- Performs modular abstraction.

Abstracting Expressions via F

- $\operatorname{Implies}_{F}(e)$
- Best Boolean function over F that implies e.
- ImpliedBy $_{F}(e)$
e Best Boolean function over F that is implied by e.
- ImpliedBy $_{F}(e)=$ not Implies $_{F}$ (not e)

Implies $_{F}(e)$ and ImpliedBy $y_{F}(e)$

Computing Implies $_{F}(e)$

\ominus minterm $m=I_{1}$ and \ldots and I_{n}, where $I_{i}=p_{i}$, or $I_{i}=$ not p_{i}.

- Implies $_{F}(e)$: disjunction of all minterms that imply e.
- Naive approach
${ }^{\ominus}$ Generate all 2^{n} possible minterms.
e For each minterm m, use SMT solver to check validity of m implies e.
e Many possible optimizations

Computing Implies $_{F}(e)$

(e) $F=\{x<y, x=2\}$

- $e: y>1$
- Minterms over F
- $!x<y,!x=2$ implies $y>1$
- $x<y,!x=2$ implies $y>1$
- $!x<y, x=2$ implies $y>1$
e $x<y, x=2$ implies $y>1$

Computing Implies $_{F}(e)$

(e) $F=\{x<y, x=2\}$

- $e: y>1$
- Minterms over F
e $!x<y,!x=2$ implies $y>1$
- $x<y,!x=2$ implies $y>1$
- $!x<y, x=2$ implies $y>1$
e $x<y, x=2$ implies $y>1$

Computing Implies $_{F}(e)$

(e) $F=\{x<y, x=2\}$

- $e: y>1$
- Minterms over F
- $!x<y,!x=2$ implies $y>1$
- $x<y,!x=2$ implies $y>1$
- $!x<y, x=2$ implies $y>1$
e $x<y, x=2$ implies $y>1$
Implies $_{F}(\mathrm{y}>1)=\mathrm{x}<\mathrm{y} \wedge \mathrm{x}=2$

Computing Implies $_{F}(e)$

e $F=\{x<y, x=2\}$

- $e: y>1$
- Minterms over F
- $!x<y,!x=2$ implies $y>1$
- $x<y,!x=2$ implies $y>1$
- $!x<y, x=2$ implies $y>1$
e $x<y, x=2$ implies $y>1$
Implies $_{F}(\mathrm{y}>1)=\mathrm{b}_{1} \wedge \mathrm{~b}_{2}$
- Given an error path p in the Boolean program B.
e Is p a feasible path of the corresponding C program?
- Yes: found a bug.
- No: find predicates that explain the infeasibility.
e Execute path symbolically.
e Check conditions for inconsistency using SMT solver.

Z3 \& Static Driver Verifier

- All-SAT
e Better (more precise) Predicate Abstraction
e Unsatisfiable cores
e Why the abstract path is not feasible?
e Fast Predicate Abstraction

Bit-precise Scalable
 Static Analysis

What is wrong here?

```
int binary_search(int[] arr, int low, int high, int key)
while (low <= high)
\{
// Find middle value int mid = (low + high \() / 2\); int val = arr[mid]; if (val == key) return mid; if (val < key) low = mid+1; else high = mid-1; \} return -1;
```

Package: java.util.Arrays
Function: binary_search
void itoa(int n, char* s) \{

$$
\begin{aligned}
& \text { if }(\mathrm{n}<0)\{ \\
& \text { *s++ } \mathrm{s} \cdot{ }^{-\prime} \text {; } \\
& \mathrm{n}=-\mathrm{n} ;
\end{aligned}
$$

$$
\}
$$

// Add digits to s

Book: Kernighan and Ritchie Function: itoa (integer to ascii)

What is wrong here?

What is wrong here?

while (low $<=$ my
\{
// Find middle vaiue int mid = (low + high $) / 2$; int val = arr[mid]; if (val == key) return mid; if (val < key) low = mid+1; else high = mid-1; \} return -1;

Package: java.util.Arrays
Function: binary_search

```
id itoa(int n, Car*s) \{
if \((\mathrm{n}<0)\)
*s++ = '-;
\(n=-n\);
```

\}
// Add digits to s
...

