

Quantifiers in Satisfiability Modulo Theories Manchester 2009

100

Leonardo de Moura Microsoft Research

Symbolic Reasoning

- Logic is "The Calculus of Computer Science" (Z. Manna).
- High computational complexity

Undecidable (First-order logic)

NEXPTime-complete (EPR)

PSpace-complete (QBF)

NP-complete (Propositional logic)

Is formula F satisfiable modulo theory T?

SMT solvers have specialized algorithms for *T*

$$b+2=c$$
 and $f(read(write(a,b,3), c-2) \neq f(c-b+1)$

$$b+2=c$$
 and $f(read(write(a,b,3), c-2) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
 and $f(read(write(a,b,3), c-2) \neq f(c-b+1)$

Array Theory

$$b+2=c$$
 and $f(read(write(a,b,3), c-2) \neq f(c-b+1)$

Uninterpreted Functions

Theories

- A Theory is a set of sentences
- Alternative definition:A Theory is a class of structures
- Th(M) is the set of sentences that are true in the structure M

SMT: Some Applications @ Microsoft

HAVOC

Hyper-V Microsoft Virtualization

Terminator T-2

VCC

NModel

Vigilante

SpecExplorer

F7

SAGE

Microsoft* Research

Quantifiers in Satisfiability Modulo Theories

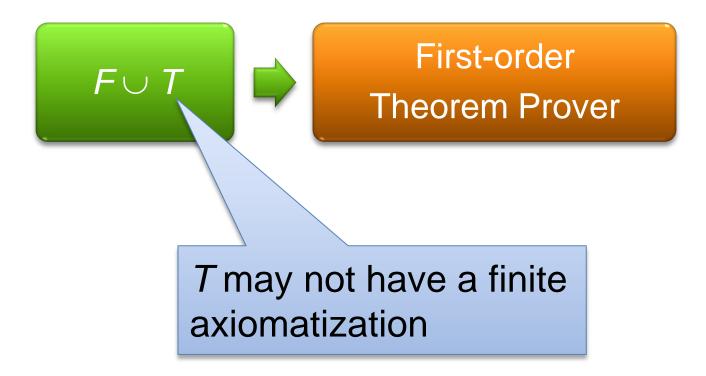
SMT@Microsoft: Solver

- Z3 is a new solver developed at Microsoft Research.
- Development/Research driven by internal customers.
- Free for academic research.
- Interfaces:



http://research.microsoft.com/projects/z3

SMT x First-order provers



SMT x SAT

For some theories, SMT can be reduced to SAT

Higher level of abstraction

 $bvmul_{32}(a,b) = bvmul_{32}(b,a)$

Ground formulas

For most SMT solvers: **F is a set of ground formulas**

Many Applications

Bounded Model Checking Test-Case Generation

Partial model

Set of clauses

Guessing

Deducing

Backtracking

Solvers = DPLL + Decision Procedures

Efficient decision procedures for conjunctions of ground atoms.

$$a=b$$
, $a<5$ | $\neg a=b \lor f(a)=f(b)$, $a<5 \lor a>10$

Efficient algorithms

Difference Logic	Belmann-Ford
Uninterpreted functions	Congruence closure
Linear arithmetic	Simplex

Model Generation

- How to represent the model of satisfiable formulae?
- Functor:
 - Given a model M for T
 - Generate a model M' for F (modulo T)
- Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

<i>M'</i> :	Symbol	Interpretation
	а	1
	b	0
	f	ite(x=1, 0, 2)

Model Generation

- How to represent the model of satisfiable formulae?
- Functor:
 - Given a model M for T
 - Generate a model M' for F
- Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

<i>M</i> ':	Symbol	Interpretation
	а	1
	b	0
	f	ite(x=1, 0, 2)

Interpretation is given using *T*-symbols

Model Generation

- How to represent the model of satisfiable formulae?
- Functor:
 - Given a model M for T
 - Generate a model M' for F (mo

Non ground term (lambda expression)

Example:

F:
$$f(a) = 0$$
 and $a > b$ and $f(b) > f(a) + 1$

	Symbol	Interpretat [*]
<i>M</i> ':	а	1
	b	0
	f	ite(x=1, 0, 2)

Model Checking

M':

Symbol Interpretation

a 1
b 0
f ite(x=1, 0, 2)

Is $\forall x$: f(x) > 0 satisfied by M'?

