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Verification/Analysis tools 
need some form of 

Symbolic Reasoning



Logic is “The Calculus of Computer 
Science” (Z. Manna).

High computational complexity



Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing



VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer



unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA



Signature:
div : int, { x : int | x  0 }  int

SubtypeCall site:
if a  1 and a  b then

return div(a, b)

Verification condition
a  1 and a  b implies b  0



Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions 
from a collection of facts?

Formal logic: Precise, syntactic characterizations of 
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate 
consequences at the symbolic level.

Computers can be used to automate such symbolic 
calculations.



Logic studies the relationship between language, 
meaning, and (proof) method. 

A logic consists of a language in which (well-formed) 
sentences are expressed. 

A semantic that distinguishes the valid sentences from 
the refutable ones.

A proof system for constructing arguments justifying 
valid sentences.

Examples of logics include propositional logic, 
equational logic, first-order logic, higher-order logic, 
and modal logics.



A language consists of logical symbols whose 
interpretations are fixed, and non-logical ones whose 
interpretations vary. 

These symbols are combined together to form well-
formed formulas.

In propositional logic PL, the connectives , , and 
have a fixed interpretation, whereas the constants p, q, 
r may be interpreted at will.



Formulas:    := p | 1 2 | 1 2 | 1  | 1 2

Examples:

p  q  q  p

p  q   (p  q)

We say p and q are propositional variables.

Exercise: Using a programming language, define a 
representation for formulas and a checker for well-
formed formulas. 





A formula is satisfiable if it has an interpretation that 
makes it logically true. 

In this case, we say the interpretation is a model.

A formula is unsatisfiable if it does not have any model.

A formula is valid if it is logically true in any 
interpretation.

A propositional formula is valid  if and only if its 
negation is unsatisfiable.



p  q  q  p

p  q  q

p  q   (p  q)



p  q  q  p                 VALID

p  q  q                        SATISFIABLE

p  q   (p  q) UNSATISFIABLE





We say formulas A and B are equisatisfiable if and only if 
A is satisfiable if and only if B is.

During this course, we will describe transformations that 
preserve equivalence and equisatisfiability.





NNF?

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



CNF?

((p  s)  (q  r))  (q  p  s)  (r  s)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  ((p  s)  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  (p  r)  (s  r)  (q  p  s)  (r  s)



DNF? 

p  (p  q)  (q  r)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)
Other Rules
1. AA 

2. A A



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)



((p  q)  q)  ((p  q)  r)
Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)
Other Rules
1. AA 

2. A A



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)



((p  q)  q)  ((p  q)  r)



(p  q)  (q  q)  ((p  q)  r)



(p  q)  (p  r)  (q  r)



























DPLL



A literal is pure if only occurs positively or negatively.



A literal is pure if only occurs positively or negatively.























Let x, y and z be 8-bit (unsigned) integers.

Is x > 0  y > 0  z = x + y  z > 0    valid?

Is x > 0  y > 0  z = x + y  (z > 0)  satisfiable?



We can encode bit-vector satisfiability problems in 
propositional logic.

Idea 1:

Use n propositional variables to encode n-bit integers.

x  (x1, …, xn)

Idea 2:

Encode arithmetic operations using hardware circuits.



p  q is equivalent to (p  q)  (q  p)

The bit-vector equation x = y is encoded as:

(x1  y1)  …  (xn  yn)



We use (r1, …, rn) to store the result of x + y

p xor q is defined as (p  q)

xor is the 1-bit adder

p q p xor q p  q

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

carry



1-bit full adder 

Three inputs: x, y, cin

Two outputs: r, cout

x y cin r = x xor y xor cin cout = (x  y)(x  cin)(y  cin) 

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1



We use (r1, …, rn) to store the result of x + y,

and (c1, …, cn)

r1  (x1 xor y1)

c1  (x1  y1)

r2  (x2 xor y2 xor c1)

c2  (x2  y2)  (x2  c1)  (y2  c1)

…

rn  (xn xor yn xor cn-1)

cn  (xn  yn)  (xn  cn-1)  (yn  cn-1)



unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA







Satisfiability library:  http://www.satlib.org

The SAT competion: http://www.satcompetition.org

Search the WEB: “SAT benchmarks”

http://www.satlib.org/
http://www.satcompetition.org/




Is formula F satisfiable
modulo theory T ? 

SMT solvers have 

specialized algorithms for T



b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



b + 2 = c and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Substituting c by b+2



b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-b+1)

Simplifying



b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)



b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

Applying array theory axiom

forall a,i,v: read(write(a,i,v), i) = v



b + 2 = c and f(3) ≠ f(3)

Inconsistent/Unsatisfiable



Repository of Benchmarks

http://www.smtlib.org

Benchmarks are divided in “logics”:
QF_UF: unquantified formulas built over a signature of 
uninterpreted sort, function and predicate symbols.

QF_UFLIA: unquantified linear integer arithmetic with 
uninterpreted sort, function, and predicate symbols. 

AUFLIA: closed linear formulas over the theory of integer 
arrays with free sort, function and predicate symbols. 

http://www.smtlib.org/


For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking

Test-Case Generation



An SMT Solver is a collection of

Little Engines of Proof



An SMT Solver is a collection of

Little Engines of Proof

Examples:
SAT Solver
Equality solver



a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s t



a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s t



a = b, b = c, d = e, b = s, d = t, a e, a s

c d e s ta,b



a = b, b = c, d = e, b = s, d = t, a e, a s

c d e s ta,b



a = b, b = c, d = e, b = s, d = t, a e, a s

d e s ta,b,c



a = b, b = c, d = e, b = s, d = t, a e, a s

d e s ta,b,c



d,e

a = b, b = c, d = e, b = s, d = t, a e, a s

s ta,b,c



a = b, b = c, d = e, b = s, d = t, a e, a s

s ta,b,c d,e



a,b,c,s

a = b, b = c, d = e, b = s, d = t, a e, a s

td,e



a = b, b = c, d = e, b = s, d = t, a e, a s

td,ea,b,c,s



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t

Unsatisfiable



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

1 2



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = 1  (assignment)

1 2



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = 1  (assignment)

1 2

Alternative notation:
aM = 1 



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = M(b) = M(c) = M(s) = 1

M(d) = M(e) = M(t) = 2

1 2



Termination: easy

Soundness
Invariant: all constants in a “ball” are known to be equal.

The “ball” merge operation is justified by:

Transitivity and Symmetry rules.

Completeness
We can build a model if an inconsistency was not detected.

Proof template (by contradiction):

Build a candidate model.

