

Satisfiability Modulo Theories (SMT): ideas and applications Università Degli Studi Di Milano Scuola di Dottorato in Informatica, 2010

Leonardo de Moura Microsoft Research

Software development crisis

Software malfunction is a common problem.

Software complexity is increasing.

We need new methods and tools.

Program correctness

I proved my program to be correct.

What does it mean?

Software models

We need models and tools to reason about them?

Does my model/software has property X?

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

 Logic is "The Calculus of Computer Science" (Z. Manna).

NP-complete

(Propositional logic)

P-time

Equality))

High computational complexity

Microsoft[®]

Researc

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

Test case generation

Type checking

Verification condition

a
$$\leq$$
 1 and a \leq b implies b \neq 0

What is logic?

- Logic is the art and science of effective reasoning.
- How can we draw general and reliable conclusions from a collection of facts?
- Formal logic: Precise, syntactic characterizations of well-formed expressions and valid deductions.
- Formal logic makes it possible to calculate consequences at the symbolic level.
- Computers can be used to automate such symbolic calculations.

What is logic?

- Logic studies the relationship between language, meaning, and (proof) method.
- A logic consists of a language in which (well-formed) sentences are expressed.
- A semantic that distinguishes the valid sentences from the refutable ones.
- A proof system for constructing arguments justifying valid sentences.
- Examples of logics include propositional logic, equational logic, first-order logic, higher-order logic, and modal logics.

What is logical language?

- A language consists of logical symbols whose interpretations are fixed, and non-logical ones whose interpretations vary.
- These symbols are combined together to form wellformed formulas.
- In propositional logic PL, the connectives ∧, ∨, and ¬
 have a fixed interpretation, whereas the constants p, q,
 r may be interpreted at will.

Propositional Logic

Formulas: $\varphi := p \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \neg \varphi_1 \mid \varphi_1 \Rightarrow \varphi_2$

Examples:

 $p \lor q \Rightarrow q \lor p$

 $p \land \neg q \land (\neg p \lor q)$

We say *p* and *q* are propositional variables.

Exercise: Using a programming language, define a representation for formulas and a checker for well-formed formulas.

Interpretation

An interpretation \mathcal{M} assigns truth values $\{\top, \bot\}$ to propositional variables.

Let A and B range over PL formulas.

 $\mathcal{M}[\![\phi]\!]$ is the meaning of ϕ in \mathcal{M} and is computed using *truth tables*:

ϕ	A	В	$\neg A$	$A \lor B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow (B \lor A)$
$\mathcal{M}_1(\phi)$			Τ		\perp	\top	\top
$\mathcal{M}_2(\phi)$	\perp	\top	\top	\top	\perp	T	Т
$\mathcal{M}_3(\phi)$	\top	\bot	\bot	\top	\perp	\perp	\top
$\mathcal{M}_4(\phi)$	\top	\top	\bot	\top	\perp	\top	\top

Satisfiability & Validity

- A formula is satisfiable if it has an interpretation that makes it logically true.
- In this case, we say the interpretation is a model.
- A formula is unsatisfiable if it does not have any model.
- A formula is valid if it is logically true in any interpretation.
- A propositional formula is valid if and only if its negation is unsatisfiable.

Satisfiability & Validity: examples

 $p \lor q \Rightarrow q \lor p$

 $p \lor q \Rightarrow q$

$p \land \neg q \land (\neg p \lor q)$

ϕ	A	В	$\neg A$	$A \lor B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow (B \lor A)$
$\mathcal{M}_1(\phi)$		\perp	Т	\perp	\perp	Т	Т
$\mathcal{M}_2(\phi)$	\perp	\top	Т	\top	\perp	Т	Т
$\mathcal{M}_3(\phi)$	\top	\perp	\perp	\top	\perp	\perp	Т
$\mathcal{M}_4(\phi)$	\top	\top	\perp	Т	\perp	\top	Т

Satisfiability & Validity: examples

- $p \lor q \Rightarrow q \lor p$ VALID
- $p \lor q \Rightarrow q$ SATISFIABLE
- $p \land \neg q \land (\neg p \lor q)$ UNSATISFIABLE

ϕ	A	В	$\neg A$	$A \lor B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow (B \lor A)$
$\mathcal{M}_1(\phi)$	\bot	\perp	\top	\perp	\perp	Т	Т
$\mathcal{M}_2(\phi)$	\perp	\top	\top	\top	\perp	\top	Т
$\mathcal{M}_3(\phi)$	Т	\perp	\perp	\top	\perp	\perp	Т
$\mathcal{M}_4(\phi)$	Т	\top	\bot	\top	\perp	Т	\top

Two formulas A and B are equivalent, $A \iff B$, if their truth values agree in each interpretation.