Book: Kernighan and Ritchie Function: itoa (integer to ascii)

The PREfix Static Analysis Engine

```
int init_name(char **outname, uint n)
{
    if ( }\textrm{n}==0\mathrm{ ) return 0;
    else if ( }n>>\mathrm{ UINT16_MAX) exit(1);
    else if ((*outname = malloc(n)) == NULL) {
        return 0xC0000095; // NT_STATUS_NO_MEM;
    }
    return 0;
}
int get_name(char* dst, uint size)
{
    char* name;
    int status = 0;
    status = init_name(&name, size);
    if (status != 0) {
        goto error;
    }
    strcpy(dst, name);
error:
    return status;
}
```


C/C++ functions

The PREfix Static Analysis Engine

```
int init_name(char**outname, uint n)
{
    if ( }\textrm{n}==0\mathrm{ ) return 0;
    else if ( }n>>\mathrm{ UINT16_MAX) exit(1);
    else if ((*outname = malloc(n)) == NULL) {
        return 0xC0000095; // NT_STATUS_NO_MEM;
    }
    return 0;
}
int get_name(char* dst, uint size)
{
    char* name;
    int status = 0;
    status = init_name(&name, size);
    if (status != 0) {
        goto error;
    }
    strcpy(dst, name);
error:
    return status;
}
```


C/C++ functions

The PREfix Static Analysis Engine

```
int init_name(char**outname, uint n)
{
        if (n == 0) return 0;
        else if (n > UINT16_MAX) exit(1);
        else if ((*outname = malloc(n)) == NULL) {
        return 0xC0000095; // NT_STATUS_NO_MEM;
    }
    return 0;
}
int get_name(char* dst, uint size)
{
    char* name;
    int status = 0;
    status = init_name(&name,
    if (status != 0) {
        goto error;
    }
    strcpy(dst, name);
    error:
    return status;
}
```

```
model for function init name
outcome init_name_0:
    guards: n == 0
    results: result == 0
outcome init_name_1:
    guards: n > 0; n <= 65535
    results: result == 0xC0000095
outcome init_name_2:
    guards: n > 0|; n <= 65535
    constraints: valid(outname)
    results: result == 0; init(*outname)
```

path for function get name
guards: size ==0
constraints:
facts: init(dst); init(size); status ==0

Overflow on unsigned addition

m_nSize == m_nMaxSize == UINT_MAX
iElement = m_nSize;
if(iElement >= m_nMaxSize)
\{

$$
\text { iElement + } 1 \text { == } 0
$$

bool bSuccess = GrowBuffer(iElement +1);

$$
\}
$$

::new(m_pData+iElement) E(element); m_nSize++;

Using an overflown value as allocation size

ULONG AllocationSize;
while (CurrentBuffer != NULL) \{
if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) \{ return NULL; \}
NumberOfBuffers++;
Overflow check

CurrentBuffer = CurrentBuffer->NextBuffer;
\}
AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers; UserBuffersHead = malloc(AllocationSize);

Verifying Compilers

Annotations: Example

class C \{ private int a, z; invariant z>0

public void M()

requires a != 0
\{
z = 100/a;
\}

Spec\# Approach for a Verifying Compiler

- Source Language
- C\# + goodies = Spec\#
- Specifications
e method contracts,
e invariants,
e field and type annotations.
- Program Logic:
- Dijkstra's weakest preconditions.

Spec\# (annotated C\#)

Microsoft*
Research

Command language

e $x:=E$
e $x:=x+1$
e $x:=10$
e havoc x

$$
\Theta \mathrm{S} \square \mathrm{~T}
$$

© assert P

- assume P

Reasoning about execution traces

- Hoare triple $\{P\} S\{Q\} \quad$ says that every terminating execution trace of S that starts in a state satisfying P
e does not go wrong, and
\ominus terminates in a state satisfying Q

Reasoning about execution traces

- Hoare triple $\{P\} S\{Q\} \quad$ says that every terminating execution trace of S that starts in a state satisfying P
e does not go wrong, and
\ominus terminates in a state satisfying Q
e Given S and Q, what is the weakest P^{\prime} satisfying $\left\{P^{\prime}\right\} S\{Q\}$
e P^{\prime} is called the weakest precondition of S with respect to Q, written wp(S, Q)
e to check $\{P\} S\{Q\}$, check $P \Rightarrow P^{\prime}$