Yes, not (ite(k=1,0,2) > 0) is unsatisfiable

Model Checking

M':

Symbol	Interpretation
а	1
b	0
f	ite(x=1, 0, 2)

Is $\forall x$: f(x) > 0 satisfied by M'?

Yes,
not (ite(
$$k=1,0,2$$
) > 0) is unsatisfiable

- Negated quantifier
- Replaced f by its interpretation
- Replaced x by fresh constant k

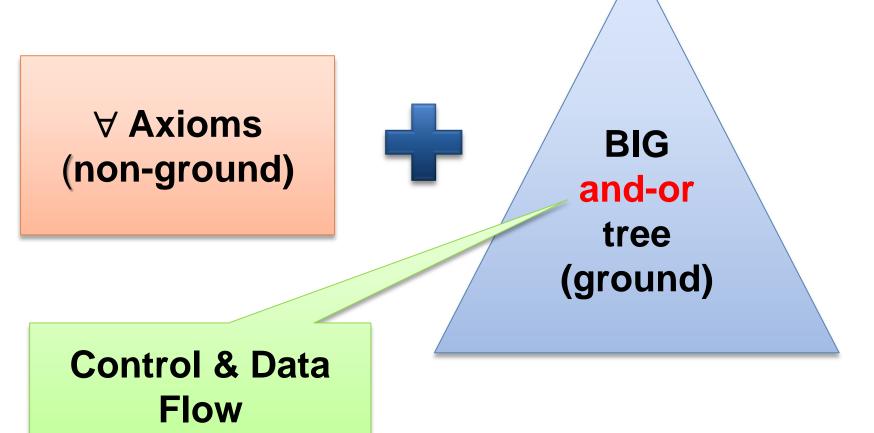
Verifying Compilers

Annotated Program

Verification Condition F

pre/post conditions invariants and other annotations

Verification conditions: Structure



- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime

```
∀ h,o,f:
    IsHeap(h) ∧ o ≠ null ∧ read(h, o, alloc) = t
    ⇒
    read(h,o, f) = null ∨ read(h, read(h,o,f),alloc) = t
```

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms

```
\forall o, f:
o \neq null \wedge read(h<sub>0</sub>, o, alloc) = t \Rightarrow
read(h<sub>1</sub>,o,f) = read(h<sub>0</sub>,o,f) \vee (o,f) \in M
```

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions

$$\forall$$
 i,j: i \leq j \Rightarrow read(a,i) \leq read(b,j)

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories

```
\forall x: p(x,x)
```

$$\forall x,y,z: p(x,y), p(y,z) \Rightarrow p(x,z)$$

$$\forall$$
 x,y: p(x,y), p(y,x) \Rightarrow x = y

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories
- Solver must be fast in satisfiable instances.

We want to find bugs!

Some statistics

- Grand challenge: Microsoft Hypervisor
- 70k lines of dense C code
- VCs have several Mb
- Thousands of non ground clauses
- Developers are willing to wait at most 5 min per VC

Many Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).
- Example:

$$\forall$$
 x: f(g(x)) = x { f(g(x)) }
a = g(b),
b = c,
f(a) \neq c

Trigger

E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).
- Example:

$$\forall$$
 x: f(g(x)) = x { f(g(x)) }
a = g(b),
b = c,
f(a) \neq c
Equalities and ground terms come
from the partial model M

E-matching: why do we use it?

- Integrates smoothly with DPLL.
- Software verification problems are big & shallow.
- Decides useful theories:
 - Arrays
 - Partial orders
 - **=**

Efficient E-matching

- E-matching is NP-Hard.
- In practice

Problem	Indexing Technique
Fast retrieval	E-matching code trees
Incremental E-Matching	Inverted path index

E-matching code trees

Trigger:

f(x1, g(x1, a), h(x2), b)

Compiler

Similar triggers share several instructions.