Exercise 2 Prove that the following are equivalent

1.
$$\neg \neg A \iff A$$

- $\textbf{2.} \hspace{0.2cm} A \Rightarrow B \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \neg A \lor B$
- 3. $\neg (A \land B) \iff \neg A \lor \neg B$
- $\textbf{4. } \neg (A \lor B) \iff \neg A \land \neg B$
- 5. $\neg A \Rightarrow B \iff \neg B \Rightarrow A$

Equisatisfiable

We say formulas A and B are equisatisfiable if and only if A is satisfiable if and only if B is.

During this course, we will describe transformations that preserve equivalence and equisatisfiability.

A formula where negation is applied only to propositional atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is equivalent to one in NNF, CNF, and DNF.

Exercise 4 Show that every *n*-ary Boolean function can be expressed using just \neg and \lor .

NNF?

 $(p \lor \neg q) \land (q \lor \neg (r \land \neg p))$

NNF? NO

$$(p \lor \neg q) \land (q \lor \neg (r \land \neg p))$$

NNF? NO

$$(p \lor \neg q) \land (q \lor \neg (r \land \neg p))$$

1. $\neg \neg A \iff A$ 2. $A \Rightarrow B \iff \neg A \lor B$ 3. $\neg (A \land B) \iff \neg A \lor \neg B$ 4. $\neg (A \lor B) \iff \neg A \land \neg B$

NNF? NO

$$(p \lor \neg q) \land (q \lor \neg (r \land \neg p))$$

- \Leftrightarrow
- $(p \lor \neg q) \land (q \lor (\neg r \lor \neg \neg p))$

- 1. $\neg \neg A \iff A$
- $2. A \Rightarrow B \iff \neg A \lor B$
- 3. $\neg (A \land B) \iff \neg A \lor \neg B$
- 4. $\neg (A \lor B) \iff \neg A \land \neg B$

NNF? NO $(p \lor \neg q) \land (q \lor \neg (r \land \neg p))$ \Leftrightarrow $(p \lor \neg q) \land (q \lor (\neg r \lor \neg \neg p))$ \Leftrightarrow $(p \lor \neg q) \land (q \lor (\neg r \lor p))$

1. $\neg \neg A \iff A$ 2. $A \Rightarrow B \iff \neg A \lor B$ 3. $\neg (A \land B) \iff \neg A \lor \neg B$ 4. $\neg (A \lor B) \iff \neg A \land \neg B$

CNF?

$((p \land s) \lor (\neg q \land r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$

CNF? NO ($(p \land s) \lor (\neg q \land r)$) $\land (q \lor \neg p \lor s) \land (\neg r \lor s)$

CNF? NO ($(p \land s) \lor (\neg q \land r)$) $\land (q \lor \neg p \lor s) \land (\neg r \lor s)$

CNF? NO $((p \land s) \lor (\neg q \land r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$ \Leftrightarrow $((p \land s) \lor \neg q)) \land ((p \land s) \lor r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$

CNF? NO $((p \land s) \lor (\neg q \land r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$ \Leftrightarrow $((p \land s) \lor \neg q)) \land ((p \land s) \lor r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$ \Leftrightarrow $(p \lor \neg q) \land (s \lor \neg q) \land ((p \land s) \lor r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$

CNF? NO

$$((p \land s) \lor (\neg q \land r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$$

$$\Leftrightarrow$$

$$((p \land s) \lor \neg q)) \land ((p \land s) \lor r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$$

$$\Leftrightarrow$$

$$(p \lor \neg q) \land (s \lor \neg q) \land ((p \land s) \lor r)) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$$

$$\Leftrightarrow$$

$$(p \lor \neg q) \land (s \lor \neg q) \land (p \lor r) \land (s \lor r) \land (q \lor \neg p \lor s) \land (\neg r \lor s)$$

DNF?