Assume a literal was not satisfied.

Find contradiction.



Completeness
We can build a model if an inconsistency was not detected.

Instantiating the template for our procedure:

Assume some literal c = d is not satisfied by our model.

That is, M(c) ≠ M(d).

This is impossible, c and d must be in the same “ball”.

c,d,…

i

M(c) = M(d) = i



Completeness
We can build a model if an inconsistency was not detected.

Instantiating the template for our procedure:

Assume some literal c ≠ d is not satisfied by our model.

That is, M(c) = M(d).

Key property: we only check the disequalities after we 
processed all equalities.

This is impossible, c and d must be in the different “balls”

c,…
M(c) = i

M(d) = j

i

d,…
j



a = b, b = c, d = e, b = s, d = t, f(a, g(d))  f(b, g(e))

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, g(d))  f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, g(e))

v1  g(d)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, g(e))

v1  g(d)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, v2)

v1  g(d), v2  g(e)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, v2)

v1  g(d), v2  g(e)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3  f(b, v2)

v1  g(d), v2  g(e), v3  f(a, v1)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 f(b, v2)

v1  g(d), v2  g(e), v3  f(a, v1)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies g(d) = g(e)

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies v1 = v2

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies v1 = v2

a,b,c,s d,e,t v1,v2 v3 v4

We say:
v1 and v2 are congruent.



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies f(a, v1) = f(b, v2)

a,b,c,s d,e,t v1,v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies v3 = v4

a,b,c,s d,e,t v1,v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies v3 = v4

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, v3  v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4

Unsatisfiable



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4

Changing the problem



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4

Missing:
Interpretation for 
f and g.



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?

Problem: we may have 

v  g(a) and w  g(b)  s.t.

M(a) = M(b) = 1  and M(v) = 2 ≠ 3 = M(w)

So, is M(g)(1) = 2 or M(g)(1) = 3?



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?

Problem: we may have 

v  g(a) and w  g(b)  s.t.

M(a) = M(b) = 1  and M(v) = 2 ≠ 3 = M(w)

So, is M(g)(1) = 2 or M(g)(1) = 3?

This is impossible because of 
the congruence rule!
a and b are in the same “ball”, 
then so are v and w



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3, else →1}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3, else →1}

M(f) = { (1 ,3) →4, else →1}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



What about predicates?

p(a, b),   p(c, b)



What about predicates?

p(a, b),   p(c, b)

fp(a, b) = T,    fp (c, b) ≠ T



It is possible to eliminate function symbols using a 
method called Ackermannization.

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

d  e  v1 = v2,

a  v1  b  v2  v3 = v4



It is possible to eliminate function symbols using a 
method called Ackermannization.

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

d  e  v1 = v2,

a  v1  b  v2  v3 = v4

Main Problem: quadratic blowup



It is possible to implement our procedure in

O(n log n)



d,e,t Sets (equivalence classes)

td,e  = d,e,t Union

a sa,b,c,s Membership



Sets (equivalence classes)d,e,t

td,e  = d,e,t Union

a sa,b,c,s Membership

Key observation:

The sets are disjoint!



Union-Find data-structure

Every set (equivalence class) has a root element 
(representative).

a,b,c,s,r

a

b

c

s

r

root

We say: find[c] is b



Union-Find data-structure

a,b,c

a

b

c

s

r

s,r

 =

a

b

c

s

r

a,b,c,s,r



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3 a4

…

a1 a2 a3  an =… an-1

a1 a2 a3 … an-1 an



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3

a4…

a1

a2

a3

 an
=

…
an-1 a1

a2

a3

…
an-1

an



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3

a4…

a1

a2

a3

 an
=

…
an-1 a1

a2

a3

…
an-1

an

We can do n merges in 
O(n log n)

Each constant has two fields: find and size.



Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff v  f(…,a,…)

When we “merge” two equivalence classes we can traverse these 
occurrences to find new congruences.

a

b

c

s

r



occurrences[b] = { v1  g(b), v2  f(a) }
occurrences[s] = { v3  f(r) }



Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff v  f(…,a,…)

When we “merge” two equivalence classes we can traverse these 
occurrences to find new congruences.

a

b

c

s

r



occurrences(b) = { v1  g(b), v2  f(a) }
occurrences(s) = { v3  f(r) }

Inefficient version:
for each v in occurrences(b)

for each w in occurrences(s)
if v and w are congruent

add (v,w) to todo queue

A queue of pairs that need to 
be merged.



a

b

c

s

r



occurrences[b] = { v1  g(b), v2  f(a) }
occurrences[s] = { v3  f(r) }

We also need to merge occurrences[b] with occurrences[s].
This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

v1

v2

v3 =

v1

v2

v3



Avoiding the nested loop:
for each v in occurrences[b]

for each w in occurrences[s]
…

Use a hash table to store the elements v1  f(a1, …, an).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence 
class) roots of the arguments.

hash(v1) = hash-tuple(id(f), id(root(a1)), …, id(root(an)))



Avoiding the nested loop:
for each v in occurrences(b)

for each w in occurrences(s)
…

Use a hash table to store the elements v1  f(a1, …, an).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence 
class) roots of the arguments.

hash(v1) = hash-tuple(id(f), id(root(a1)), …, id(root(an)))

hash-tuple can be the Jenkin’s
hash function for strings.
Just adding the ids produces a 
very bad hash-code!



Efficient implementation of the congruence rule.

Merging the equivalences classes with roots: a1 and a2

Assume a2 is smaller than a1

Before merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

remove v from the hash table   (its hashcode will change)

After merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table



Efficient implementation of the congruence rule.

Merging the equivalences classes with roots: a1 and a2

Assume a2 is smaller than a1

Before merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

remove v from the hash table   (its hashcode will change)

After merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table

add v to occurrences(a1)

Trick:
Use dynamic arrays to 
represent the occurrences



The efficient version is not optimal (in theory).

Problem: we may have v  f(a1, …, an) with “huge” n.

Solution: currying

Use only binary functions, and represent f(a1, a2,a3,a4) as

f(a1, h(a2, h(a3, a4)))

This is not necessary in practice, since the n above is small.