Combine code sequences in a code tree

Instructions:

- 1. init(f, 2)
- 2. check(r4, b, 3)
- 3. bind(r2, g, r5, 4)
- 4. compare(r1, r5, 5)
- 5. check(r6, a, 6)
- 6. bind(r3, h, r7, 7)
- 7. yield(r1, r7)

E-matching needs ground seeds.

 $\forall x: p(x),$

 $\forall x$: not p(x)

- E-matching needs ground seeds.
- Bad user provided triggers:

```
\forall x: f(g(x))=x \{ f(g(x)) \}

g(a) = c,

g(b) = c,

a \neq b
```

Trigger is too restrictive

- E-matching needs ground seeds.
- Bad user provided triggers:

```
\forall x: f(g(x))=x \{ g(x) \}

g(a) = c,

g(b) = c,

a \neq b
```

More "liberal" trigger

- E-matching needs ground seeds.
- Bad user provided triggers:

```
\forall x: f(g(x))=x \{ g(x) \}

g(a) = c,

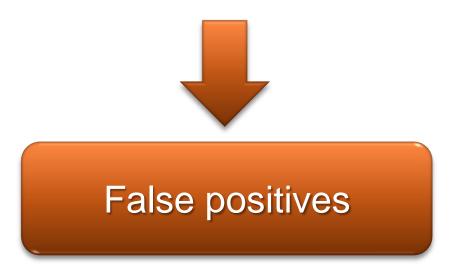
g(b) = c,

a \neq b,

f(g(a)) = a,

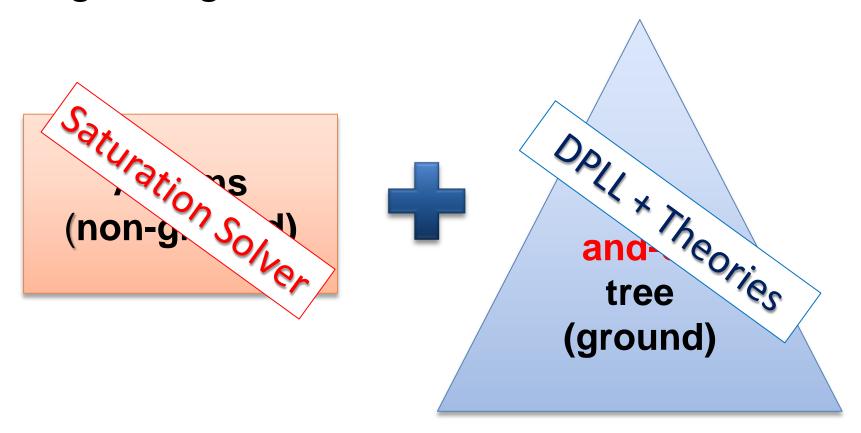
f(g(b)) = b
```

- E-matching needs ground seeds.
- Bad user provided triggers.
- It is not refutationally complete.



$DPLL(\Gamma)$

Tight integration: DPLL + Saturation solver.



$DPLL(\Gamma)$

Inference rule:

$$\frac{C_1 \quad \dots \quad C_n}{C}$$

- \bullet DPLL(Γ) is parametric.
- Examples:
 - Resolution
 - Superposition calculus
 - **()**

$DPLL(\Gamma)$

Partial model

Set of clauses

DPLL(Γ): Deduce I

$$p(a) \mid p(a) \lor q(a), \forall x: \neg p(x) \lor r(x), \forall x: p(x) \lor s(x)$$

DPLL(Γ): Deduce I

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$$

DPLL(Γ): Deduce I

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)$$

 $p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x), r(x) \lor s(x)$

DPLL(Γ): Deduce II

Using ground atoms from M:

M | F

- Main issue: backtracking.
- Hypothetical clauses:

