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Satisfiability Modulo Theories (SMT)

Is formula F satisfiable

modulo theory T ?
-

SMT solvers have
specialized algorithms for T

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3),/c-2)) # f(c-b+1)

Arithmetic
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Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Array Theory
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Satisfiability Modulo Theories (SMT)

b+ 2=c and|f(read(write(a,b,3), c-2)) # f(c-b+1)

Uninterpreted
Functions
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Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Substituting c by b+2

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b+2-2)) # f(b+2-b+1)

Simplifying

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b)) # f(3)

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b + 2 =cand f(read(write(a,b,3), b)) # f(3)

Applying array theory axiom
forall a,i,v: read(write(a,i,v), i) = v

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b+ 2=candf(3) # f(3)

Inconsistent

OOOOOOOO



Repository of Benchmarks
http://www.smtlib.org

Benchmarks are divided in “logics”:

e QF _UF: unquantified formulas built over a signature of
uninterpreted sort, function and predicate symbols.

e QF _UFLIA: unquantified linear integer arithmetic with
uninterpreted sort, function, and predicate symbols.

e AUFLIA: closed linear formulas over the theory of integer
arrays with free sort, function and predicate symbols.
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http://www.smtlib.org/

Ground formulas

For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking
Test-Case Generation
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Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof




Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof

\ Examples:
SAT Solver Z

Equality solver
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WO0VOWOVOOE
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Voo
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s
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Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

a,b,c,s

Unsatisfiable
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
M(a) = ¢, (assighment)
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Alternative notation:

aM= e,

Model construction
|M ¢,,¢,} (universe, aka domain)
M(a) = ¢, (assighment)
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = o,
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Deciding Equality

a=b,b=c,d=e,b=s,d=t, aze

Model construction
IM| ={#¢,,¢,} (universe, aka domain)
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = o,
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DeC|d|ng Equallty

@ Termination: easy

@ Soundness

e Invariant: all constants in a “ball” are known to be equal.
e The “ball” merge operation is justified by:
e Transitivity and Symmetry rules.
e Completeness
e We can build a model if an inconsistency was not detected.
e Proof template (by contradiction):
e Build a candidate model.

e Assume a literal was not satisfied.
e Find contradiction.
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DeC|d|ng Equallty

© Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c = d is not satisfied by our model.
e Thatis, M(c) # M(d).
e This is impossible, c and d must be in the same “ball”.

M(c) = M(d) =
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Deciding Equality:

Jer

© Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c # d is not satisfied by our model.
e That is, M(c) = M(d).

e Key property: we only check the disequalities after we
processed all equalities.

e This is impossible, c and d must be in the different “balls”

M(c) = o,
M(d) = ¢,

Microsoft

Research



Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

Congruence Rule:

X; = VYq, - X, =Y, implies f(x,, ..., x,) = flyy, ..., ¥,))
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Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:

X; = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,))
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Deadmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v,) = f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deadmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v;) # f(b, gle))
vlzg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deadmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v) # f(b, v,)
v, =g(d), v, =gle)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gle), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gl(e), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deadmg Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

OOV

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f1(a, v;), v, =f(b, v,)

R ICACSSI

Congruence Rule:

X1 =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, .., V)
d = e implies g(d) = g(e)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), vs=f(a, v;), v, =f(b, v,)

OOV

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
d=eimpliesv, =V,
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Deciding Equality +
Unintenpreted) Eunction

a=b,b=c,d=e,b=5s,d=t, 4
V= g(d), vV, = g(e), V3 = f(a, V1) A= f(b, Vz)

TSI

Congruence Rule:

X1 =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, .., V)
d=eimpliesv, =V,

We say:
v, and v, are congruent.
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v,=V,implies f(a, v,) = f(b, v,)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v,=V,impliesvy;=Vv,

Microso ft-

Research



Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;2v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

Unsatisfiable

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research



Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,# v,
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Changing the problem

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
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Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,# v,
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research



Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
vl_g(d) v, =gle), v;="f(a, v;), v, =f(b, v,)

Model construction:
IM| ={¢,,¢,,¢;,¢,}
M(a) = M(b) = M(c) = M(s) =
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research



Decndnng Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Model construction: —
M| =1¢,,9,,¢5,¢4) i :\r/ll’lzs:nrge:tation for
M(a) = M(b) = M(c) = M(s) = &, &7 =P
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research




Deudmg Equality +

= Building the interpretation for function symbols
o M(g) is a mapping from |[M| to |M|
e Defined as:
M(g)(e;) = ¢, if there iS V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)

e Is M(g) well-defined?
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Decndmg Equality +

= Building the interpretation for function symbols
e M(g) is a mapping from |M| to |M|
o Defined as:
M(g)(e;) = ¢, if there is V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)
e |s M(g) well-defined?
e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# ¢, =M(w)
So, is M(g)(®,) = &, or M(g)(¢,) = ¢,?
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Decndlng Equallty -