Each constant has now three fields:

find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 

Naïve Solution: Convert to DNF
(x  0, y = x + 1, y > 2)  (x  0, y = x + 1, y < 1) 



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 

Naïve Solution: Convert to DNF
(x  0, y = x + 1, y > 2)  (x  0, y = x + 1, y < 1) 

Too Inefficient!
(exponential blowup)



Equality + UF

Arithmetic

Bit-vectors

…

Case Analysis



M | F

Partial model
Set of clauses



Guessing

p, q | p  q, q  r

p  |  p  q, q  r



Deducing

p, s| p  q, p  s

p |  p  q, p  s



Backtracking

p, s| p  q, s  q, p q

p, s, q |  p  q, s  q, p q



Efficient indexing (two-watch literal)

Non-chronological backtracking (backjumping)

Lemma learning



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4



Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA
Theory conflict



procedure SmtSolver(F)

(Fp, M) := Abstract(F)

loop

(R, A) := SAT_solver(Fp)

if R = UNSAT then return UNSAT

S := Concretize(A, M)

(R, S’) := Theory_solver(S)

if R = SAT then return SAT

L := New_Lemma(S’, M)

Add L to Fp



Basic Idea
F: x  0, y = x + 1, (y > 2  y < 1) 

Fp : p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

M: p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

A: Assignment
p1,  p2, p3, p4

S: x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

S’: Unsatisfiable

x  0, y = x + 1, y < 1

L: New Lemma

p1p2p4



F: x  0, y = x + 1, (y > 2  y < 1) 

Fp : p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

M: p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

A: Assignment
p1,  p2, p3, p4

S: x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

S’: Unsatisfiable

x  0, y = x + 1, y < 1

L: New Lemma

p1p2p4

procedure SMT_Solver(F)

(Fp, M) := Abstract(F)

loop

(R, A) := SAT_solver(Fp)

if R = UNSAT then return UNSAT

S = Concretize(A, M)

(R, S’) := Theory_solver(S)

if R = SAT then return SAT

L := New_Lemma(S, M)

Add L to Fp

“Lazy translation” 
to 

DNF



State-of-the-art SMT solvers implement 
many improvements.



Incrementality
Send the literals to the Theory solver as they are 

assigned by the SAT solver

p1,  p2,  p4 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

Partial assignment is already 
Theory inconsistent.



Efficient Backtracking
We don’t want to restart from scratch after each 

backtracking operation.



Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1,  p2, p3, p4 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1p2 p3 p4 Imprecise Lemma



Theory Propagation
It is the SMT equivalent of unit propagation.

p1,  p2 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1, p2 imply p4 by theory propagation

p1,  p2 , p4 |  p1,  p2, (p3  p4), (p5  p4)



Theory Propagation
It is the SMT equivalent of unit propagation.

p1,  p2 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1, p2 imply p4 by theory propagation

p1,  p2 , p4 |  p1,  p2, (p3  p4), (p5  p4)

Tradeoff between precision  performance.



Core
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Uninterpreted

Functions

Arithmetic Bit-Vectors Scalar Values



Core

SAT Solver

Equality
Uninterpreted

Functions

Arithmetic Bit-Vectors Scalar Values

Case Analysis



Core

SAT Solver

Equality
Uninterpreted

Functions

Arithmetic Bit-Vectors Scalar Values

Blackboard:
equalities, 
disequalities,
predicates



Problem: our procedure for Equality + UF does not support:

Incrementality

Efficient Backtracking

Theory Propagation

Lemma Learning



Incrementality (main problem): 

We were processing the disequalities after we processed all
equalities.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

p1, p4, p2 |  p1, p3  p4, p2  p4

a = b, a ≠ c, b = c, 



Incrementality (main problem): 

We were processing the disequalities after we processed all
equalities.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

p1, p4, p2 |  p1, p3  p4, p2  p4

a = b, a ≠ c, b = c, 



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs*b+ = , a ≠ c -

diseqs[c] = { a ≠ c -



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs*b+ = , a ≠ c -

diseqs[c] = { a ≠ c -

When we merge two equivalence 
classes, we must merge the sets 
diseqs. (circular lists again!)



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs(b) = , a ≠ c -

diseqs(c) = { a ≠ c -

When we merge two equivalence 
classes, we must merge the sets 
diseqs. (circular lists again!)

Before merging two equivalence 
classes, traverse one (the smallest) set 
of diseqs. (track the size of diseqs!)



Backtracking

Option 1: functional data-structures (too slow).

Option 2: trail stack (aka undo stack, fine grain backtracking)

Associate an undo operation to each update operation.

“Log” all update operations in a stack.

During backtracking execute the associated undo operations.



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

a

b

c

s

r

Before:

a b c

s

r

After:

next element

Fields: find, size Fields: root, next, size



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

a

b

c

s

r

Before:

a b c

s

r

After:

next element

Fields: find, size Fields: root, next, size

New design possibility:
We do not need to merge occurrences and diseqs.
We can access all occurrences and diseqs by 
traversing the next fields.



New union-find:

a

b

c

s

r



a

b

c s r

=



New union-find:

a

b

c

s

r



a

b

c s r

=

What was updated?
root[s], root[r],
next[b], next[s],
size[b]



New union-find:

a

b

c

s

r



a

b

c s r

=

What was updated?
root[c], root[r],
next[b], next[s],
size[b]

We only need to store 
s in the undo stack!



What about the congruence table?

hash table used to implement the congruence rule.

Let us use an additional field cg.

It is only relevant for subterms: v3  f(a, v1)

Invariant: a constant (e.g., v3) is in the table iff cg[v3] = v3

Otherwise, cg[v3] contains the subterm congruent to v3

Example:

v3  f(a, v1) , v4  f(b, v2)

Assume v3 and v4 are congruent (i.e., a = b and v1 = v2)

Moreover, v3 is in the congruence table.

Then: cg[v4] = v3 and cg[v3] = v3



procedure Merge(a, b)

ar := root[a]; br := root[b]

if ar = br then return

if not CheckDiseqs(ar, br) then return

if size[a] < size[b] then swap a, b; swap ar, br

AddToTrailStack(MERGE, br)

RemoveParentsFromHashTable(br)

c := br

do

root[c] := ar

c := next[c]

while c ≠ br

ReinsertParentsToHashTable(br)

swap next[ar], next[br]

size[ar] := size[ar] + size[br]



procedure UndoMerge(br)

ar := root[br]

size[ar] := size[ar] – size[br]

swap next[ar], next[br]

RemoveParentsFromHashTable(br)

c := br

do

root[c] := br

c := next[c]

while c ≠ br

for each parent p of br

if p = cg[p] or not congruent(p, cg[p])

add p to hash table

cg[p] := p



procedure UndoMerge(br)

ar := root[br]

size[ar] := size[ar] – size[br]

swap next[ar], next[br]

RemoveParentsFromHashTable(br)

c := br

do

root[c] := br

c := next[c]

while c ≠ br

for each parent p of br

if p = cg[p] or not congruent(p, cg[p])

add p to hash table

cg[p] := p

p was in the hash table 
before and after the merge

p was in the hash table 
before but not after the 
merge.



