Satisfiability Modulo Theories (SMT): ideas and applications
 Università Degli Studi Di Milano
 Scuola di Dottorato in Informatica, 2010

Leonardo de Moura
Microsoft Research

Software development crisis

Software malfunction is a common problem.

Software complexity is increasing.

We need new methods and tools.

Program correctness

I proved my program to be correct.

What does it mean?

Software models

We need models and tools to reason about them?

Does my model/software has property X?

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

e Logic is "The Calculus of Computer Science" (Z. Manna).

Undecidable ($\mathrm{FOL}+\mathrm{LA}$)

- High computational complexity

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

HAVOC

For μ La

Hyper-V
 Microsoft ${ }^{(4)}$

Terminator T-2
VCC

NModel

Vigilante

SpecExplorer
SAGE

F7

Microsoft ${ }^{*}$
Research

Test case generation

unsigned $\operatorname{GCD}(\mathrm{x}, \mathrm{y})$ \{
requires $(y>0)$;
while (true) \{
SSA unsigned $m=x \% y$;
if ($m==0$) return y;

$$
x=y ;
$$

y = m;
\}
\}
We want a trace where the loop is executed twice.

Type checking

Signature:
div: int, $\{x:$ int $\mid x \neq 0\} \rightarrow$ int

Call site:
if $\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ then
return $\operatorname{div}(a, b)$

Verification condition
$\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ implies $\mathrm{b} \neq 0$

What is logic?

e Logic is the art and science of effective reasoning.
e How can we draw general and reliable conclusions from a collection of facts?
e Formal logic: Precise, syntactic characterizations of well-formed expressions and valid deductions.

- Formal logic makes it possible to calculate consequences at the symbolic level.
e Computers can be used to automate such symbolic calculations.

What is logic?

e Logic studies the relationship between language, meaning, and (proof) method.

- A logic consists of a language in which (well-formed) sentences are expressed.
- A semantic that distinguishes the valid sentences from the refutable ones.
e A proof system for constructing arguments justifying valid sentences.
e Examples of logics include propositional logic, equational logic, first-order logic, higher-order logic, and modal logics.

What is logical language?

e A language consists of logical symbols whose interpretations are fixed, and non-logical ones whose interpretations vary.
e These symbols are combined together to form wellformed formulas.
e In propositional logic PL, the connectives \wedge, \vee, and \neg have a fixed interpretation, whereas the constants p, q, r may be interpreted at will.

Propositional Logic

Formulas: $\varphi:=p\left|\varphi_{1} \vee \varphi_{2}\right| \varphi_{1} \wedge \varphi_{2}\left|\neg \varphi_{1}\right| \varphi_{1} \Rightarrow \varphi_{2}$

Examples:
$p \vee q \Rightarrow q \vee p$
$p \wedge \neg q \wedge(\neg p \vee q)$

We say p and q are propositional variables.

Exercise: Using a programming language, define a representation for formulas and a checker for wellformed formulas.

Interpretation

An interpretation \mathcal{M} assigns truth values $\{\top, \perp\}$ to propositional variables.

Let A and B range over $P L$ formulas.
$\mathcal{M} \llbracket \phi \rrbracket$ is the meaning of ϕ in \mathcal{M} and is computed using truth tables:

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Satisfiability \& Validity

e A formula is satisfiable if it has an interpretation that makes it logically true.

- In this case, we say the interpretation is a model.
e A formula is unsatisfiable if it does not have any model.
- A formula is valid if it is logically true in any interpretation.
- A propositional formula is valid if and only if its negation is unsatisfiable.

Satisfiability \& Validity: examples

$$
p \vee q \Rightarrow q \vee p
$$

$$
p \vee q \Rightarrow q
$$

$$
p \wedge \neg q \wedge(\neg p \vee q)
$$

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Satisfiability \& Validity: examples

$$
p \vee q \Rightarrow q \vee p
$$

VALID

$$
p \vee q \Rightarrow q \quad \text { SATISFIABLE }
$$

$p \wedge \neg q \wedge(\neg p \vee q) \quad$ UNSATISFIABLE

ϕ	A	B	$\neg A$	$A \vee B$	$A \wedge \neg A$	$A \Rightarrow B$	$A \Rightarrow(B \vee A)$
$\mathcal{M}_{1}(\phi)$	\perp	\perp	\top	\perp	\perp	\top	\top
$\mathcal{M}_{2}(\phi)$	\perp	\top	\top	\top	\perp	\top	\top
$\mathcal{M}_{3}(\phi)$	\top	\perp	\perp	\top	\perp	\perp	\top
$\mathcal{M}_{4}(\phi)$	\top	\top	\perp	\top	\perp	\top	\top

Equivalence

Two formulas A and B are equivalent, $A \Longleftrightarrow B$, if their truth values agree in each interpretation.