= Building the interpretation for function symbols

e M(Q) is a mapping from |M| to |**
= Defined as: _ _ This is impossible because of
M(g)(‘i) = § If there IS V = g the congruence rule!
M(a) = .| a and b are in the same “ball”,
M(v) = _ then so are v and w

= ¢,, otherwise (0k|
e Is M(g) well-defined? W

e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢, ¢, = M(w)
So, is M(g)(®,) = &, or M(g)(¢,) = ¢,?
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
vl_g(d) v, =gle), v;="f(a, v;), v, =f(b, v,)

Model construction:
IM| ={¢,,¢,,¢;,¢,}
M(a) = M(b) = M(c) = M(s) =
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,

Mlvs) = Mlva) = ¢, ‘Research



Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =gle), v;=1(a, v;), v, =1(b, v,)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = ¢,
M(v;) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v3=1(a, v;), v, =1(b, v,)

Model construction:

M[=14,,¢,,¢;,¢
IM[={®,,¢,,45,¢,} M(g)(#;) = ¢, if thereisv=g(a)s.t.

M(a) = M(b) = M(c) = M(s) = ¢, J M(a) = ¢
M(d) = M(e) = M(t) = #, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}
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Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v;=1(a, vy), v, =1(b, v,)

Model construction:

M[=14,,¢,,¢;,¢
IM[={®,,¢,,45,¢,} M(g)(#;) = ¢, if thereisv=g(a)s.t.

M(a) = M(b) = M(c) = M(s) = ¢, J M(a) = ¢
M(d) = M(e) = M(t) = #, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}
M(f)={(®,,¢;)> ¢, else >e}
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Deciding Equality +

It is possible to implement our procedure in
O(n log n)
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Deudmg Equallty =

Sets (equivalence classes)

a%x S Membership
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Deudmg Equality +

C
4 N
Sets (equivale Key observation:
The sets are disjoint!

. /
a# S Membership
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Union-Find data-structure

Every set (equivalence class) has a root element

(representative).

root

S

b/ r

/N
d N We say: find(c) is b
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Deciding Equality +

Union-Find data-structure

R
AN VAN

b
a/ \C I

a/ bY\C
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Deciding Equality +

Tracking the equivalence classes size is important!

dq > dy > d3 —> ... > A1 \J d, =
alH az — a3 — ... T an_l — an
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Deadmg Equality +

Tracking the equivalence classes size is important!

C
a2 U an = a2 < a
9 a dn-1 a a
3 : 1 dj n-1
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Deudmg Equality +

Tracking the equivalence classes size is important!

N

J

>
We can do n merges in
g~ -3 YU a = a7 as a3 O(n log n)
\_
d,
d a a..
Each constant has two fields: find and size. Microsoft
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Deudmg Equality +

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iff v=1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

a/b\C ) S\

Occurrences(b) = { v, =g(b), v, =f(a) }
Occurrences(s) = { vy =f(r) }

r
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Deciding Equality +

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iff v=1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

b S Inefficient version:
/ r\ J \ for each v in occurrences(b)
] : r for each w in occurrences(s)
if vand w are congruent

occurrences(b) = { v, =g(b), v, =f(a) } add (v,w) to todo queue

occurrences(s) = { v, =f(r) }

A queue of pairs that need to
be merged.

arch




Deadmg Equality +

occurrences(b) = {v, =g(b), v,=f(a) }
occurrences(s) ={ vy =f(r) }

We also need to merge occurrences(b) with occurrences(s).
This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

/> Vi~
N\ V3
Microsoft
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Avoiding the nested loop:
for each v in occurrences(b)
for each w in occurrences(s)

Avoiding the nested loop:

Use a hash table to store the elements v, =f(a,, ..., a,).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence
class) roots of the arguments.

hash(v,) = hash-tuple(id(f), id(root(a,)), ..., id(root(a,)))

Research



Avoiding the nested loop:
for each v in occurrences(b)
for each w in occurrences(s)

Avoiding the nested loop:

Use a hash table tc
Each constant has .
Compute hash cod

class) roots of the «

hash-tuple can be the Jenkin’s
hash function for strings.

Just adding the ids produces a
very bad hash-code!

) eeey @)
Imber).
(equivalence

hash(v,) = hash-taple(id(f), id(root(a,)), ..., id(root(a,)))
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Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a, and a,
Assume a, is smaller than a,

Before merging the equivalence classes: a, and a,

for each v in occurrences(a,)
remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a; and a,
for each v in occurrences(a,)
if there is w congruent to v in the hash-table
add (v,w) to todo queue
else add v to hash-table

Microsoft
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Efficient implementation of the congrt

Merging the equivalences classes with aa,
Assume a, is smaller than a,

Trick:
Use dynamic arrays to
represent the occurrences

Before merging the equivalence classes: a, and a,

for each v in occurrences(a,)

remove v from the hash table (its hashcode will change)

After merging the equivalence classes:

for each v in occurrences(a,)

a, and a,

if there is w congruent to v in the hash-table

add (v,w) to todo queue
else add v to hash-table
add v to occurrences(a,)

Microsoft

Research



Deudmg Equality +

The efficient version is not optimal (in theory).
Problem: we may have v = f(a, ..., a,) with “huge” n.