Propagating equalities (and disequalities)

Store the atom occurrences of a constant.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

atom_occs[a] = { p1, p4 }
atom_occs[b] = { p1, p2 }
atom_occs[c] = { p2, p4 }
atom_occs[d] = { p3 }
atom_occs[e] = { p4 }

When merging or 
adding new 
disequalities traverse 
these sets.



Propagating disequalities (hard case)

v1  f(a, b), v2  f(c, d)

Assume we know that 

v1 ≠ v2

a = c

Then, b ≠ d

More about that later.



Efficient Lemma Generation (computing a small S’)

In EUF (equality + UF) a minimal unsatisfiable set is composed on:

n equalities

1 disequality

It is easy to find the disequality a ≠ b.

So, our problem consists in finding the minimal set of equalities 
that implies a = b.



Efficient Lemma Generation (computing a small S’)

First idea:

If a = b is implied by a set of equalities, then a and b are in the 
same equivalence class.

Store all equalities used to “create” the equivalence class.

a b c

s

r

p1  (a = c), p2  (b = c), 

p3  (s = r), p4  (c = r)

p1, p2, p3, p4, … | …

The equivalence class was “created” 
using p1, p2, p3, p4

Too imprecise for 
justifying a = b.
We need only p1, p2.



Efficient Lemma Generation (computing a small S’)

Second idea: Store a “proof tree”.

Each constant c has a non-redundant  “proof” for c = root*c+.

The proof is a path from c to root[c]

a

b

c

s

r



a

b

c s r

=

p1  (a = c), p2  (b = c), 

p3  (s = r), p4  (c = r)

p1

p2 p3

p1

p2

p3

p4



procedure Merge(a, b, pi)

ar := root[a]; br := root[b]

if ar = br then return

if not CheckDiseqs(ar, br) then return

if size[a] < size[b] then swap a, b; swap ar, br

InvertPathFrom(b, br); AddProofEdge(b, a, pi)

AddToTrailStack(MERGE, br , b)

…



a

c

b

r

… …

…

pn

p1 q1

qm

Non redundant proof for a = b

p1, …, pn, q1, …, qm

Common ancestor in 
the proof tree.



a

b

c s r

p1

p2

p3

p4

Extract a non redundant proof for a = r, a = b and a = s.



a

v2

v1

p1

cg

What about congruence?

New form of justification for an edge in the “proof tree”.

c

b

p2

v1  f(b), v2  f(c)



a

v2

v1

p1

cg

What about congruence?

New form of justification for an edge in the “proof tree”.

c

b

p2

v1  f(b), v2  f(c)

When computing the “proof” for a = v2

Recursive call for computing the proof for v1 = v2

Result: {p1, p2}



The new algorithm may compute redundant proofs for EUF.

Using notation a = b for p  a = b, and p assigned by SAT solver 

f1(a1) = a1 = a2 = f1(a5)

f2(a1) = a2 = a3 = f2(a5)

f3(a1) = a3 = a4 = f3(a5)

f4(a1) = a4 = a5 = f4(a5)

p

p1

p2

q1

q2

p3

p4

q3

q4

s1

s2

s3

s4



The new algorithm may compute redundant proofs for EUF.

Using notation a = b for p  a = b, and p assigned by SAT solver 

f1(a1) = a1 = a2 = f1(a5)

f2(a1) = a2 = a3 = f2(a5)

f3(a1) = a3 = a4 = f3(a5)

f4(a1) = a4 = a5 = f4(a5)

p

p1

p2

q1

q2

p3

p4

q3

q4

s1

s2

s3

s4

Two non redundant proofs f2(a1) = f2(a5):

{p2, q2, s2} using transitivity

{q1, q2, q3, q4} using congruence a1 = a5

Similar for f1, f3, f4.



The new algorithm may compute redundant proofs for EUF.

Using notation a = b for p  a = b, and p assigned by SAT solver 

f1(a1) = a1 = a2 = f1(a5)

f2(a1) = a2 = a3 = f2(a5)

f3(a1) = a3 = a4 = f3(a5)

f4(a1) = a4 = a5 = f4(a5)

p

p1

p2

q1

q2

p3

p4

q3

q4

s1

s2

s3

s4

Two non redundant proofs f2(a1) = f2(a5):

{p2, q2, s2} using transitivity

{q1, q2, q3, q4} using congruence a1 = a5

Similar for f1, f3, f4.

So there are 16 proofs for 

g(f1(a1), f2(a1), f3(a1), f4(a1)) = g(f1(a5), f2(a5), f3(a5), f4(a5))

The only non redundant is {q1, q2, q3, q4}



Some benchmarks are very hard for our procedure.

p1 a1 = c0, p1 a1 = c1,    p1 b1 = c0, p1 b1 = c1,

p2 a2 = c0, p2 a2 = c1,    p2 b2 = c0, p2 b2 = c1,

…,

pn an = c0, pn an = c1,    pn bn = c0, pn bn = c1,

f(an, …, f(a2, a1)…) ≠ f(bn, …, f(b2, b1)…)



Some benchmarks are very hard for our procedure.

p1 a1 = c0, p1 a1 = c1,    p1 b1 = c0, p1 b1 = c1,

p2 a2 = c0, p2 a2 = c1,    p2 b2 = c0, p2 b2 = c1,

…,

pn an = c0, pn an = c1,    pn bn = c0, pn bn = c1,

f(an, …, f(a2, a1)…) ≠ f(bn, …, f(b2, b1)…)

Lemmas learned during the search are not useful.

They only use atoms that are already in the problem!



Some benchmarks are very hard for our procedure.

p1 a1 = c0, p1 a1 = c1,    p1 b1 = c0, p1 b1 = c1,

p2 a2 = c0, p2 a2 = c1,    p2 b2 = c0, p2 b2 = c1,

…,

pn an = c0, pn an = c1,    pn bn = c0, pn bn = c1,

f(an, …, f(a2, a1)…) ≠ f(bn, …, f(b2, b1)…)

Lemmas learned during the search are not useful.

They only use atoms that are already in the problem!

Solution: congruence rule suggests which new atoms must 
be created.