Weakest preconditions

$w p(x:=E, Q)=$
$w p($ havoc $x, Q)=$
wp(assert $P, Q)=$
wp(assume $\mathrm{P}, \mathrm{Q})=$
$w p(S ; T, Q)=$
$w p(S \square T, Q)=$
$Q[E / x]$
$(\forall x \cdot Q)$
$P \wedge Q$
$P \Rightarrow Q$
wp(S, wp(T, Q))
$w p(S, Q) \wedge w p(T, Q)$

Structured if statement

if \mathbf{E} then \mathbf{S} else \mathbf{T} end $=$

assume E; S
\square
assume \neg E; T

While loop with loop invariant

while E

invariant J do

where x denotes the assignment targets of S

S end
$=$ assert J; havoc x ; assume J; \int "fast forward" to an (assume E; S; assert J; assume false \square assume $\neg E$
)
check that the loop invariant holds initially
"fast forward" to an arbitrary check that the loop invariant is maintained by the loop body

Spec\#Chunker:NextChunk translation

procedure Chunker.NextChunk(this: ref where \$IsNotNull(this, Chunker)) returns (\$result: ref where \$IsNotNull(\$result, System.String));
// in-parameter: target object
free requires \$Heap[this, \$allocated];
requires (\$Heap[this, \$ownerFrame] == \$PeerGroupPlaceholder || !(\$Heap[\$Heap[this, \$ownerRef], \$inv] <: \$Heap[this, \$ownerFrame]) ||
\$Heap[\$Heap[this, \$ownerRef], \$localinv] == \$BaseClass(\$Heap[this, \$ownerFrame])) \&\& (forall \$pc: ref :: \$pc != null \&\& \$Heap[\$pc, \$allocated] \&\& \$Heap[\$pc, \$ownerRef] == \$Heap[this, \$ownerRef] \&\& \$Heap[\$pc, \$ownerFrame] == \$Heap[this, \$ownerFrame] ==> \$Heap[\$pc, \$inv] == \$typeof(\$pc) \&\& \$Heap[\$pc, \$localinv] == \$typeof(\$pc));
// out-parameter: return value
free ensures \$Heap[\$result, \$allocated];
ensures (\$Heap[\$result, \$ownerFrame] == \$PeerGroupPlaceholder || !(\$Heap[\$Heap[\$result, \$ownerRef], \$inv] <: \$Heap[\$result, \$ownerFrame]) || \$Heap[\$Heap[\$result, \$ownerRef], \$localinv] == \$BaseClass(\$Heap[\$result, \$ownerFrame])) \&\& (forall \$pc: ref :: \$pc != null \&\& \$Heap[\$pc, \$allocated] \& \& Heap[\$pc, \$ownerRef] == \$Heap[\$result, \$ownerRef] \&\& \$Heap[\$pc, \$ownerFrame] == \$Heap[\$result, \$ownerFrame] ==> \$Heap $[\$ \mathrm{pc}, \$ \mathrm{inv}]==\$$ typeof(\$pc) \&\& \$Heap[\$pc, \$localinv] == \$typeof(\$pc));
// user-declared postconditions
ensures \$StringLength(\$result) <= \$Heap[this, Chunker.ChunkSize];
// frame condition
modifies \$Heap;
free ensures (forall \$o: ref, \$f: name :: \{ \$Heap[\$0, \$f] \} \$f != \$inv \&\& \$f != \$localinv \& \& \$f != \$FirstConsistentOwner \& (!lsStaticField(\$f) || !IsDirectlyModifiableField(\$f)) \&\& \$o != null \&\& old(\$Heap)[\$0, \$allocated] \& (old(\$Heap)[\$0, \$ownerFrame] == \$PeerGroupPlaceholder || ! (old(\$Heap)[old(\$Heap)[\$o, \$ownerRef], \$inv] <: old(\$Heap)[\$o, \$ownerFrame]) || old(\$Heap)[old(\$Heap)[\$0, \$ownerRef], \$localinv] == \$BaseClass(old(\$Heap)[\$o, \$ownerFrame])) \&\& old(\$o != this || !(Chunker <: DeclType(\$f)) || !\$IncludedInModifiesStar(\$f)) \&\& old(\$o != this || \$f != \$exposeVersion) ==> old(\$Heap)[\$0, \$f] == \$Heap[\$o, \$f]);
// boilerplate
free requires $\$$ BeingConstructed $==$ null;
free ensures (forall \$o: ref :: \{ \$Heap[\$0, \$localinv] \} \{ \$Heap[\$o, \$inv] \} \$o != null \&\& !old(\$Heap)[\$o, \$allocated] \&\& \$Heap[\$o, \$allocated] ==> \$Heap $[\$ 0, \$ i n v]==\$$ typeof $(\$ 0) \& \& \$$ Heap $[\$ 0, \$$ localinv] $==\$$ typeof $(\$ 0))$;
free ensures (forall \$o: ref :: \{ \$Heap[\$o, \$FirstConsistentOwner] \} old(\$Heap)[old(\$Heap)[\$o, \$FirstConsistentOwner], \$exposeVersion] == \$Heap[old(\$Heap)[\$0, \$FirstConsistentOwner], \$exposeVersion] ==> old(\$Heap)[\$o, \$FirstConsistentOwner] == \$Heap[\$0, \$FirstConsistentOwner]);
 old(\$Heap)[\$o, \$localinv] == \$Heap[\$o, \$localinv]);
free ensures (forall \$o: ref :: \{ \$Heap[\$0, \$allocated] \} old(\$Heap)[\$o, \$allocated] ==> \$Heap[\$0, \$allocated]) \&\& (forall \$ot: ref :: \{ \$Heap[\$ot, \$ownerFrame] \} \{ \$Heap[\$ot, \$ownerRef] \} old(\$Heap)[\$ot, \$allocated] \&\& old(\$Heap)[\$ot, \$ownerFrame] != \$PeerGroupPlaceholder ==> old(\$Heap)[\$ot, \$ownerRef] == \$Heap[\$ot, \$ownerRef] \&\& old(\$Heap)[\$ot, \$ownerFrame] == \$Heap[\$ot, \$ownerFrame]) \&\& old(\$Heap)[\$BeingConstructed, $\$$ NonNullFieldsAreInitialized] $==\$$ Heap[\$BeingConstructed, $\$$ NonNullFieldsArelnitialized];