Exercise 2 Prove that the following are equivalent

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$
5. $\neg A \Rightarrow B \Longleftrightarrow \neg B \Rightarrow A$

Equisatisfiable

We say formulas A and B are equisatisfiable if and only if A is satisfiable if and only if B is.

During this course, we will describe transformations that preserve equivalence and equisatisfiability.

Normal Forms

A formula where negation is applied only to propositional atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.
A formula that is a multiary conjunction of multiary disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is equivalent to one in NNF, CNF, and DNF.

Exercise 4 Show that every n-ary Boolean function can be expressed using just \neg and \vee.

Normal Forms

NNF?

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

Normal Forms

NNF? NO

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

Normal Forms

NNF? NO

$$
(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))
$$

$$
\begin{aligned}
& \text { 1. } \neg \neg A \Longleftrightarrow A \\
& \text { 2. } A \Rightarrow B \Longleftrightarrow \neg A \vee B \\
& \text { 3. } \neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B \\
& \text { 4. } \neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B
\end{aligned}
$$

Normal Forms

NNE? NO
$(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee \neg \neg p))$

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$

Normal Forms

NSF? NO
$(p \vee \neg q) \wedge(q \vee \neg(r \wedge \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee \neg \neg p))$
\Leftrightarrow
$(p \vee \neg q) \wedge(q \vee(\neg r \vee p))$

$$
\text { 1. } \neg \neg A \Longleftrightarrow A
$$

2. $A \Rightarrow B \Longleftrightarrow \neg A \vee B$
3. $\neg(A \wedge B) \Longleftrightarrow \neg A \vee \neg B$
4. $\neg(A \vee B) \Longleftrightarrow \neg A \wedge \neg B$

Normal Forms

CNF?
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO
$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO

$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

CNF? NO

$((p \wedge s) \vee(\neg q \wedge r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$((p \wedge s) \vee \neg q)) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
\Leftrightarrow
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge((p \wedge s) \vee r)) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$
$(p \vee \neg q) \wedge(s \vee \neg q) \wedge(p \vee r) \wedge(s \vee r) \wedge(q \vee \neg p \vee s) \wedge(\neg r \vee s)$

Normal Forms

DNF?
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
\Leftrightarrow
$(p \vee q) \wedge(\neg q \vee r)$
Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Other Rules

1. $A \wedge \neg A \Leftrightarrow \perp$
2. $A \vee \perp \Leftrightarrow A$

Normal Forms

DNF? NO, actually this formula is in CNF
$p \wedge(\neg p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
\Leftrightarrow
$(p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \vee q) \wedge \neg q) \vee((p \vee q) \wedge r)$

Distributivity

1. $A \vee(B \wedge C) \Leftrightarrow(A \vee B) \wedge(A \vee C)$
2. $A \wedge(B \vee C) \Leftrightarrow(A \wedge B) \vee(A \wedge C)$

Other Rules

1. $A \wedge \neg A \Leftrightarrow \perp$
2. $A \vee \perp \Leftrightarrow A$

Normal Forms

DNF? NO, actually this formula is in CNF

```
p\wedge(\negp\veeq)^(\negq\veer)
```

\Leftrightarrow
$((p \wedge \neg p) \vee(p \vee q)) \wedge(\neg q \vee r)$
$(p \vee q) \wedge(\neg q \vee r)$
\Leftrightarrow
$((p \vee q) \wedge \neg q) \vee((p \vee q) \wedge r)$
\Leftrightarrow
$(p \wedge \neg q) \vee(q \wedge \neg q) \vee((p \vee q) \wedge r)$
$(p \wedge \neg q) \vee(p \wedge r) \vee(q \wedge r)$

Refutation Decision Procedures

A decision procedure determines if a collection of formulas is satisfiable.

A decision procedure is given by a collection of reduction rules on a logical state ψ.

State ψ is of the form $\kappa_{1}|\ldots| \kappa_{n}$, where each κ_{i} is a configuration.

The logical content of κ is either \perp or is given by a finite set of formulas of the form A_{1}, \ldots, A_{m}.
A state ψ of the form $\kappa_{1}, \ldots, \kappa_{n}$ is satisfiable if some configuration κ_{i} is satisfiable.