Solution: currying
Use only binary functions, and represent f(a,, a,,a5,3,) as

f(ay, h(a,, h(as, a,)))

This is not necessary in practice, since the n above is small.

Microsoft

Research



Deadmg Equality +

Each constant has now three fields:
find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Microsoft

Research



Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)
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Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)
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Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)

Too Inefficient!
(exponential blowup)

Microsoft

Research



SMT : Basic Architecture

A

Case Analysis

o Equality + UF
e Arithmetic
® Bit-vectors

e L L

Microso ft-

Research



DPLL (abstract view)
M | F
[Partial nﬁ [&f clauses J

OOOOOOOO



DPLL (abstract view)

Guessing

pl pva —qvr

@

p,—q|lpvag —qvr

Research



DPLL (abstract view)

Deducing
plpva —pvs

@

p,s|lpvag —pvs

Research



DPLL (abstract view)

Backtracking
P, =S, ( | pv(q,Ssvqg,—pPVv —(q

@

p,slpvaqg,sva, —pv—q

Microso ft-

Research



Modern DPLL

o Efficient indexing (two-watch literal)
e Non-chronological backtracking (backjumping)
e Lemma learning

Microso ft-

Research



SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P,  P1=(x=0), p,=(y=x+1),
ps=(y>2),p,=(y<1)
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SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

p]_l p21 (p3\/ p4) plz(XZO), pZE(y=X+ 1)1

t? ps=(y>2), p,=(y<1)
U

Assignment
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Basic Idea
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SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P,  P1=(x=0), p,=(y=x+1),

@ ps=(y>2),p,=(y<1)
SAT j>§ss'§m:ep”tp N X>0,y=x+1,
Solver vore Ty —(y>2),y<1

New Lemma <:j Unsatisfiable <’t Theory
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SAT + Theory solvers

New Lemma <:] Unsatisfiable <,i Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict




SAT + Theory solvers: Main loop

procedure SmtSolver(F)

(F,, M) := Abstract(F)

loop
(R, A) := SAT_solver(F )
if R = UNSAT then return UNSAT
S := Concretize(A, M)
(R, S’) := Theory_solver(S)
if R = SAT then return SAT
L := New_Lemma(S’, M)
Add Lto F,



SAT + Theory solvers

FoiPy Py (P3V Py)

Basic Idea

F-x>0,y=x+1,(y>2vy<l1l)
@ Abstract (aka “naming” atoms)

M:p,;=(x20), p,=(y=x+1),

ps=(y>2), p,=(y<1)

SAT
Solver

A: Assighment
p]_l p21 _'p3r p4

L: New Lemma

—|p1V—|p2V—|p4

-

S’: Unsatisfiable <,i
x=>0,y=x+1,y<1

v

S:x=0,y=x+1,
—(y>2),y<1

v

|

Theory
Solver




SAT + Theory solvers

@ Abstract (aka “naming” atoms)

Foi Py P (P3V Py M:p;=(x2>0), p,=(y=x+1),
P3=(y>2), p,=(y<1)

ST o R ment 5o e
Solver v e e —(y>2),y<1

L: New Lemma S’: Unsatisfiable <: Theory
—P, VP, VP, x>0,y=x+1y<1 Solver

procedure SMT_Solver(F)
(F,, M) := Abstract(F)
loop
(R, A) := SAT_solver(F )

if R = UNSAT then return UNSAT
S = Concretize(A, M) “Lazy translation”
(R, S’) := Theory_solver(S) to

if R = SAT then return SAT _\_ DNF
L := New_Lemma(s, M)
Add Lto F,




SAT + Theory solvers

State-of-the-art SMT solvers implement
many improvements.



SAT + Theory solvers

Incrementality
Send the literals to the Theory solver as they are
assigned by the SAT solver

plE(XZO), sz(y=X+ 1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, Py Pa | Py Py (P3V P, (P Vv —p,)

AN

Partial assignment is already
Theory inconsistent.




SAT + Theory solvers

Efficient Backtracking
We don’t want to restart from scratch after each
backtracking operation.



SAT + Theory solvers

Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1E(XZO)r sz(y=X+ 1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, Po P3Py | P Po (P53 V P4, (P VvV —Py)

J—

—P1VTP,; VTIP3 VTP, Imprecise Lemma




SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0),p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, P> | Py P (P53 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, P4 Py Py (P3V P, (P Vv —p,)



SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0),p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
Py, P> | Py P (P53 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, P4 Py Py (P3V P, (P Vv —p,)

Tradeoff between precision x performance.
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An Architecture: the core

Core
Arithmetic Bit-Vectors Scalar Values
Equality

Uninterpreted

Functions
$ Blackboard:
equalities,

disequalities,
predicates

SAT Solver