Verification conditions: Structure

Hypervisor: A Manhattan Project

e Meta OS: small layer of software between hardware and OS
e Mini: 100K lines of non-trivial concurrent systems C code
e Critical: must provide functional resource abstraction
e Trusted: a verification grand challenge

HV Correctness: Simulation

A partition cannot distinguish (with some exceptions)
whether a machine instruction is executed
a) through the HV

OR

Hypervisor Implementation

e real code, as shipped with Windows Server 2008
e ca. 100000 lines of C, 5000 lines of x64 assembly
e concurrency

- spin locks, r/w locks, rundowns, turnstiles
- lock-free accesses to volatile data and hardware covered by implicit protocols
e scheduler, memory allocator, etc.
e access to hardware registers (memory management, virtualization support)

Hypenisor Verification (2007-2010)

Partners:

e European Microsoft Innovation Center

- Microsoft Research
- Microsoft's Windows Div.
e Universität des Saarlandes
co-funded by the German Ministry of Education and Research http://www.verisoftxt.de

Challenges for Verification of Concurrent C

1. Memory model that is adequate and efficient to reason about
2. Modular reasoning about concurrent code
3. Invariants for (large and complex) C data structures
4. Huge verification conditions to be proven automatically
5. "Live" specifications that evolve with the code

The Microsoft Verifying C Compiler (VCC)

Θ Source Language

- ANSIC+
e Design-by-Contract Annotations +
- Ghost state +
© Theories +
- Metadata Annotations
- Program Logic
- Dijkstra's weakest preconditions
e Automatic Verification
e verification condition generation (VCG)
e automatic theorem proving (SMT)