 $\mathsf{H} \mathrel{\triangleright} \mathsf{C}$

Track literals from M used to derive C

(hypothesis)
Ground literals

(regular) Clause

$DPLL(\Gamma)$: Deduce II

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x)$$

$$p(a), \neg p(x) \lor r(x)$$

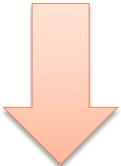
$$r(a)$$

$$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(a) \triangleright r(a)$$

DPLL(Γ): Backtracking

$$p(a), r(a) | p(a) \lor q(a), \neg p(a) \lor \neg r(a), p(a) \triangleright r(a), ...$$

DPLL(Γ): Backtracking



p(a) is removed from M

$$\neg p(a) \mid p(a) \lor q(a), \neg p(a) \lor \neg r(a), ...$$

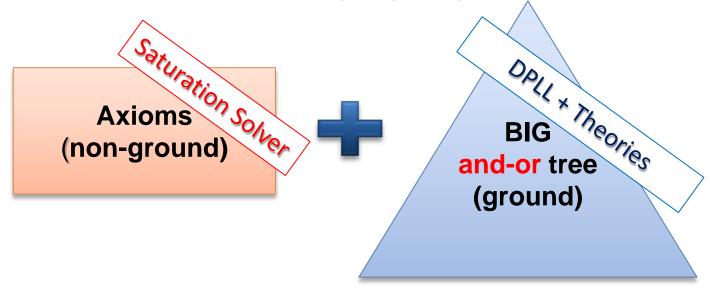
DPLL(Γ): Improvement

Saturation solver ignores non-unit ground clauses.

$$p(a) \mid p(x) \mid$$

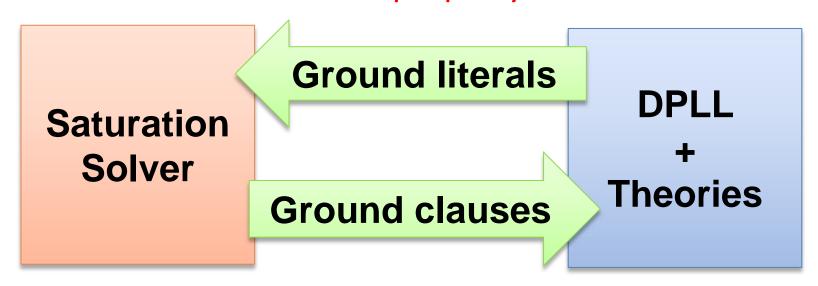
DPLL(Γ): Improvement

- Saturation solver ignores non-unit ground clauses.
- It is still refutanionally complete if:
 - \bullet Γ has the reduction property.



$DPLL(\Gamma)$: Improvement

- Saturation solver ignores non-unit ground clauses.
- It is still refutanionally complete if:
 - \bullet Γ has the reduction property.



DPLL(Γ): Problem

Interpreted symtbols

$$\neg$$
(f(a) > 2), f(x) > 5

- It is refutationally complete if
 - Interpreted symbols only occur in ground clauses
 - Non ground clauses are variable inactive
 - "Good" ordering is used

Non ground clauses + interpreted symbols

There is no sound and refutationally complete procedure for linear arithmetic + unintepreted function symbols

Essentially unintepreted fragment

Universal variables only occur as arguments of uninterpreted symbols.

$$\forall x: f(x) + 1 > g(f(x))$$

$$\forall x,y: f(x+y) = f(x) + f(y)$$

Almost unintepreted fragment

Relax restriction on the occurrence of universal variables.

not
$$(x \le y)$$

not $(x \le t)$
 $f(x + c)$
 $x =_c t$

Complete quantifier instantiation

- If F is in the almost uninterpreted fragment
- Convert F into an equisatisfiable (modulo T) set of ground clauses F*
- F* may be infinite
- It is a decision procedure if F* is finite
- Subsumes EPR, Array Property Fragment,
 Stratified Vocabularies for Many Sorted Logic

Generating F* (for the essentially uninterpreted fragment)