A configuration κ of the form A_{1}, \ldots, A_{m} is satisfiable if there is an interpretation M such that $M \models A_{i}$ for $1 \leq i \leq m$.

Inference Systems for Decision Procedures

A refutation procedure proves A by refuting $\neg A$ through the application of reduction rules.

An application of an reduction rule transforms a state ψ to a state ψ^{\prime} (written $\psi \models \psi^{\prime}$).

Rules preserve satisfiability.
If relation \models between states is well-founded and any non-bottom irreducible state is satisfiable, we say that the inference system is a decision procedure.

Ex: Prove that a decision procedure as given above is sound and complete.

Truth Table

An inference rule $\frac{\kappa}{\kappa_{1}|\ldots| \kappa_{n}}$ is shorthand for $\frac{\psi[\kappa]}{\psi\left[\kappa_{1}|\ldots| \kappa_{n}\right]}$.
The truth table procedure can be viewed as a model elimination procedure.

$$
\begin{array}{cl}
\frac{\Gamma}{\Gamma, p \mid \Gamma, \neg p} \text { split } & p \text { and } \neg p \text { are not in } \Gamma . \\
\frac{\Gamma, F}{\perp} \text { elim } & F \text { is falsified by the literals in } \Gamma .
\end{array}
$$

A literal is a proposition or the negation of a proposition.
The literals in Γ can be viewed as a partial interpretation.
Ex: Prove correctness (soundness, termination, and completeness).

Truth Table (example)

A truth table refutation of $\{p \vee \neg q \vee \neg r, p \vee r, p \vee q, \neg p\}$:

Ex: Implement the truth table procedure.

Semantic Tableaux

The inference rules for the Semantic Tableaux procedure are:

$\frac{A \wedge B, \Gamma}{A, B, \Gamma} \wedge+$	$\frac{\neg(A \wedge B), \Gamma}{\neg A, \Gamma \mid \neg B, \Gamma} \wedge-$
$\frac{\neg(A \vee B), \Gamma}{\neg A, \neg B, \Gamma} \vee-$	$\frac{(A \vee B), \Gamma}{A, \Gamma \mid B, \Gamma} \vee+$
$\frac{\neg(A \Rightarrow B), \Gamma}{A, \neg B, \Gamma} \Rightarrow-$	$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma \mid B, \Gamma} \Rightarrow+$
$\frac{\neg \neg A, \Gamma}{A, \Gamma} \neg$	$\frac{A, \neg A, \Gamma}{\perp} \perp$

Semantic Tableaux is a "DNF translator".
Ex: Prove correctness.

Semantic Tableaux (example)

Refutation of $\neg(p \vee q \Rightarrow q \vee p)$:

$\frac{A \wedge B, \Gamma}{A, B, \Gamma} \wedge+$	$\frac{\neg(A \wedge B), \Gamma}{\neg A, \Gamma \mid \neg B, \Gamma} \wedge-$		
$\frac{\neg(A \vee B), \Gamma}{\neg A, \neg B, \Gamma} \vee-$	$\frac{(A \vee B), \Gamma}{A, \Gamma \mid B, \Gamma} \vee+$		
$\frac{\neg(A \Rightarrow B), \Gamma}{A, \neg B, \Gamma} \Rightarrow-$	$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma \mid B, \Gamma} \Rightarrow+$		
$\frac{\neg \neg A, \Gamma}{A, \Gamma} \neg$	$\frac{\neg, \neg A, \Gamma}{\perp} \perp$	\quad	$\frac{\neg, \neg(p \vee q \Rightarrow q \vee p) \mid q, \neg(q \vee p)}{p, \neg q, \neg p \mid q, \neg(q \vee p)}$
:---:	\quad	$\frac{\perp \mid q, \neg(q \vee p)}{q, \neg(q \vee p)}$	
:---:			
$\frac{q, \neg q, \neg p}{}$			
\perp			

Ex: Use the Semantic Tableaux procedure to refute $\neg(p \vee(q \wedge r) \Rightarrow(p \vee q) \wedge(p \vee r))$.

Ex: Implement the Semantic Tableaux.

Semantic Tableaux (cont.)

The complexity of Semantic Tableaux proofs depends on the length of the formula to be decided.

The complexity of the truth-table procedure depends only on the number of distinct propositional variables which occur in it.