VCC Architecture

Contracts / Modular Verification

```
int foo(int x)
    requires(x > 5) // precond
    ensures(result > x) // postcond
```

```
void bar(int y; int *z)
    writes(z) // framing
    requires(y > 7)
    maintains(*z > 7) // invariant
    *z = foo(y);
    assert(*z > 7);
```

- function contracts: pre-/postconditions, framing
- modularity: bar only knows contract (but not code) of foo
advantages:
- modular verification: one function at a time
- no unfolding of code: scales to large applications

Hypervisor: Some Statistics

- VCs have several Mb
e Thousands of non ground clauses
e Developers are willing to wait at most 5 min per VC

Hypervisor: Some Statistics

- VCs have several Mb
e Thousands of non ground clauses
e Developers are willing to wait at most 5 min per VC

Are you willing to wait more than 5 min for your compiler?

Verification Attempt Time vs.
Satisfaction and Productivity

By Michal Moskal (VCC Designer and Software Verification Expert)

Why did my proof attempt fail?

1. My annotations are not strong enough! weak loop invariants and/or contracts
2. My theorem prover is not strong (or fast) enough. Send "angry" email to Nikolaj and Leo.

Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
$\forall \mathrm{h}, \mathrm{o}$, f:
IsHeap(h) $\wedge 0 \neq$ null \wedge read(h, o, alloc) $=t$
$\overrightarrow{\operatorname{read}(h, o, f)}=\operatorname{null} \vee \operatorname{read}(h, \operatorname{read}(h, o, f)$, alloc $)=t$

Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
$\forall \mathrm{o}$, f:
$\mathrm{o} \neq$ null $\wedge \operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}\right.$, alloc $)=\mathrm{t} \Rightarrow$
$\operatorname{read}\left(\mathrm{h}_{1}, \mathrm{o}, \mathrm{f}\right)=\operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}, \mathrm{f}\right) \vee(\mathrm{o}, \mathrm{f}) \in \mathrm{M}$

Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
- User provided assertions
$\forall \mathrm{i}, \mathrm{j}: \mathrm{i} \leq \mathrm{j} \Rightarrow \operatorname{read}(\mathrm{a}, \mathrm{i}) \leq \operatorname{read}(\mathrm{b}, \mathrm{j})$

Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories

$$
\begin{aligned}
& \forall \mathrm{x}: \mathrm{p}(\mathrm{x}, \mathrm{x}) \\
& \forall \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{p}(\mathrm{x}, \mathrm{y}), \mathrm{p}(\mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{p}(\mathrm{x}, \mathrm{z}) \\
& \forall \mathrm{x}, \mathrm{y}: \mathrm{p}(\mathrm{x}, \mathrm{y}), \mathrm{p}(\mathrm{y}, \mathrm{x}) \Rightarrow \mathrm{x}=\mathrm{y}
\end{aligned}
$$

Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
e User provided assertions
- Theories
e Solver must be fast in satisfiable instances.

We want to find bugs!

Bad news

There is no sound and refutationally complete procedure for
linear integer arithmetic + free function symbols

Many Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Microsoft ${ }^{\circ}$
Research

Challenge: Modeling Runtime

ө Is the axiomatization of the runtime consistent?
e False implies everything
e Partial solution: SMT + Saturation Provers

- Found many bugs using this approach

Challenge: Robustness

- Standard complain
"I made a small modification in my Spec, and Z3 is timingout"
ө This also happens with SAT solvers (NP-complete)
- In our case, the problems are undecidable
e Partial solution: parallelization

Parallel Z3

e Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

- Multi-core \& Multi-node (HPC)
- Different strategies in parallel
- Collaborate exchanging lemmas

Microsoft
Research

Hey, I don't trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.

Hey, I don't trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.
The Axiomatization of the runtime may be buggy or inconsistent.

Yes, this is true. We are working on new techniques for proving satisfiability (building a model for these axioms)

Hey, I don't trust these proofs

Z3 may be buggy.
Solution: proof/certificate generation.
Engineering problem: these certificates are too big.
The Axiomatization of the runtime may be buggy or inconsistent.