 $p \land (\neg p \lor q) \land (\neg q \lor r)$

DNF? NO, actually this formula is in CNF $p \land (\neg p \lor q) \land (\neg q \lor r)$

DNF? NO, actually this formula is in CNF $p \land (\neg p \lor q) \land (\neg q \lor r)$

DNF? NO, actually this formula is in CNF $p \land (\neg p \lor q) \land (\neg q \lor r)$ \Leftrightarrow $((p \land \neg p) \lor (p \lor q)) \land (\neg q \lor r)$
Normal Forms

DNF? NO, actually this formula is in CNF $p \land (\neg p \lor q) \land (\neg q \lor r)$ \Leftrightarrow $((p \land \neg p) \lor (p \lor q)) \land (\neg q \lor r)$ \Leftrightarrow $(p \lor q) \land (\neg q \lor r)$

> Distributivity 1. $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ 2. $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ Other Rules 1. $A \land \neg A \Leftrightarrow \bot$ 2. $A \lor \downarrow \Leftrightarrow A$

Normal Forms

DNF? NO, actually this formula is in CNF $p \land (\neg p \lor q) \land (\neg q \lor r)$ \Leftrightarrow $((p \land \neg p) \lor (p \lor q)) \land (\neg q \lor r)$ \Leftrightarrow $(p \lor q) \land (\neg q \lor r)$ \Leftrightarrow $((p \lor q) \land \neg q) \lor ((p \lor q) \land r)$

Distributivity 1. $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ 2. $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ Other Rules 1. $A \land \neg A \Leftrightarrow \bot$ 2. $A \lor \downarrow \Leftrightarrow A$

Normal Forms DNF? NO, actually this formula is in CNF $p \wedge (\neg p \lor q) \wedge (\neg q \lor r)$ \Leftrightarrow $((p \land \neg p) \lor (p \lor q)) \land (\neg q \lor r)$ \Leftrightarrow $(p \lor q) \land (\neg q \lor r)$ \Leftrightarrow $((p \lor q) \land \neg q) \lor ((p \lor q) \land r)$ \Leftrightarrow $(p \land \neg q) \lor (q \land \neg q) \lor ((p \lor q) \land r)$ \Leftrightarrow $(p \land \neg q) \lor (p \land r) \lor (q \land r)$

Refutation Decision Procedures

A decision procedure determines if a collection of formulas is satisfiable.

A decision procedure is given by a collection of reduction rules on a *logical state* ψ .

State ψ is of the form $\kappa_1 | \dots | \kappa_n$, where each κ_i is a *configuration*.

The logical content of κ is either \perp or is given by a finite set of formulas of the form A_1, \ldots, A_m .

A state ψ of the form $\kappa_1, \ldots, \kappa_n$ is satisfiable if some configuration κ_i is satisfiable.

A configuration κ of the form A_1, \ldots, A_m is satisfiable if there is an interpretation M such that $M \models A_i$ for $1 \le i \le m$.

Inference Systems for Decision Procedures

A refutation procedure proves A by refuting $\neg A$ through the application of reduction rules.

An application of an reduction rule transforms a state ψ to a state ψ' (written $\psi \models \psi'$).

Rules preserve satisfiability.

If relation \Rightarrow between states is well-founded and any non-bottom irreducible state is satisfiable, we say that the inference system is a decision procedure.

Ex: Prove that a decision procedure as given above is sound and complete.

Truth Table

An inference rule
$$\frac{\kappa}{\kappa_1 | \dots | \kappa_n}$$
 is shorthand for $\frac{\psi[\kappa]}{\psi[\kappa_1 | \dots | \kappa_n]}$.
The truth table procedure can be viewed as a model.

The *truth table* procedure can be viewed as a *model elimination* procedure.

$$\begin{array}{ll} \displaystyle \frac{\Gamma}{\Gamma,p\mid\Gamma,\neg p} \textit{split} & p \text{ and } \neg p \text{ are not in } \Gamma.\\ \displaystyle \frac{\Gamma,F}{\perp}\textit{elim} & F \text{ is falsified by the literals in } \Gamma. \end{array}$$

A literal is a proposition or the negation of a proposition. The literals in Γ can be viewed as a partial interpretation. Ex: Prove correctness (soundness, termination, and completeness).

Truth Table (example)

A truth table refutation of $\{p \lor \neg q \lor \neg r, p \lor r, p \lor q, \neg p\}$:

Ex: Implement the truth table procedure.