Some benchmarks are very hard for our procedure.

p1 a1 = c0, p1 a1 = c1,    p1 b1 = c0, p1 b1 = c1,

p2 a2 = c0, p2 a2 = c1,    p2 b2 = c0, p2 b2 = c1,

…,

pn an = c0, pn an = c1,    pn bn = c0, pn bn = c1,

f(an, …, f(a2, a1)…) ≠ f(bn, …, f(b2, b1)…)

Solution: congruence rule suggests which new atoms must 
be created.

Whenever, the congruence rules

ai = bi, aj = bj implies f(ai, aj) = f(bi, bj)

is used to (immediately) deduce a conflict. Add the clause:

ai ≠ bi  aj ≠ bj  f(ai, aj) = f(bi, bj) 



Solution: congruence rule suggests which new atoms must 
be created.

Whenever, the congruence rules

ai = bi, aj = bj implies f(ai, aj) = f(bi, bj)

is used to (immediately) deduce a conflict. Add the clause:

ai ≠ bi  aj ≠ bj  f(ai, aj) = f(bi, bj) 

“Dynamic Ackermannization”

It allows the solver to perform the missing disequality
propagation.



SAT Solver

Equality
Uninterpreted

Functions

We can solve the QF_UF SMT-Lib benchmarks!



Many approaches
Graph-based for difference logic:  a – b  3

Fourier-Motzkin elimination:

Standard Simplex

General Form Simplex



Very useful in practice!

Most arithmetical constraints in software 
verification/analysis are in this fragment.

x := x + 1

x1 = x0 + 1

x1 - x0  1, x0 - x1  -1   





Chasing negative cycles!

Algorithms based on Bellman-Ford (O(mn)).



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1  1 -1

a

b

c

d

e

3

1

-1

=
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We say a,b,c are the 
basic (or dependent) 
variables



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1  1 -1

a

b

c

d

e

3

1

-1

=

We say a,b,c are the 
basic (or dependent) 
variables

We say d,e are the 
non-basic (or non-
dependent) variables.



Incrementality: add/remove equations

Slow backtracking

No theory propagation



Simplex General Form

Algorithm based on the dual simplex

Non redundant proofs

Efficient backtracking

Efficient theory propagation

Support for string inequalities: t > 0

Preprocessing step

Integer problems: 
Gomory cuts,  Branch & Bound, GCD test





s1  x + y,    s2  x + 2y



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0

s1, s2  are basic (dependent) 

x,y are non-basic



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0



A way to swap a basic with a non-basic variable!
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Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0
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Example: swap s1 and y 
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s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s2 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!

Example:
M(x) = 1
M(y) = 1
M(s1) = 2
M(s2) = 3





If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all dependent 
variables.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c 



If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all dependent 
variables. Of course, we may introduce new “problems”.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a  0

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c

a  0



If the assignment of a basic variable does not satisfy a 
bound, then pivot it, fix it, and propagate the change to its 
new dependent variables. 

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  a 



Sometimes, a model cannot be repaired. It is pointless to 
pivot.

a = b – c

a  0, 1  b, c  0

M(a) = 1

M(b) = 1

M(c) = 0

The value of M(a) is too big. We can 
reduce it by:
- reducing M(b) 

not possible b is at lower bound
- increasing M(c)

not possible c is at upper bound



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent

{ a  0,  1  a + d,  c + d  0,  0  c } is inconsistent
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Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.

Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not 
satisfy its bounds, then select the smallest non-basic in the 
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of 
configurations. Then, any infinite trace will have cycles.



In practice, we need a combination of theories.

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories T1  T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for

T1  T2?



Two theories are disjoint if they do not share 
function/constant and predicate symbols.

= is the only exception.

Example:

The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0, -1, 1, -2, 2, …, +, -, *, >, <,  ≥, }

Array symbols: { read, write }



It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5) 



It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5) 

b + 2 = c, v1  3, v3  c-2, v5  c-b+1,

v2  write(a, b, v1), v4  read(v2, v3),

v6  f(v4), v7  f(v5), v6 ≠ v7



A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.



The union of two consistent, disjoint, stably infinite 
theories is consistent.



A theory T is convex iff

for all finite sets S of literals and

for all a1 = b1 …  an = bn

S implies a1 = b1 …  an = bn

iff

S implies ai = bi for some  1  i  n



Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.

formulas of the form s1 ≠ r1 …  sn ≠ rn  t = t’

Linear rational arithmetic is convex.



Linear integer arithmetic is not convex

1  a  2, b = 1, c = 2  implies a = b  a = c

Nonlinear arithmetic

a2 = 1, b = 1, c = -1 implies a = b  a = c

Theory of bit-vectors

Theory of arrays

c1 = read(write(a, i, c2), j), c3 = read(a, j)

implies c1 = c2  c1 = c3



EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add 

f(a1, a2, a3) ≠ f(0, 1, 0)



EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add 

f(a1, a2, a3) ≠ f(0, 1, 0)

a1 ≠ 0  a2 ≠ 1  a3 ≠ 0

implies















b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  c-2, 

v5  c-b+1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3)

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  c-2, 

v5  c-b+1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3)

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7

Substituting c



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7

Propagating  v3 = b



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b

Deducing v4 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b

Propagating v4 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1

Propagating v5 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1Congruence: v6 = v7



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1 , 

v6 = v7

Unsatisfiable



Deterministic procedure may fail for non-convex theories.

0  a  1, 0  b  1, 0  c  1,

f(a) ≠ f(b),

f(a) ≠ f(c),

f(b) ≠ f(c)



























A reduction function reduces the satifiability problem for a 
complex theory into the satisfiability problem of a simpler 
theory.

Ackermannization is a reduction function.



EUF



Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing



A formula F is valid
Iff

F is unsatisfiable

Theorem Prover/
Satisfiability Checker

Satisfiable
Model

F
Unsatisfiable
Proof



A formula F is valid
Iff

F is unsatisfiable

Theorem Prover/
Satisfiability Checker

Satisfiable
Model

F
Unsatisfiable
Proof

Timeout Memout



Verification/Analysis
Tool

Theorem Prover/
Satisfiability Checker

Problem

Logical Formula

UnsatisfiableSatisfiable
(Counter-example)



Z3 is a new solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for academic research.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml





Test (correctness + usability) is 95% of the deal:

Dev/Test is 1-1 in products.

Developers are responsible for unit tests.

Tools:

Annotations and static analysis (SAL + ESP)

File Fuzzing

Unit test case generation



Security is critical

Security bugs can be very expensive:

Cost of each MS Security Bulletin: $600k to $Millions.

Cost due to worms: $Billions.

The real victim is the customer.

Most security exploits are initiated via files or packets.

Ex: Internet Explorer parses dozens of file formats.