Yes, this is true. We are working on new techniques for proving satisfiability (building a model for these axioms)
The VCG generator is buggy (i.e., it makes the wrong assumptions)

Do you trust your compiler?

Engineer Perspective

These are bug-finding tools!
When they return "Proved", it just means they cannot find more bugs.
I add Loop invariants to speedup the process.
I don't want to waste time analyzing paths with $1,2, \ldots, k, \ldots$. iterations.
They are successful if they expose bugs not exposed by regular testing.

Microsoft ${ }^{\circ}$
Research

Conclusion

Powerful, mature, and versatile tools like SMT solvers can now be exploited in very useful ways.

The construction and application of satisfiability procedures is an active research area with exciting challenges.

SMT is hot at Microsoft.
Z 3 is a new SMT solver.
Main applications:

- Test-case generation.
- Verifying compiler.
- Model Checking \& Predicate Abstraction.

Books

e Bradley \& Manna: The Calculus of Computation
e Kroening \& Strichman: Decision Procedures, An Algorithmic Point of View

- Chapter in the Handbook of Satisfiability

Web Links

Z3:
http://research.microsoft.com/projects/z3
http://research.microsoft.com/~leonardo

- Slides \& Papers
http://www.smtlib.org
http://www.smtcomp.org

Microsoft ${ }^{\circ}$
Research

References

[Ack54] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation of Mathematics, 1954
[ABC ${ }^{+}$02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In Proc. of CADE'02, 2002
[BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 79-97. Springer-Verlag, 2000
[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In Int. Conference on Computer Aided Verification (CAV'05), pages 20-23. Springer, 2005
[BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the $14^{\text {th }}$ International Conference on Computer Aided Verification (CAV '02), volume 2404 of Lecture Notes in Computer Science, pages 236-249. Springer-Verlag, July 2002. Copenhagen, Denmark
[BBC ${ }^{+}$05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In Int. Conf. on Computer-Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005
[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, 1983

References

[CG96] B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In European Symposium on Algorithms, pages 349-363, 1996
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5(7):394-397, July 1962
[DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs, 2003
[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem. Journal of the Association for Computing Machinery, 27(4):758-771, 1980
[dMR02] L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002). Cincinnati, Ohio, 2002
[DdM06] B. Dutertre and L. de Moura. Integrating simplex with $\operatorname{DPLL}(T)$. Technical report, CSL, SRI International, 2006
[dMB07b] L. de Moura and N. Bjørner. Efficient E-Matching for SMT solvers. In CADE-21, pages 183-198, 2007

References

[dMB07c] L. de Moura and N. Bjørner. Model Based Theory Combination. In SMT'07, 2007
[dMB07a] L. de Moura and N. Bjørner. Relevancy Propagation. Technical Report MSR-TR-2007-140, Microsoft Research, 2007
[dMB08a] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS 08, 2008
[dMB08c] L. de Moura and N. Bjørner. Engineering DPLL(T) + Saturation. In IJCAR'08, 2008
[dMB08b] L. de Moura and N. Bjørner. Deciding Effectively Propositional Logic using DPLL and substitution sets. In IJCAR'08, 2008
[GHN ${ }^{+}$04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, Int. Conference on Computer Aided Verification (CAV 04), volume 3114 of LNCS, pages 175-188. Springer, 2004
[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In Proc. of ICCAD'96, 1996
[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979
[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to difference logic. In Int. Conference on Computer Aided Verification (CAV'05), pages 321-334.

Springer, 2005

References

[Opp80] D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403-411, 1980
[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small domains instantiations. Lecture Notes in Computer Science, 1633:455-469, 1999
[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In Communications of the ACM, volume 8, pages 102-114, August 1992
[RT03] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR'03), Miami, Florida, pages 94-111, 2003
[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium on Logic in Computer Science, pages 19-28, June 2001
[SLB03] S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In Proc. 40th Design Automation Conference, pages 425-430. ACM Press, 2003
[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769-779, October 1981

References

[dMB09] L. de Moura and N. Bjørner. Generalized and Efficient Array Decision Procedures.
FMCAD, 2009.
[GdM09] Y. Ge and L. de Moura. Complete Quantifier Instantiation for quantified SMT formulas, CAV, 2009.