Semantic Tableaux

The inference rules for the Semantic Tableaux procedure are:

$\frac{A \wedge B, \Gamma}{A, B, \Gamma} \wedge +$	$\frac{\neg (A \land B), \Gamma}{\neg A, \Gamma \mid \neg B, \Gamma} \land -$
$\frac{\neg (A \lor B), \Gamma}{\neg A, \neg B, \Gamma} \lor -$	$\frac{(A \lor B), \Gamma}{A, \Gamma \mid B, \Gamma} \lor +$
$\boxed{ \begin{array}{c} \neg (A \Rightarrow B), \Gamma \\ \hline A, \neg B, \Gamma \end{array} } \Rightarrow -$	$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma \mid B, \Gamma} \Rightarrow +$
$\frac{\neg \neg A, \Gamma}{A, \Gamma} \neg$	$\frac{A,\neg A,\Gamma}{\bot}\bot$

Semantic Tableaux is a "DNF translator".

Ex: Prove correctness.

Semantic Tableaux (example)

Refutation of $\neg(p \lor q \Rightarrow q \lor p)$:

$\frac{A \wedge B, \Gamma}{A, B, \Gamma} \wedge +$	$\frac{\neg (A \land B), \Gamma}{\neg A, \Gamma \mid \neg B, \Gamma} \land -$
$\frac{\neg (A \lor B), \Gamma}{\neg A, \neg B, \Gamma} \lor -$	$\frac{(A \vee B), \Gamma}{A, \Gamma \mid B, \Gamma} \vee +$
$\frac{\neg (A \Rightarrow B), \Gamma}{A, \neg B, \Gamma} \Rightarrow -$	$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma \mid B, \Gamma} \Rightarrow +$
$\frac{\neg \neg A, \Gamma}{A, \Gamma} \neg$	$rac{A, \neg A, \Gamma}{\perp}$

$ eg (p \lor q \Rightarrow q \lor p)$		
$p \lor q, \neg (q \lor p)$		
$p, \neg(q \lor p) \mid q, \neg(q \lor p)$		
$p, \neg q, \neg p \mid q, \neg (q \lor p)$		
$\perp \mid q, \neg (q \lor p)$		
$q, \neg(q \lor p)$		
$q, \neg q, \neg p$		

Ex: Use the Semantic Tableaux procedure to refute $\neg(p \lor (q \land r) \Rightarrow (p \lor q) \land (p \lor r)).$

Ex: Implement the Semantic Tableaux.

Semantic Tableaux (cont.)

The complexity of *Semantic Tableaux* proofs depends on the *length* of the *formula* to be decided.

The complexity of the *truth-table* procedure depends only on the number of *distinct propositional variables* which occur in it.

The *Semantic Tableaux* procedure does not *p-simulate* the *truth-table* procedure. Consider *fat* formulas such as:

$$(p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land$$
$$(p_1 \lor \neg p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land$$
$$(p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor \neg p_3) \land$$
$$(p_1 \lor \neg p_2 \lor \neg p_3) \land (\neg p_1 \lor \neg p_2 \lor \neg p_3) \land$$

Ex: Use Semantic Tableaux to refute the formula above.

Semantic Tableaux (cont.)

The classical notion of truth is governed by two basic principles:

Non-contradiction no proposition can be true and false at the same time.

Bivalence every proposition is either true of false.

There is *no rule* in the *Semantic Tableaux* procedure which correspondes to the *principle of bivalence*.

The elimination of the *principle of bivalence* seem to be inadequate from the point of view of efficiency.

Semantic Tableaux + Bivalence

The *principle of bivalence* can be recovered if we replace the Semantic Tableaux *branching* rules by:

The new rules are asymmetric.

Ex: Show that the new rules are sound.

A CNF formula is a conjunction of *clauses*. A *clause* is a disjunction of *literals*.

Ex: Implement a linear-time decision procedure for 2CNF (each clause has at most 2 literals).

A clause is *trivial* if it contains a *complementary* pair of literals.

Since the *order* of the *literals* in a clause is *irrelevant*, the clause can be treated as a *set*.

A set of clauses is *trivial* if it contains the *empty clause* (false).

Equivalence rules can be used to translate any formula to CNF.

eliminate \Rightarrow	$A \Rightarrow B \equiv \neg A \lor B$
reduce the scope of \neg	$\neg (A \lor B) \equiv \neg A \land \neg B$,
	$\neg (A \land B) \equiv \neg A \lor \neg B$
apply distributivity	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C),$
	$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$

The CNF translation described in the previous slide is too *expensive* (distributivity rule).