Security testing: hunting for million dollar bugs

Write A/V

Read A/V

Null pointer dereference

Division by zero



Two main techniques used by “black hats”:

Code inspection (of binaries).

Black box fuzz testing.

Black box fuzz testing:

A form of black box random testing.

Randomly fuzz (=modify) a well formed input.

Grammar-based fuzzing: rules to encode how to fuzz.

Heavily used in security testing

At MS: several internal tools.

Conceptually simple yet effective in practice



Execution 
Path

Run Test and Monitor Path Condition

Solve

seed

New input

Test
Inputs

Constraint 
System

Known
Paths





Test input generator
Pex starts from parameterized unit tests

Generated tests are emitted as traditional unit tests





class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Inputs



Inputs

(0,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



Inputs Observed 

Constraints

(0,null) !(c<0)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

c < 0    false



Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

0 == c   true



Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

} item == item   true

This is a tautology, 

i.e. a constraint that is always true,

regardless of the chosen values.

We can ignore such constraints.



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

0 == c   false



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null) c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

c < 0    true



Constraints to 

solve

Inputs Observed 

Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null) c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length) 

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}



How to test this code?

(Real code from .NET base class libraries.)







Test input, 

generated by Pex



Test

Inputs

Constraint 

System
Execution Path

Known

Paths

Run Test and 

Monitor

Record

Path Condition

Choose an 

Uncovered Path

Solve

Initially, choose Arbitrary

Result: small test suite,
high code coverage

Finds only real bugs
No false warnings



Linear 
arithmetic

Bitvector Arrays
Free

Functions

Model used as test inputs

Used to model custom theories (e.g., .NET type 
system)

Huge number of small problems. Textual interface is 
too inefficient.



Rich 
Combination 

Linear 
arithmetic

Bitvector Arrays
Free

Functions

-Quantifier
Used to model custom theories (e.g., .NET type 
system)

Undecidable (in general)



Rich 
Combination 

Linear 
arithmetic

Bitvector Arrays
Free

Functions

-Quantifier
Used to model custom theories (e.g., .NET type 
system)

Undecidable (in general)
Solution: 

Return “Candidate” Model
Check if trace is valid by executing  it



Rich 
Combination 

Linear 
arithmetic

Bitvector Arrays
Free

Functions

-Quantifier
Used to model custom theories (e.g., .NET type 
system)

Undecidable (in general)
Refined solution: 

Support for decidable fragments.



Apply DART to large applications (not units).

Start with well-formed input (not random).

Combine with generational search (not DFS).
Negate 1-by-1 each constraint in a path constraint.

Generate many children for each parent run.

parent



Apply DART to large applications (not units).

Start with well-formed input (not random).

Combine with generational search (not DFS).
Negate 1-by-1 each constraint in a path constraint.

Generate many children for each parent run.

parent

generation 1



Starting with 100 zero bytes …

SAGE generates a crashing test for Media1 parser

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 0 – seed file



Starting with 100 zero bytes …

SAGE generates a crashing test for Media1 parser

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....

00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids

00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ; ....strf²uv:(...

00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 10 – CRASH



SAGE is very effective at finding bugs.

Works on large applications.

Fully automated

Easy to deploy (x86 analysis – any language)

Used in various groups inside Microsoft

Powered by Z3.



Formulas are usually big conjunctions.

SAGE uses only the bitvector and array theories.

Pre-processing step has a huge performance impact.
Eliminate variables.

Simplify formulas.

Early unsat detection.





Ella Bounimova, Vlad Levin, Jakob Lichtenberg, 
Tom Ball, Sriram Rajamani, Byron Cook

Z3 is part of SDV 2.0 (Windows 7)

It is used for:

Predicate abstraction (c2bp)

Counter-example refinement (newton)



http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture:

c2bp  C program → boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to 
check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are 
relatively small.



do {

KeAcquireSpinLock();

nPacketsOld = nPackets; 

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();



do {

KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}

} while (*);

KeReleaseSpinLock();
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U
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do {

KeAcquireSpinLock();

nPacketsOld = nPackets; 

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

U

L

L

L

L

U

L

U

U

U

E



do {

KeAcquireSpinLock();

nPacketsOld = nPackets; 

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

U

L

L

L

L

U

L

U

U

U

E



do {

KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

U

L

L

L

L

U

L

U

U

U

E
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do {

KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();
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do {

KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

U

L

L

L

L

U

L

U

U

b

b

b

b

b

b

!b



Automatic discovery of invariants
driven by property and a finite set of (false) execution paths
predicates are not invariants, but observations
abstraction + model checking computes inductive invariants (Boolean 
combinations of observations)

A hybrid dynamic/static analysis
newton executes path through C code symbolically 
c2bp+bebop explore all paths through abstraction

A new form of program slicing
program code and data not relevant to property are dropped
non-determinism allows slices to have more behaviors



Given a C program P and F = {p1, … , pn}.

Produce a Boolean program B(P, F)

Same control flow structure as P.

Boolean variables {b1, … , bn} to match {p1, … , pn}.

Properties true in B(P, F) are true in P.

Each pi is a pure Boolean expression.

Each pi represents set of states for which pi is true.

Performs modular abstraction.



ImpliesF (e)
Best Boolean function over F that implies e.

ImpliedByF (e)
Best Boolean function over F that is implied by e.

ImpliedByF (e) = not ImpliesF (not e)



ImpliedByF(e)

e

ImpliesF(e)



minterm m = l1 and ... and ln, where li = pi, or li = not pi.

ImpliesF(e): disjunction of all minterms that imply e.

Naive approach

Generate all 2n possible minterms.

For each minterm m, use SMT solver to check 
validity of m implies e.

Many possible optimizations



F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2  implies y>1

!x<y, x=2   implies y>1

x<y,  x=2   implies y>1



F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2  implies y>1

!x<y, x=2   implies y>1

x<y,  x=2   implies y>1



F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2  implies y>1

!x<y, x=2   implies y>1

x<y,  x=2   implies y>1

ImpliesF(y>1) = x<y  x=2



F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2  implies y>1

!x<y, x=2   implies y>1

x<y,  x=2   implies y>1

ImpliesF(y>1) = b1  b2



Given an error path p in the Boolean program B.

Is p a feasible path of the corresponding C program?

Yes: found a bug.

No: find predicates that explain the infeasibility.

Execute path symbolically.

Check conditions for inconsistency using SMT solver.



All-SAT

Better (more precise) Predicate Abstraction

Unsatisfiable cores

Why the abstract path is not feasible?

