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Software malfunction is a common problem.

Software complexity is increasing.

We need new methods and tools. 



I proved my program to be correct.

What does it mean?



We need models and tools to 
reason about them?

Does my model/software has 
property X?



Verification/Analysis tools 
need some form of 

Symbolic Reasoning



Logic is “The Calculus of Computer 
Science” (Z. Manna).

High computational complexity



Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing



VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer



unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA



Signature:
div : int, { x : int | x  0 }  int

SubtypeCall site:
if a  1 and a  b then

return div(a, b)

Verification condition
a  1 and a  b implies b  0



Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions 
from a collection of facts?

Formal logic: Precise, syntactic characterizations of 
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate 
consequences at the symbolic level.

Computers can be used to automate such symbolic 
calculations.



Logic studies the relationship between language, 
meaning, and (proof) method. 

A logic consists of a language in which (well-formed) 
sentences are expressed. 

A semantic that distinguishes the valid sentences from 
the refutable ones.

A proof system for constructing arguments justifying 
valid sentences.

Examples of logics include propositional logic, 
equational logic, first-order logic, higher-order logic, 
and modal logics.



A language consists of logical symbols whose 
interpretations are fixed, and non-logical ones whose 
interpretations vary. 

These symbols are combined together to form well-
formed formulas.

In propositional logic PL, the connectives , , and 
have a fixed interpretation, whereas the constants p, q, 
r may be interpreted at will.



Formulas:    := p | 1 2 | 1 2 | 1  | 1 2

Examples:

p  q  q  p

p  q   (p  q)

We say p and q are propositional variables.

Exercise: Using a programming language, define a 
representation for formulas and a checker for well-
formed formulas. 





A formula is satisfiable if it has an interpretation that 
makes it logically true. 

In this case, we say the interpretation is a model.

A formula is unsatisfiable if it does not have any model.

A formula is valid if it is logically true in any 
interpretation.

A propositional formula is valid  if and only if its 
negation is unsatisfiable.



p  q  q  p

p  q  q

p  q   (p  q)



p  q  q  p                 VALID

p  q  q                        SATISFIABLE

p  q   (p  q) UNSATISFIABLE





We say formulas A and B are equisatisfiable if and only if 
A is satisfiable if and only if B is.

During this course, we will describe transformations that 
preserve equivalence and equisatisfiability.





NNF?

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



NNF? NO

(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



(p  q)  (q  (r  p))



CNF?

((p  s)  (q  r))  (q  p  s)  (r  s)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  ((p  s)  r))  (q  p  s)  (r  s)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



CNF? NO

((p  s)  (q  r))  (q  p  s)  (r  s)



((p  s)  q))  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  ((p  s)  r))  (q  p  s)  (r  s)



(p  q)  (s  q)  (p  r)  (s  r)  (q  p  s)  (r  s)



DNF? 

p  (p  q)  (q  r)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)

Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)
Other Rules
1. AA 

2. A A



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)



((p  q)  q)  ((p  q)  r)
Distributivity
1. A(BC)  (AB)(AC)
2. A(BC)  (AB)(AC)
Other Rules
1. AA 

2. A A



DNF? NO, actually this formula is in CNF

p  (p  q)  (q  r)



((p  p)  (p  q))  (q  r)



(p  q)  (q  r)



((p  q)  q)  ((p  q)  r)



(p  q)  (q  q)  ((p  q)  r)



(p  q)  (p  r)  (q  r)





Rules preserve satisfiability.















































DPLL



A literal is pure if only occurs positively or negatively.



A literal is pure if only occurs positively or negatively.























Let x, y and z be 8-bit (unsigned) integers.

Is x > 0  y > 0  z = x + y  z > 0    valid?

Is x > 0  y > 0  z = x + y  (z > 0)  satisfiable?



We can encode bit-vector satisfiability problems in 
propositional logic.

Idea 1:

Use n propositional variables to encode n-bit integers.

x  (x1, …, xn)

Idea 2:

Encode arithmetic operations using hardware circuits.



p q is equivalent to (p  q)  (q  p)

The bit-vector equation x = y is encoded as:

(x1  y1)  …  (xn  yn)



We use (r1, …, rn) to store the result of x + y

p xor q is defined as (p q)

xor is the 1-bit adder

p q p xor q p  q

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

carry



1-bit full adder 

Three inputs: x, y, cin

Two outputs: r, cout

x y cin r = x xor y xor cin cout = (x  y)(x  cin)(y  cin) 

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1



We use (r1, …, rn) to store the result of x + y,

and (c1, …, cn)

r1  (x1 xor y1)

c1  (x1  y1)

r2  (x2 xor y2 xor c1)

c2  (x2  y2)  (x2  c1)  (y2  c1)

…

rn  (xn xor yn xor cn-1)

cn  (xn  yn)  (xn  cn-1)  (yn  cn-1)



1) Encode x * y

2) Encode x > y (signed and unsigned versions)



unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA































Satisfiability library:  http://www.satlib.org

The SAT competion: http://www.satcompetition.org

Search the WEB: “SAT benchmarks”

http://www.satlib.org/
http://www.satcompetition.org/