However, there is a *linear time* translation to CNF that produces an *equisatisfiable* formula. Replace the distributivity rules by the following rules:

$$\frac{F[l_i \ op \ l_j]}{F[x], x \Leftrightarrow l_i \ op \ l_j}^* \\
\frac{x \Leftrightarrow l_i \lor l_j}{\neg x \lor l_i \lor l_j, \neg l_i \lor x, \neg l_j \lor x} \\
\frac{x \Leftrightarrow l_i \land l_j}{\neg x \lor l_i, \neg x \lor l_j, \neg l_i \lor \neg l_j \lor x}$$

(*) x must be a fresh variable.

Ex: Show that the rules preserve equisatisfiability.

CNF translation (example)

Translation of $(p \land (q \lor r)) \lor t$:

 $\begin{array}{c} (p \land (q \lor r)) \lor t \\ \hline (p \land x_1) \lor t, x_1 \Leftrightarrow q \lor r \\ \hline x_2 \lor t, x_2 \Leftrightarrow p \land x_1, x_1 \Leftrightarrow q \lor r \\ \hline x_2 \lor t, \neg x_2 \lor p, \neg x_2 \lor x_1, \neg p \lor \neg x_1 \lor x_2, x_1 \Leftrightarrow q \lor r \\ \hline x_2 \lor t, \neg x_2 \lor p, \neg x_2 \lor x_1, \neg p \lor \neg x_1 \lor x_2, x_1 \Leftrightarrow q \lor r \\ \hline x_2 \lor t, \neg x_2 \lor p, \neg x_2 \lor x_1, \neg p \lor \neg x_1 \lor x_2, \neg x_1 \lor q \lor r, \neg q \lor x_1, \neg r \lor x_1 \end{array}$

Ex: Implement a CNF translator.

Semantic Trees

A semantic tree represents the set of partial interpretations for a set of clauses. A semantic tree for $\{p \lor \neg q \lor \neg r, p \lor r, p \lor q, \neg p\}$:

A node N is a failure node if its associated interpretation falsifies a clause, but its ancestor doesn't.

Ex: Show that the semantic tree for an unsatisfiable (non-trivial) set of clauses must contain a non failure node such that its descendants are failure nodes.

Resolution

Formula must be in CNF.

Resolution procedure uses only one rule:

 $\frac{C_1 \vee p, C_2 \vee \neg p}{C_1 \vee p, C_2 \vee \neg p, C_1 \vee C_2} res$

The result of the resolution rule is also a clause, it is called the *resolvent*. *Duplicate literals* in a clause and *trivial clauses* are *eliminated*.

There is no *branching* in the resolution procedure.

Example: The resolvent of $p \lor q \lor r$, and $\neg p \lor r \lor t$ is $q \lor r \lor t$.

Termination argument: there is a finite number of distinct clauses over n propositional variables.

Ex: Show that the resolution rule is sound.

Resolution (example)

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:

Ex: Implement a naïve resolution procedure.

Completeness of Resolution

Let Res(S) be the closure of S under the resolution rule.

Completeness: S is unsatisfiable iff Res(S) contains the *empty clause*.

Proof (\Rightarrow) :

Assume that S is unsatisfiable, and Res(S) does not contain the *empty clause*.

Key points: Res(S) is unsatisfiable, and Res(S) is a non trivial set of clauses.

The semantic tree of Res(S) must contain a non failure node N such that its descendants $(N_p, N_{\neg p})$ are failure nodes.

Completeness of Resolution

There is $C_1 \vee \neg p$ which is falsified by N_p , but not by N.

There is $C_2 \vee p$ which is falsified by $N_{\neg p}$, but not by N.

 $C_1 \vee C_2$ is the resolvent of $C_1 \vee \neg p$ and $C_2 \vee p$.

 $C_1 \lor C_2$ is in Res(S), and it is falsified by N (contradiction). Proof (\Leftarrow): Res(S) is unsatisfiable, and equivalent to S. So,

S is unsatisifiable.

Subsumption

The *resolution* procedure may generate several *irrelevant* and *redundant clauses*.

Subsumption is a clause deletion strategy for the resolution procedure.

$$\frac{C_1, C_1 \vee C_2}{C_1} sub$$

Example: $p \lor \neg q$ subsumes $p \lor \neg q \lor r \lor t$.

Deletion strategy: Remove the subsumed clauses.