Fast Predicate Abstraction



PREfix [Moy, Bjorner, Sielaff 2009]



int binary_search(int[] arr, int low, 
int high, int key)  

while (low <= high)  

{

// Find middle value 

int mid = (low + high) / 2;

int val = arr[mid];

if (val == key) return mid;

if (val < key) low = mid+1; 

else high = mid-1;

}

return -1;

}

void itoa(int n, char* s) {

if (n < 0) {

*s++ = „-‟;

n = -n;

}

// Add digits to s

….

Package: java.util.Arrays

Function: binary_search

Book: Kernighan and Ritchie

Function: itoa (integer to ascii)



int binary_search(int[] arr, int low, 
int high, int key)  

while (low <= high)  

{

// Find middle value 

int mid = (low + high) / 2;

int val = arr[mid];

if (val == key) return mid;

if (val < key) low = mid+1; 

else high = mid-1;

}

return -1;

}

void itoa(int n, char* s) {

if (n < 0) {

*s++ = „-‟;

n = -n;

}

// Add digits to s

….

3(INT_MAX+1)/4 +
(INT_MAX+1)/4 

= INT_MIN

Package: java.util.Arrays

Function: binary_search

Book: Kernighan and Ritchie

Function: itoa (integer to ascii)



int binary_search(int[] arr, int low, 
int high, int key)  

while (low <= high)  

{

// Find middle value 

int mid = (low + high) / 2;

int val = arr[mid];

if (val == key) return mid;

if (val < key) low = mid+1; 

else high = mid-1;

}

return -1;

}

void itoa(int n, char* s) {

if (n < 0) {

*s++ = „-‟;

n = -n;

}

// Add digits to s

….

-INT_MIN= 
INT_MIN

3(INT_MAX+1)/4 +
(INT_MAX+1)/4 

= INT_MIN

Package: java.util.Arrays

Function: binary_search

Book: Kernighan and Ritchie

Function: itoa (integer to ascii)



int init_name(char **outname, uint n)

{

if (n == 0) return 0;

else if (n > UINT16_MAX) exit(1);

else if ((*outname = malloc(n)) == NULL) {

return 0xC0000095; // NT_STATUS_NO_MEM;

}

return 0;

}

int get_name(char* dst, uint size) 

{

char* name;

int status = 0;

status = init_name(&name, size);

if (status != 0) {

goto error;

}

strcpy(dst, name);

error:

return status;

}

C/C++ functions



int init_name(char **outname, uint n)

{

if (n == 0) return 0;

else if (n > UINT16_MAX) exit(1);

else if ((*outname = malloc(n)) == NULL) {

return 0xC0000095; // NT_STATUS_NO_MEM;

}

return 0;

}

int get_name(char* dst, uint size) 

{

char* name;

int status = 0;

status = init_name(&name, size);

if (status != 0) {

goto error;

}

strcpy(dst, name);

error:

return status;

}

C/C++ functions

model for function init_name

outcome init_name_0:

guards: n == 0

results: result == 0

outcome init_name_1:

guards: n > 0; n <= 65535

results: result == 0xC0000095

outcome init_name_2:

guards: n > 0|; n <= 65535

constraints: valid(outname)

results: result == 0; init(*outname)

models



int init_name(char **outname, uint n)

{

if (n == 0) return 0;

else if (n > UINT16_MAX) exit(1);

else if ((*outname = malloc(n)) == NULL) {

return 0xC0000095; // NT_STATUS_NO_MEM;

}

return 0;

}

int get_name(char* dst, uint size) 

{

char* name;

int status = 0;

status = init_name(&name, size);

if (status != 0) {

goto error;

}

strcpy(dst, name);

error:

return status;

}

C/C++ functions

model for function init_name

outcome init_name_0:

guards: n == 0

results: result == 0

outcome init_name_1:

guards: n > 0; n <= 65535

results: result == 0xC0000095

outcome init_name_2:

guards: n > 0|; n <= 65535

constraints: valid(outname)

results: result == 0; init(*outname)

path for function get_name

guards: size == 0

constraints:

facts: init(dst); init(size); status == 0

models

paths

pre-condition for function strcpy

init(dst) and valid(name)



427

iElement = m_nSize;

if( iElement >= m_nMaxSize )

{

bool bSuccess = GrowBuffer( iElement+1 );

…

}

::new( m_pData+iElement ) E( element );

m_nSize++;

m_nSize == m_nMaxSize == UINT_MAX

iElement + 1 == 0



ULONG AllocationSize;

while (CurrentBuffer != NULL) {

if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {

return NULL;
}
NumberOfBuffers++;
CurrentBuffer = CurrentBuffer->NextBuffer;

}

AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers;

UserBuffersHead = malloc(AllocationSize);

428

Overflow check

Increment and exit 

from loop



pre/post conditions

invariants

and other annotations



class C {

private int a, z;

invariant z > 0

public void M()

requires a != 0

{ 

z = 100/a; 

}

}



Source Language

C# + goodies = Spec#

Specifications

method contracts,

invariants,

field and type annotations.

Program Logic: 

Dijkstra’s weakest preconditions.

Automatic Verification

type checking,

verification condition generation (VCG),

SMT

Spec# (annotated C#)

Boogie PL

Formulas



x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

S T



Hoare triple { P }  S  { Q } says that

every terminating execution trace of S that 
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q



Hoare triple { P }  S  { Q } says that

every terminating execution trace of S that 
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Given S and Q, what is the weakest P’ satisfying 
{P’} S {Q} ?

P' is called the weakest precondition of S with 
respect to Q, written wp(S, Q)

to check {P} S {Q}, check P  P’



wp( x := E,  Q ) =

wp( havoc x,  Q ) =

wp( assert P,  Q ) =

wp( assume P,  Q ) =

wp( S ; T,  Q ) =

wp( S T,  Q ) =

Q[ E / x ]

(x  Q )

P  Q

P  Q

wp( S,  wp( T, Q ))

wp( S, Q )  wp( T, Q )



if E then S else T end =

assume E;  S



assume ¬E;  T



while E
invariant J

do
S

end

= assert J;
havoc x;  assume J;
( assume E;  S;  assert J;  assume false
 assume ¬E
)

where x denotes the 

assignment targets of S

“fast forward” to an arbitrary 

iteration of the loop

check that the loop invariant holds initially

check that the loop invariant is 

maintained by the loop body



procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));
// in-parameter:  target object
free requires $Heap[this, $allocated];
requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[this, $ownerRef], $inv] <: $Heap[this, $ownerFrame]) || 