The Semantic Tableaux procedure does not p-simulate the truth-table procedure. Consider fat formulas such as:

$$
\begin{aligned}
& \left(p_{1} \vee p_{2} \vee p_{3}\right) \wedge\left(\neg p_{1} \vee p_{2} \vee p_{3}\right) \wedge \\
& \left(p_{1} \vee \neg p_{2} \vee p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{3}\right) \wedge \\
& \left(p_{1} \vee p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee p_{2} \vee \neg p_{3}\right) \wedge \\
& \left(p_{1} \vee \neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}\right)
\end{aligned}
$$

Ex: Use Semantic Tableaux to refute the formula above.

Semantic Tableaux (cont.)

The classical notion of truth is governed by two basic principles:

Non-contradiction no proposition can be true and false at the same time.

Bivalence every proposition is either true of false.

There is no rule in the Semantic Tableaux procedure which correspondes to the principle of bivalence.

The elimination of the principle of bivalence seem to be inadequate from the point of view of efficiency.

Semantic Tableaux + Bivalence

The principle of bivalence can be recovered if we replace the Semantic Tableaux branching rules by:

$\frac{\neg(A \wedge B), \Gamma}{\neg A, \Gamma \mid A, \neg B, \Gamma} \wedge_{\text {left }}-$	$\frac{\neg(A \wedge B), \Gamma}{\neg B, \Gamma \mid B, \neg A, \Gamma} \wedge_{\text {right }}-$
$\frac{(A \vee B), \Gamma}{A, \Gamma \mid \neg A, B, \Gamma} \vee_{l e f t}+$	$\frac{(A \vee B), \Gamma}{B, \Gamma \mid \neg B, A, \Gamma} \vee_{\text {right }}+$
$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma \mid A, B, \Gamma} \Rightarrow_{\text {left }}+$	$\frac{(A \Rightarrow B), \Gamma}{B, \Gamma \mid \neg B, \neg A, \Gamma} \Rightarrow_{\text {right }}+$

The new rules are asymmetric.
Ex: Show that the new rules are sound.

CNF (again)

A CNF formula is a conjunction of clauses. A clause is a disjunction of literals.

Ex: Implement a linear-time decision procedure for 2CNF (each clause has at most 2 literals).

A clause is trivial if it contains a complementary pair of literals.

Since the order of the literals in a clause is irrelevant, the clause can be treated as a set.

A set of clauses is trivial if it contains the empty clause (false).

CNF ((again)

Equivalence rules can be used to translate any formula to CNF.

eliminate \Rightarrow	$A \Rightarrow B \equiv \neg A \vee B$
reduce the scope of \neg	$\neg(A \vee B) \equiv \neg A \wedge \neg B$,
	$\neg(A \wedge B) \equiv \neg A \vee \neg B$
apply distributivity	$A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$,
	$A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$

CNF ((again)

The CNF translation described in the previous slide is too expensive (distributivity rule).

However, there is a linear time translation to CNF that produces an equisatisfiable formula. Replace the distributivity rules by the following rules:

$$
\begin{gathered}
\frac{F\left[l_{i} \text { op } l_{j}\right]}{F[x], x \Leftrightarrow l_{i} \text { op } l_{j}} * \\
x \Leftrightarrow l_{i} \vee l_{j} \\
\hline \neg x \vee l_{i} \vee l_{j}, \neg l_{i} \vee x, \neg l_{j} \vee x \\
x \Leftrightarrow l_{i} \wedge l_{j} \\
\hline \neg x \vee l_{i}, \neg x \vee l_{j}, \neg l_{i} \vee \neg l_{j} \vee x
\end{gathered}
$$

(*) x must be a fresh variable.
Ex: Show that the rules preserve equisatisfiability.

CNF translation (example)

Translation of $(p \wedge(q \vee r)) \vee t$:
$\frac{(p \wedge(q \vee r)) \vee t}{\left(p \wedge x_{1}\right) \vee t, x_{1} \Leftrightarrow q \vee r}$
$\frac{x_{2} \vee t, x_{2} \Leftrightarrow p \wedge x_{1}, x_{1} \Leftrightarrow q \vee r}{\frac{x_{2} \vee t, \neg x_{2} \vee p, \neg x_{2} \vee x_{1}, \neg p \vee \neg x_{1} \vee x_{2}, x_{1} \Leftrightarrow q \vee r}{x_{2} \vee t, \neg x_{2} \vee p, \neg x_{2} \vee x_{1}, \neg p \vee \neg x_{1} \vee x_{2}, \neg x_{1} \vee q \vee r, \neg q \vee x_{1}, \neg r \vee x_{1}}}$

Ex: Implement a CNF translator.

Semantic Trees

A semantic tree represents the set of partial interpretations for a set of clauses. A semantic tree for $\{p \vee \neg q \vee \neg r, p \vee r, p \vee q, \neg p\}:$

A node N is a failure node if its associated interpretation falsifies a clause, but its ancestor doesn't.