Unit & Input Resolution

Unit resolution: one of the clauses is a unit clause.

 $\frac{C \vee \bar{l}, l}{C, l} unit$

Unit resolution always *decreases* the configuration *size* $(C \lor \overline{l} \text{ is subsumed by } C)$.

Input resolution: one of the clauses is in S.

Ex: Show that the unit and input resolution procedures are not complete.

Ex: Show that a set of clauses S has an unit refutation iff it has an input refutation (hint: induction on the number of propositions).

Horn Clauses

Each clause has at most on positive literal.

Rule base systems $(\neg p_1 \lor \ldots \lor \neg p_n \lor q \equiv p_1 \land \ldots \land p_n \Rightarrow q)$. Positive unit rule:

$$\frac{C \vee \neg p, p}{C, p} unit^+$$

Horn clauses are the basis of programming languages as *Prolog*.

Ex: Show that the positive unit rule is a complete procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.

Semantic Resolution

Remark: An interpretation I can be used to *divide* an *unsatisfiable* set of clauses S.

Let I be an *interpretation*, and P an ordering on the propositional variables. A finite set of clauses $\{E_1, \ldots, E_q, N\}$ is called a *clash* with respect to P and I, if and only if:

- E_1, \ldots, E_q are *false* in *I*.
- $R_1 = N$, for each i = 1, ..., q, there is a resolvent R_{i+1} of R_i and E_i .
- The literal in E_i, which is resolved upon, contains the *largest* propositional variable.
- R_{q+1} is false in I. R_{q+1} is the *PI*-resolvent of the clash.

Semantic Resolution (example)

Let $I = \{p, \neg q\}$, $S = \{p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q\}$, and P = [p < q].

Ex: Show that *PI-resolution* is complete (hint: induction on the number of propositions).

Semantic Resolution (special cases)

Positive Hyperresolution: I contains only negative literals.

Negative Hyperresolution: I contains only positive literals.

A subset T of a set of clauses S is called a *set-of-support* of S if S - T is satisfiable.

A set-of-support resolution is a resolution of two clauses that are not both from S - T.

Ex: Show that set-of-support resolution is complete (hint: use PI-resolution completeness).

DPLL

DPLL = Unit resolution + Split rule.

$$\frac{\Gamma}{\Gamma, p \mid \Gamma, \neg p} split \quad p \text{ and } \neg p \text{ are not in } \Gamma. \\ \frac{C \lor \overline{l}, l}{C, l} unit$$

Used in the most efficient SAT solvers.

Pure Literals

A literal is pure if only occurs positively or negatively.

Example : $\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4)$ $\neg x_1$ and x_3 are pure literals

Pure literal rule :

Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$\varphi_{\neg x_1,x_3} = (x_4 \vee \neg x_5) \wedge (x_5 \vee \neg x_4)$$

Preserve satisfiability, not logical equivalency !

Pure Literals

A literal is pure if only occurs positively or negatively.

Example : $\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4)$ $\neg x_1$ and x_3 are pure literals

Pure literal rule :

Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$\varphi_{\neg x_1,x_3} = (x_4 \vee \neg x_5) \wedge (x_5 \vee \neg x_4)$$

Preserve satisfiability, not logical equivalency !

DPLL (as a procedure)

- Standard backtrack search
- ► DPLL(F) :
 - Apply unit propagation
 - If conflict identified, return UNSAT
 - Apply the pure literal rule
 - If F is satisfied (empty), return SAT
 - Select decision variable x
 - If $DPLL(F \land x) = SAT$ return SAT
 - return DPLL($F \land \neg x$)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$
$$(\neg b \lor \neg d \lor \neg e) \land$$
$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$
$$(\neg b \lor \neg d \lor \neg e) \land$$
$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$
b
conflict

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$
$$(\neg b \lor \neg d \lor \neg e) \land$$
$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

;
DPLL (example)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor \neg e)$$

$$b$$

$$conflict$$

а

DPLL (example)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$
$$(\neg b \lor \neg d \lor \neg e) \land$$
$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

DPLL (example)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$
$$(\neg b \lor \neg d \lor \neg e) \land$$
$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

Some Applications

Bit-vector / Machine arithmetic

Let x, y and z be 8-bit (unsigned) integers.

Is $x > 0 \land y > 0 \land z = x + y \Longrightarrow z > 0$ valid?

Is $x > 0 \land y > 0 \land z = x + y \land \neg(z > 0)$ satisfiable?