- F induces a system Δ_F of set constraints
- $S_{k,i}$ set of ground instances for variable x_i in clause C_k
- $A_{f,j}$ set of ground j-th arguments of f

j -th argument of f in clause C_k	Set Constraint
a ground term t	$t \in A_{f,j}$
$t\left[x_{1},,x_{n}\right]$	$t\left[S_{k,1},,S_{k,n}\right]\in A_{f,j}$
X_i	$S_{k,i} \in A_{f,j}$

- F^* is generated using the least solution of Δ_F
- $F^* = \{ C_k [S_{k,1},...,S_{k,n}] \mid C_k \in F \}$

Generating F* (fortheessentially uninterpreted fragment)

- F induces a system Δ_F of set const
- $S_{k,i}$ set of ground instances for va
- $A_{f,j}$ set of ground j-th arguments

We assume the least solution is not empty

j -th argument of f in clause C_k	Set Con
a ground term t	$t \in A_{f,j}$
$t\left[x_{1},,x_{n}\right]$	$t\left[S_{k,1},\right] \in A_{f,j}$
X_i	$S_{k,i} \in \mathcal{I}_{f,j}$

- F^* is generated using the least solution of Δ_F
- $F^* = \{ C_k [S_{k,1},...,S_{k,n}] \mid C_k \in F \}$

Generating F*: Example

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 < f(x_1),$
 $h(b) = 1, f(a) = 0$

$$S_{1,1} = A_{g,1}, S_{1,2} = A_{g,2}, S_{1,2} = A_{h,1}$$

 $S_{2,1} = A_{f,1}, f(S_{2,1}) \subseteq A_{g,1}, b \in A_{g,2}$
 $b \in A_{h,1}, a \in A_{f,1}$

Least solution

$$S_{1,1} = A_{g,1} = \{ f(a) \}$$

 $S_{1,2} = A_{g,2} = A_{h,1} = \{ b \}$
 $S_{2,1} = A_{f,1} = \{ a \}$

$$g(f(a), b) = 0 \lor h(b) = 0,$$

 $g(f(a),b) + 1 < f(a),$
 $h(b) = 1, f(a) = 0$

Refutationally complete procedure

Compactness

A set F of first order sentences is unsatisifiable iff it contains an unsatisfiable finite subset

• If we view T as a set of sentences Apply compactness to $T \cup F^*$

Example

$$\forall x: f(f(x)) > f(x)$$

$$\forall x: f(x) < a$$

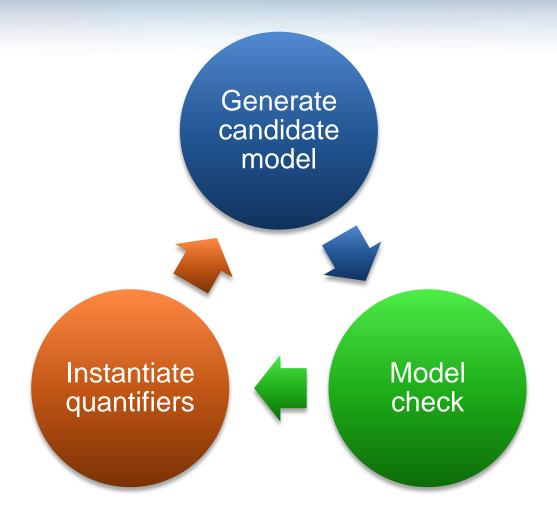
$$f(0)=0$$

Satisfiable if T is Th(Z), but unsatisfiable T is the the class of structures Exp(Z)

$$f(f(0)) > f(0), f(f(f(0))) > f(f(0)), ...$$

 $f(0) < a, f(f(0)) < a, ...$
 $f(0) = 0$

CEGAR-like loop for quantifiers



What is the best approach?

- There is no winner
- Portfolio of algorithms/techniques

Parallel Z3

- Joint work with Y. Hamadi (MSRC) and C. Wintersteiger
- Multi-core & Multi-node (HPC)
- Different strategies in parallel
- Collaborate exchanging lemmas

Conclusion

- Some VCs produced by verifying compilers are very challenging
- Most VCs contain many non ground formulas
- Z3 2.0 won all ∀-divisions in SMT-COMP'08
- Many challenges
- Many approaches/algorithms

Thank You!