Ex: Show that the semantic tree for an unsatisfiable (non-trivial) set of clauses must contain a non failure node such that its descendants are failure nodes.

Resolution

Formula must be in CNF.
Resolution procedure uses only one rule:

$$
\frac{C_{1} \vee p, C_{2} \vee \neg p}{C_{1} \vee p, C_{2} \vee \neg p, C_{1} \vee C_{2}} \text { res }
$$

The result of the resolution rule is also a clause, it is called the resolvent. Duplicate literals in a clause and trivial clauses are eliminated.

There is no branching in the resolution procedure.
Example: The resolvent of $p \vee q \vee r$, and $\neg p \vee r \vee t$ is $q \vee r \vee t$.
Termination argument: there is a finite number of distinct clauses over n propositional variables.

Ex: Show that the resolution rule is sound.

Resolution (example)

A refutation of $\neg p \vee \neg q \vee r, p \vee r, q \vee r, \neg r$:

Ex: Implement a naïve resolution procedure.

Completeness of Resolution

Let $\operatorname{Res}(S)$ be the closure of S under the resolution rule.
Completeness: S is unsatisfiable iff $\operatorname{Res}(S)$ contains the empty clause.

Proof (\Rightarrow):
Assume that S is unsatisfiable, and $\operatorname{Res}(S)$ does not contain the empty clause.

Key points: $\operatorname{Res}(S)$ is unsatisfiable, and $\operatorname{Res}(S)$ is a non trivial set of clauses.

The semantic tree of $\operatorname{Res}(S)$ must contain a non failure node N such that its descendants $\left(N_{p}, N_{\neg p}\right)$ are failure nodes.

Completeness of Resolution

There is $C_{1} \vee \neg p$ which is falsified by N_{p}, but not by N.
There is $C_{2} \vee p$ which is falsified by $N_{\neg p}$, but not by N.
$C_{1} \vee C_{2}$ is the resolvent of $C_{1} \vee \neg p$ and $C_{2} \vee p$.
$C_{1} \vee C_{2}$ is in $\operatorname{Res}(S)$, and it is falsified by N (contradiction).
Proof $(\Leftarrow): \operatorname{Res}(S)$ is unsatisfiable, and equivalent to S. So, S is unsatisifiable.

Subsumption

The resolution procedure may generate several irrelevant and redundant clauses.

Subsumption is a clause deletion strategy for the resolution procedure.

$$
\frac{C_{1}, C_{1} \vee C_{2}}{C_{1}} s u b
$$

Example: $p \vee \neg q$ subsumes $p \vee \neg q \vee r \vee t$.
Deletion strategy: Remove the subsumed clauses.

Unit \& Input Resolution

Unit resolution: one of the clauses is a unit clause.

$$
\frac{C \vee \bar{l}, l}{C, l} u n i t
$$

Unit resolution always decreases the configuration size ($C \vee \bar{l}$ is subsumed by C).

Input resolution: one of the clauses is in S.
Ex: Show that the unit and input resolution procedures are not complete.

Ex: Show that a set of clauses S has an unit refutation iff it has an input refutation (hint: induction on the number of propositions).

Hom Clauses

Each clause has at most on positive literal.
Rule base systems $\left(\neg p_{1} \vee \ldots \vee \neg p_{n} \vee q \equiv p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$.
Positive unit rule:

$$
\frac{C \vee \neg p, p}{C, p} \text { unit }^{+}
$$

Horn clauses are the basis of programming languages as Prolog.

Ex: Show that the positive unit rule is a complete procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.

Semantic Resolution

Remark: An interpretation I can be used to divide an unsatisfiable set of clauses S.

Let I be an interpretation, and P an ordering on the propositional variables. A finite set of clauses $\left\{E_{1}, \ldots, E_{q}, N\right\}$ is called a clash with respect to P and I, if and only if:

- E_{1}, \ldots, E_{q} are false in I.
- $R_{1}=N$, for each $i=1, \ldots, q$, there is a resolvent R_{i+1} of R_{i} and E_{i}.
- The literal in E_{i}, which is resolved upon, contains the largest propositional variable.
- R_{q+1} is false in $I . R_{q+1}$ is the PI-resolvent of the clash.

Semantic Resolution (example)

Let $I=\{p, \neg q\}, S=\{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q\}$, and $P=[p<q]$.

Ex: Show that PI-resolution is complete (hint: induction on the number of propositions).