Bit-vector / Machine arithmetic

We can encode bit-vector satisfiability problems in propositional logic.

Idea 1:

Use *n* propositional variables to encode *n*-bit integers.

$$x \rightarrow (x_1, ..., x_n)$$

Idea 2:

Encode arithmetic operations using hardware circuits.

Encoding equality

 $p \Leftrightarrow q$ is equivalent to $(\neg p \lor q) \land (\neg q \lor p)$

The bit-vector equation x = y is encoded as: $(x_1 \Leftrightarrow y_1) \land ... \land (x_n \Leftrightarrow y_n)$

Encoding addition

We use $(r_1, ..., r_n)$ to store the result of x + y

p xor *q* is defined as $\neg(p \Leftrightarrow q)$

xor is the 1-bit adder

p	q	p xor q	$p \wedge q$	carry
0	0	0	0	oarry
1	0	1	0	
0	1	1	0	
1	1	0	1	

Encoding 1-bit full adder

1-bit full adder

Three inputs: *x*, *y*, *c*_{in} Two outputs: *r*, *c*_{out}

X	У	C _{in}	$r = x \operatorname{xor} y \operatorname{xor} c_{in}$	$\boldsymbol{c}_{out} = (\boldsymbol{x} \wedge \boldsymbol{y}) \vee (\boldsymbol{x} \wedge \boldsymbol{c}_{in}) \vee (\boldsymbol{y} \wedge \boldsymbol{c}_{in})$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Encoding n-bit adder

We use $(r_1, ..., r_n)$ to store the result of x + y, and $(c_1, ..., c_n)$

$$r_{1} \Leftrightarrow (x_{1} \text{ xor } y_{1})$$

$$c_{1} \Leftrightarrow (x_{1} \land y_{1})$$

$$r_{2} \Leftrightarrow (x_{2} \text{ xor } y_{2} \text{ xor } c_{1})$$

$$c_{2} \Leftrightarrow (x_{2} \land y_{2}) \lor (x_{2} \land c_{1}) \lor (y_{2} \land c_{1})$$
...
$$r_{n} \Leftrightarrow (x_{n} \text{ xor } y_{n} \text{ xor } c_{n-1})$$

$$c_n \Leftrightarrow (x_n \land y_n) \lor (x_n \land c_{n-1}) \lor (y_n \land c_{n-1})$$

Exercises

- 1) Encode x * y
- 2) Encode x > y (signed and unsigned versions)

Test case generation (again)

Bounded Model Checkers

Model checkers are used to verify/refute properties of transition systems.

Transition systems are used to model hardware and software.

Bounded Model Checking is a special kind of model checker.

Transition Systems

Transition system M = (S, I, T)

- S: set of states.
- $I \subseteq S$: set of initial states. Example:

$$I(s) = s.x = 0 \land s.pc = l_1$$

 $T \subseteq S \times S$: transition relation. Example:

$$T(s,s') = (s.pc = l_1 \land s'.x = s.x + 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s.x > 0 \land s'.x = s.x - 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s'.x = s.x \land s'.pc = l_1)$$

Transition Systems (cont.)

$$T(s,s') = (s.pc = l_1 \land s'.x = s.x + 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s.x > 0 \land s'.x = s.x - 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s'.x = s.x \land s'.pc = l_1)$$

 $\pi(s_0, \ldots, s_n)$ is a path iff $I(s_0)$ and $T(s_i, s_{i+1})$ for $0 \le i < n$. Example:

$$(l_1, 0) \to (l_2, 2) \to (l_1, 2) \to (l_2, 4) \to (l_2, 2) \to (l_2, 0) \to (l_1, 0)$$

Invariants

A state s_k is reachable iff there is a path $\pi(s_0, \ldots, s_k)$.

Invariants characterize properties that are true of all reachable states in a system.

Any superset of the set of reachable states is an invariant.

Example: $s.x \ge 0$.

A counterexample for an invariant φ is a path $\pi(s_0, \ldots, s_k)$ such that $\neg \varphi(s_k)$.

Model Checkers can verify/refute invariants.

There are different kinds of model checkers:

- Explicit State
- Symbolic (based on BDDs)
- Bounded (based on DP)

Bounded Model Checking: Invariants

Given.

- Transition system M = (S, I, T)
- Invariant φ
- Natural number k

Problem.

Is there a counterexample of length k for the invariant φ ?