$Heap[$Heap[this, $ownerRef], $localinv] == $BaseClass($Heap[this, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc, $allocated] 
&& $Heap[$pc, $ownerRef] == $Heap[this, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[this, $ownerFrame] ==> $Heap[$pc, $inv] == 
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// out-parameter:  return value
free ensures $Heap[$result, $allocated];
ensures ($Heap[$result, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, $ownerRef], $inv] <: $Heap[$result, $ownerFrame]) || 

$Heap[$Heap[$result, $ownerRef], $localinv] == $BaseClass($Heap[$result, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc, 
$allocated] && $Heap[$pc, $ownerRef] == $Heap[$result, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[$result, $ownerFrame] ==> 
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// user-declared postconditions
ensures $StringLength($result) <= $Heap[this, Chunker.ChunkSize];
// frame condition
modifies $Heap;
free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f != $inv && $f != $localinv && $f != $FirstConsistentOwner && (!IsStaticField($f) || 

!IsDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder || 
!(old($Heap)[old($Heap)[$o, $ownerRef], $inv] <: old($Heap)[$o, $ownerFrame]) || old($Heap)[old($Heap)[$o, $ownerRef], $localinv] == 
$BaseClass(old($Heap)[$o, $ownerFrame])) && old($o != this || !(Chunker <: DeclType($f)) || !$IncludedInModifiesStar($f)) && old($o != this || $f 
!= $exposeVersion) ==> old($Heap)[$o, $f] == $Heap[$o, $f]);

// boilerplate
free requires $BeingConstructed == null;
free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && !old($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==> 

$Heap[$o, $inv] == $typeof($o) && $Heap[$o, $localinv] == $typeof($o)); 
free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] == 

$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o, 
$FirstConsistentOwner]);

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } old($Heap)[$o, $allocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] && 
old($Heap)[$o, $localinv] == $Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot, 
$ownerFrame] } { $Heap[$ot, $ownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, $ownerFrame] != $PeerGroupPlaceholder ==> 
old($Heap)[$ot, $ownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, $ownerFrame] == $Heap[$ot, $ownerFrame]) && 
old($Heap)[$BeingConstructed, $NonNullFieldsAreInitialized] == $Heap[$BeingConstructed, $NonNullFieldsAreInitialized];



BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data 

Flow



Meta OS: small layer of software 
between hardware and OS

Mini: 100K lines of non-trivial 
concurrent systems C code

Critical: must provide functional resource abstraction

Trusted: a verification grand challenge

Hardware

Hypervisor



A partition cannot distinguish (with some exceptions)

whether a machine instruction is executed

a) through the HV              OR b) directly on a processor

Disk NIC CPU RAM

Hypervisor

Partition

App App App

machine instruction

mov EAX, 23

Disk NIC CPU RAM

Operating System

App App App

machine instruction

mov EAX, 23



real code, as shipped with Windows Server 2008

ca. 100 000 lines of C, 5 000 lines of x64 assembly

concurrency
spin locks, r/w locks, rundowns, turnstiles

lock-free accesses to volatile data and hardware covered by 
implicit protocols

scheduler, memory allocator, etc.

access to hardware registers (memory management, 
virtualization support)



Partners:

European Microsoft Innovation Center

Microsoft Research

Microsoft’s Windows Div.

Universität des Saarlandes

co-funded by the German Ministry of Education and Research
http://www.verisoftxt.de



1. Memory model that is adequate and efficient to 
reason about

2. Modular reasoning about concurrent code

3. Invariants for (large and complex) C data structures

4. Huge verification conditions to be proven 
automatically

5. “Live” specifications that evolve with the code



Source Language
ANSI C + 

Design-by-Contract Annotations + 

Ghost state +

Theories +

Metadata Annotations 

Program Logic
Dijkstra’s weakest preconditions

Automatic Verification
verification condition generation 
(VCG)

automatic theorem proving (SMT)





int foo(int x)

requires(x > 5)      // precond

ensures(result > x)  // postcond

{

…

}

void bar(int y; int z)

writes(z)            // framing

requires(y > 7)

maintains(z > 7)    // invariant

{

z = foo(y);

assert(z > 7);

}

• function contracts: pre-/postconditions, framing
• modularity: bar only knows contract (but not code) of 

foo

advantages: 

• modular verification: one function at a time

• no unfolding of code: scales to large applications



VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC



VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Are you willing to wait more than 
5 min for your compiler?



By Michal Moskal (VCC Designer and Software Verification Expert)



1. My annotations are not strong enough!
weak loop invariants and/or contracts 

2. My theorem prover is not strong (or fast) enough.
Send “angry” email to Nikolaj and Leo.



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f) M 



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y



Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!



There is no sound and refutationally complete

procedure for 

linear integer arithmetic + free function symbols





Is the axiomatization of  the runtime consistent?

False implies everything

Partial solution: SMT + Saturation Provers

Found many bugs using this approach



Standard complain

“I made a small modification in my Spec, and 
Z3 is timingout”

This also happens with SAT solvers (NP-complete)

In our case, the problems are undecidable

Partial solution: parallelization



Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

Multi-core & Multi-node (HPC)

Different strategies in parallel

Collaborate exchanging lemmas



Z3 may be buggy.

Solution: proof/certificate generation.

Engineering problem: these certificates are too big. 



Z3 may be buggy.

Solution: proof/certificate generation.

Engineering problem: these certificates are too big.

The Axiomatization of the runtime may be buggy or 
inconsistent. 

Yes, this is true. We are working on new techniques for 
proving satisfiability (building a model for these axioms)



Z3 may be buggy.

Solution: proof/certificate generation.

Engineering problem: these certificates are too big.

The Axiomatization of the runtime may be buggy or 
inconsistent. 

Yes, this is true. We are working on new techniques for 
proving satisfiability (building a model for these axioms)

The VCG generator is buggy (i.e., it makes the wrong 
assumptions)

Do you trust your compiler?



These are bug-finding tools!

When they return “Proved”, it just means they cannot 
find more bugs.

I add Loop invariants to speedup the process.

I don’t want to waste time analyzing paths with 1,2,…,k,… 
iterations.

They are successful if they expose bugs not exposed by 
regular testing.





Bradley & Manna: The Calculus of Computation

Kroening & Strichman: Decision Procedures, An 
Algorithmic Point of View

Chapter in the Handbook of Satisfiability













[dMB09] L. de Moura and N. Bjørner. Generalized and Efficient Array Decision Procedures. 
FMCAD, 2009.
[GdM09] Y. Ge and L. de Moura. Complete Quantifier Instantiation for quantified SMT 
formulas, CAV, 2009.