Semantic Resolution (special cases)

Positive Hyperresolution: I contains only negative literals.
Negative Hyperresolution: I contains only positive literals.
A subset T of a set of clauses S is called a set-of-support of S if $S-T$ is satisfiable.

A set-of-support resolution is a resolution of two clauses that are not both from $S-T$.

Ex: Show that set-of-support resolution is complete (hint: use PI-resolution completeness).

DPLL

DPLL $=$ Unit resolution + Split rule.

$$
\begin{aligned}
& \frac{\Gamma}{\Gamma, p \mid \Gamma, \neg p} \text { split } \quad p \text { and } \neg p \text { are not in } \Gamma . \\
& \frac{C \vee \bar{l}, l}{C, l} \text { unit }
\end{aligned}
$$

Used in the most efficient SAT solvers.

Pure Literals

A literal is pure if only occurs positively or negatively.
Example :

$$
\begin{aligned}
& \varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right) \\
& \neg x_{1} \text { and } x_{3} \text { are pure literals }
\end{aligned}
$$

Pure literal rule:
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$
\varphi_{\neg x_{1}, x_{3}}=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

Preserve satisfiability, not logical equivalency!

Pure Literals

A literal is pure if only occurs positively or negatively.
Example :

$$
\begin{aligned}
& \varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right) \\
& \neg x_{1} \text { and } x_{3} \text { are pure literals }
\end{aligned}
$$

Pure literal rule:
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$
\varphi_{\neg x_{1}, x_{3}}=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

Preserve satisfiability, not logical equivalency!

DPLL (as a procedure)

- Standard backtrack search
- DPLL(F) :
- Apply unit propagation
- If conflict identified, return UNSAT
- Apply the pure literal rule
- If F is satisfied (empty), return SAT
- Select decision variable x
- If $\operatorname{DPLL}(F \wedge x)=$ SAT return SAT
- return $\operatorname{DPLL}(F \wedge \neg x)$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

DPLL (example)

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

Some Applications

Bit-vector / Machine arithmetic

Let x, y and z be 8-bit (unsigned) integers.

$$
\text { Is } x>0 \wedge y>0 \wedge z=x+y \Rightarrow z>0 \quad \text { valid? }
$$

Is $x>0 \wedge y>0 \wedge z=x+y \wedge \neg(z>0)$ satisfiable?

Bit-vector / Machine arithmetic

We can encode bit-vector satisfiability problems in propositional logic.

Idea 1:
Use n propositional variables to encode n-bit integers.

$$
x \rightarrow\left(x_{1}, \ldots, x_{n}\right)
$$

Idea 2:
Encode arithmetic operations using hardware circuits.

Encoding equality

$p \Leftrightarrow q$ is equivalent to $(\neg p \vee q) \wedge(\neg q \vee p)$

The bit-vector equation $\mathrm{x}=\mathrm{y}$ is encoded as:
$\left(x_{1} \Leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \Leftrightarrow y_{n}\right)$

Encoding addifion

We use $\left(r_{1}, \ldots, r_{n}\right)$ to store the result of $x+y$
p xor q is defined as $\neg(p \Leftrightarrow q)$
xor is the 1-bit adder

p	q	p xor q	$p \wedge q$
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

carry

Encoding 1-bit full adder

1-bit full adder

Three inputs: $x, y, c_{\text {in }}$
Two outputs: $r, c_{\text {out }}$

x	y	$c_{i n}$	$r=x$ xor y xor $c_{i n}$	$c_{\text {out }}=(x \wedge y) \vee\left(x \wedge c_{\text {in }}\right) \vee\left(y \wedge c_{\text {in }}\right)$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Encoding n-bit adder

We use $\left(r_{1}, \ldots, r_{n}\right)$ to store the result of $x+y$, and (c_{1}, \ldots, c_{n})
$r_{1} \Leftrightarrow\left(x_{1} \operatorname{xor} y_{1}\right)$
$c_{1} \Leftrightarrow\left(x_{1} \wedge y_{1}\right)$
$r_{2} \Leftrightarrow\left(x_{2} \operatorname{xor} y_{2} \operatorname{xor} c_{1}\right)$
$c_{2} \Leftrightarrow\left(x_{2} \wedge y_{2}\right) \vee\left(x_{2} \wedge c_{1}\right) \vee\left(y_{2} \wedge c_{1}\right)$
$r_{n} \Leftrightarrow\left(x_{n} \operatorname{xor} y_{n} \operatorname{xor} c_{n-1}\right)$
$c_{n} \Leftrightarrow\left(x_{n} \wedge y_{n}\right) \vee\left(x_{n} \wedge c_{n-1}\right) \vee\left(y_{n} \wedge c_{n-1}\right)$