There is a counterexample for the invariant φ if the following formula is satisfiable:

$$I(s_1) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_{k-1}, s_k) \wedge (\neg \varphi(s_1) \vee \ldots \vee \neg \varphi(s_k))$$

Bounded Model Checking: Invariants

Given.

- Transition system M = (S, I, T)
- Invariant φ
- Natural number k

Problem.

Is there a counterexample of length k for the invariant φ ?

There is a counterexample for the invariant φ if the following formula is satisfiable:

$$\underbrace{I(s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k) \land (\neg \varphi(s_1) \lor \ldots \lor \neg \varphi(s_k))}_{\pi(s_0, \ldots, s_k)}$$

Bounded Model Checking (cont.)

BMC is mainly used for refutation.

Users want counterexamples. The decision procedure (DP) must be able to generate models for satisfiable formulas.

BMC is a complete method for finite systems when the diameter (longest shortest path) of the system is known.

The diameter is usually to expensive to be computed.

The recurrence diameter (longest loop-free path) is usually used as a completeness threshold.

The recurrence diameter can be much longer than the diameter.

Recurrence diameter

A system M contains a loop-free path of length n iff

$$\pi(s_0, \dots, s_n) \land \bigwedge_{0 \le i < j \le n} s_i \ne s_j$$

The recurrence diameter is the smallest n such that the formula above is unsatisfiable.

The diameter of infinite systems (i.e., infinite state space) may be infinite.

Verifying Invariants

An invariant is inductive if:

- $I(s) \rightarrow \varphi(s)$ (base step)
- $\varphi(s) \wedge T(s,s') \rightarrow \varphi(s')$ (inductive step)

Invariants are not usually inductive.

The inductive step is violated.

Example: $(l_2, 1) \to (l_2, -1)$

Verifying Invariants: k-induction

An invariant φ is *k*-inductive if:

- $I(s_1) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_{k-1}, s_k) \to \varphi(s_1) \wedge \ldots \wedge \varphi(s_k)$
- $\varphi(s_1) \wedge \ldots \wedge \varphi(s_k) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_k, s_{k+1}) \to \varphi(s_{k+1})$

It is harder to violate the inductive step.

The base case is BMC.

If φ is k_1 -inductive then it is also k_2 -inductive for $k_2 \ge k_1$.

Verifying Invariants: k-induction (cont.)

Can be used to verify finite and infinite systems.

Not complete even for finite systems: Self-loops in unreachable states.

Example:

Bad state s_4

Counterexamples
$$\underbrace{s_3 \rightsquigarrow s_3 \rightsquigarrow \ldots \rightsquigarrow s_3}_k \rightsquigarrow s_4$$

Verifying Invariants: k-induction (cont.)

Completeness for finite systems: consider only loop-free paths.

Not complete for infinite systems. Example:

- $(l_2, 1) \to (l_2, -1)$
- $(l_2,3) \to (l_2,1) \to (l_2,-1)$
- $(l_2,5) \to (l_2,3) \to (l_2,1) \to (l_2,-1)$
- . . .

Experimental Exercises

- The first step is to pick up a SAT solver.
- Play with simple examples
- Translate your problem into SAT
- Experiment

Available SAT Solvers

Several open source SAT solvers exist :

Minisat (C++) www.minisat.se Presumably the most widely used within the SAT community. Used to be the best general purpose SAT solver. A large community around the solver.

Picosat (C)/Precosat (C++)

http://fmv.jku.at/software/index.html Award winner in 2007 and 2009 of the SAT competition, industrial category.

- SAT4J (Java) http://www.sat4j.org. For Java users. Far less efficient than the two others.
- UBCSAT (C) http://www.satlib.org/ubcsat/ Very efficient stochastic local search for SAT.

http://www.satcompetition.org Both the binaries and the source code of the solvers are made available for research purposes.

Available Examples

- Satisfiability library: <u>http://www.satlib.org</u>
- The SAT competion: <u>http://www.satcompetition.org</u>
- Search the WEB: "SAT benchmarks"

Using SAT solvers

All SAT solvers support the very simple DIMACS CNF input format :

$$(a \lor b \lor \neg c) \land (\neg b \lor \neg c)$$

will be translated into

p cnf 3 2 1 2 -3 0 -2 -3 0

The first line is of the form p cnf <maxVarId> <numberOfClauses> Each variable is represented by an integer, negative literals as negative integers, 0 is the clause separator.