Exercises

1) Encode $x * y$
2) Encode $x>y$ (signed and unsigned versions)

Test case generation (again)

unsigned GCD (x, y) \{
requires $(\mathrm{y}>0$);
while (true) \{
SSA unsigned $m=x \% y$;
if ($m==0$) return y;
$x=y ;$
y = m;

$$
\}
$$

$$
\begin{array}{ll}
\left(y_{0}>0\right) \text { and } & \begin{array}{l}
x_{0}=2 \\
\left(m_{0}=x_{0} \% y_{0}\right) \text { and } \\
\text { not }\left(m_{0}=0\right) \text { and } \\
\left(x_{1}=y_{0}\right) \text { and } \\
\left(y_{1}=m_{0}\right) \text { and } \\
\left(m_{1}=x_{1} \% y_{1}\right) \text { and }
\end{array} \\
\left(m_{1}=0\right) & m_{0}=2 \\
x_{1}=4 \\
y_{1}=2 \\
m_{1}=0
\end{array}
$$

We want a trace where the loop is executed twice.

Bounded Model Checkers

Model checkers are used to verify/refute properties of transition systems.

Transition systems are used to model hardware and software.

Bounded Model Checking is a special kind of model checker.

Transition Systems

Transition system $M=(S, I, T)$
S : set of states.
$I \subseteq S$: set of initial states. Example:

$$
I(s)=s . x=0 \wedge s . p c=l_{1}
$$

$T \subseteq S \times S$: transition relation. Example:

$$
\begin{aligned}
T\left(s, s^{\prime}\right)= & \left(s \cdot p c=l_{1} \wedge s^{\prime} \cdot x=s \cdot x+2 \wedge s^{\prime} \cdot p c=l_{2}\right) \vee \\
& \left(s \cdot p c=l_{2} \wedge s \cdot x>0 \wedge s^{\prime} \cdot x=s \cdot x-2 \wedge s^{\prime} \cdot p c=l_{2}\right) \vee \\
& \left(s \cdot p c=l_{2} \wedge s^{\prime} \cdot x=s \cdot x \wedge s^{\prime} \cdot p c=l_{1}\right)
\end{aligned}
$$

Transition Systems (cont.)

$$
\begin{aligned}
T\left(s, s^{\prime}\right)= & \left(s . p c=l_{1} \wedge s^{\prime} . x=s . x+2 \wedge s^{\prime} . p c=l_{2}\right) \vee \\
& \left(s . p c=l_{2} \wedge s . x>0 \wedge s^{\prime} . x=s . x-2 \wedge s^{\prime} . p c=l_{2}\right) \vee \\
& \left(s . p c=l_{2} \wedge s^{\prime} . x=s . x \wedge s^{\prime} . p c=l_{1}\right)
\end{aligned}
$$

$\pi\left(s_{0}, \ldots, s_{n}\right)$ is a path iff $I\left(s_{0}\right)$ and $T\left(s_{i}, s_{i+1}\right)$ for $0 \leq i<n$.
Example:

$$
\left(l_{1}, 0\right) \rightarrow\left(l_{2}, 2\right) \rightarrow\left(l_{1}, 2\right) \rightarrow\left(l_{2}, 4\right) \rightarrow\left(l_{2}, 2\right) \rightarrow\left(l_{2}, 0\right) \rightarrow\left(l_{1}, 0\right)
$$

Invariants

A state s_{k} is reachable iff there is a path $\pi\left(s_{0}, \ldots, s_{k}\right)$.
Invariants characterize properties that are true of all reachable states in a system.

Any superset of the set of reachable states is an invariant.
Example: s. $x \geq 0$.
A counterexample for an invariant φ is a path $\pi\left(s_{0}, \ldots, s_{k}\right)$ such that $\neg \varphi\left(s_{k}\right)$.

Model Checkers can verify/refute invariants.
There are different kinds of model checkers:

- Explicit State
- Symbolic (based on BDDs)
- Bounded (based on DP)

Bounded Model Checking: Invariants

Given.

- Transition system $M=(S, I, T)$
- Invariant φ
- Natural number k

Problem.

Is there a counterexample of length k for the invariant φ ?

There is a counterexample for the invariant φ if the following formula is satisfiable:

$$
I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge\left(\neg \varphi\left(s_{1}\right) \vee \ldots \vee \neg \varphi\left(s_{k}\right)\right)
$$

Bounded Model Checking: Invariants

Given.

- Transition system $M=(S, I, T)$
- Invariant φ
- Natural number k

Problem.

Is there a counterexample of length k for the invariant φ ?

There is a counterexample for the invariant φ if the following formula is satisfiable:

$$
\begin{aligned}
& \quad \underbrace{I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right)} \wedge\left(\neg \varphi\left(s_{1}\right) \vee \ldots \vee \neg \varphi\left(s_{k}\right)\right) \\
& \pi\left(s_{0}, \ldots, s_{k}\right)
\end{aligned}
$$

Bounded Model Checking (cont.)

BMC is mainly used for refutation.
Users want counterexamples. The decision procedure (DP) must be able to generate models for satisfiable formulas.

BMC is a complete method for finite systems when the diameter (longest shortest path) of the system is known.

The diameter is usually to expensive to be computed.
The recurrence diameter (longest loop-free path) is usually used as a completeness threshold.

The recurrence diameter can be much longer than the diameter.

Recurrence diameter

A system M contains a loop-free path of length n iff

$$
\pi\left(s_{0}, \ldots, s_{n}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}
$$

The recurrence diameter is the smallest n such that the formula above is unsatisfiable.

The diameter of infinite systems (i.e., infinite state space) may be infinite.

Verifying Invariants

An invariant is inductive if:

- $I(s) \rightarrow \varphi(s)$ (base step)
- $\varphi(s) \wedge T\left(s, s^{\prime}\right) \rightarrow \varphi\left(s^{\prime}\right)$ (inductive step)

Invariants are not usually inductive.

The inductive step is violated.

Example: $\left(l_{2}, 1\right) \rightarrow\left(l_{2},-1\right)$

Verifying Invariants: k-induction

An invariant φ is k-inductive if:

- $I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \rightarrow \varphi\left(s_{1}\right) \wedge \ldots \wedge \varphi\left(s_{k}\right)$
- $\varphi\left(s_{1}\right) \wedge \ldots \wedge \varphi\left(s_{k}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k}, s_{k+1}\right) \rightarrow \varphi\left(s_{k+1}\right)$

It is harder to violate the inductive step.
The base case is BMC.
If φ is k_{1}-inductive then it is also k_{2}-inductive for $k_{2} \geq k_{1}$.

Verifying Invariants: k-induction (cont.)

Can be used to verify finite and infinite systems.
Not complete even for finite systems: Self-loops in unreachable states.

Example:

Bad state s_{4}
Counterexamples $\underbrace{s_{3} \sim s_{3} \leadsto \ldots \sim s_{3}}_{k} \sim s_{4}$

Verifying Invariants: k-induction (cont.)

Completeness for finite systems: consider only loop-free paths.

Not complete for infinite systems. Example:

- $\left(l_{2}, 1\right) \rightarrow\left(l_{2},-1\right)$
- $\left(l_{2}, 3\right) \rightarrow\left(l_{2}, 1\right) \rightarrow\left(l_{2},-1\right)$
- $\left(l_{2}, 5\right) \rightarrow\left(l_{2}, 3\right) \rightarrow\left(l_{2}, 1\right) \rightarrow\left(l_{2},-1\right)$
- ...

Experimental Exercises

- The first step is to pick up a SAT solver.
- Play with simple examples
- Translate your problem into SAT
- Experiment

Available SAT Solvers

Several open source SAT solvers exist :
Minisat ($\mathrm{C}++$) www.minisat.se Presumably the most widely used within the SAT community. Used to be the best general purpose SAT solver. A large community around the solver.
Picosat (C)/Precosat (C++) http://fmv.jku.at/software/index.html Award winner in 2007 and 2009 of the SAT competition, industrial category.
SAT4J (Java) http://www.sat4j.org. For Java users. Far less efficient than the two others.
UBCSAT (C) http://www.satlib.org/ubcsat/ Very efficient stochastic local search for SAT.
http://www.satcompetition.org Both the binaries and the source code of the solvers are made available for research purposes.

Available Examples

e Satisfiability library: http://www.satlib.org
e The SAT competion: http://www.satcompetition.org
e Search the WEB: "SAT benchmarks"

Using SAT solvers

All SAT solvers support the very simple DIMACS CNF input format :

$$
(a \vee b \vee \neg c) \wedge(\neg b \vee \neg c)
$$

will be translated into
p cnf 32
$12-30$
-2 -3 0
The first line is of the form
p cnf <maxVarId> <numberOfClauses>
Each variable is represented by an integer, negative literals as negative integers, 0 is the clause separator.

