

Satisfiability Modulo Theories (SMT): ideas and applications

Università Degli Studi Di Milano Scuola di Dottorato in Informatica, 2010

Leonardo de Moura Microsoft Research

Is formula F satisfiable modulo theory T?

SMT solvers have specialized algorithms for *T*

$$b + 2 = c$$
 and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

$$b + 2 = c$$
 and $f(read(write(a,b,3),c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c \text{ and } f(read(write(a,b,3), c-2)) \neq f(c-b+1)$$

Array Theory

$$b + 2 = c$$
 and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Uninterpreted Functions

b + 2 = c and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Substituting c by b+2

$$b + 2 = c$$
 and $f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)$

Simplifying

$$b + 2 = c$$
 and $f(read(write(a,b,3), b)) \neq f(3)$

b + 2 = c and $f(read(write(a,b,3), b)) \neq f(3)$

Applying array theory axiom forall a,i,v: read(write(a,i,v), i) = v

$$b + 2 = c \text{ and } f(3) \neq f(3)$$

Inconsistent

SMT-Lib

- Repository of Benchmarks
- http://www.smtlib.org
- Benchmarks are divided in "logics":
 - QF_UF: unquantified formulas built over a signature of uninterpreted sort, function and predicate symbols.
 - QF_UFLIA: unquantified linear integer arithmetic with uninterpreted sort, function, and predicate symbols.
 - AUFLIA: closed linear formulas over the theory of integer arrays with free sort, function and predicate symbols.

Ground formulas

For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking Test-Case Generation

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Examples: SAT Solver Equality solver

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b$$
, $b = c$, $d = e$, $b = s$, $d = t$, $a \ne e$, $a \ne s$

$$a = b$$
, $b = c$, $d = e$, $b = s$, $d = t$, $a \ne e$, $a \ne s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

C

d

e

S

t

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

d

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

t

a = b, b = c, d = e, b = s,
$$d = t$$
, $a \ne e$, $a \ne s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

a,b,c,s

Unsatisfiable

d,e,t

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = \blacklozenge_1$ (assignment)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| - \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = \blacklozenge_1$ (assignment)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$
 $M(d) = M(e) = M(t) = \blacklozenge_2$

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$
 $M(d) = M(e) = M(t) = \blacklozenge_2$

Deciding Equality: Termination, Soundness, Completeness

- Termination: easy
- Soundness
 - Invariant: all constants in a "ball" are known to be equal.
 - The "ball" merge operation is justified by:
 - Transitivity and Symmetry rules.
- Completeness
 - We can build a model if an inconsistency was not detected.
 - Proof template (by contradiction):
 - Build a candidate model.
 - Assume a literal was not satisfied.
 - Find contradiction.

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal c = d is not satisfied by our model.
 - That is, $M(c) \neq M(d)$.
 - This is impossible, c and d must be in the same "ball".

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal c ≠ d is not satisfied by our model.
 - That is, M(c) = M(d).
 - Key property: we only check the disequalities after we processed all equalities.
 - This is impossible, c and d must be in the different "balls"

$$a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

$$a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, g(e))$$

 $v_1 \equiv g(d)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, g(e))$$

 $v_1 \equiv g(d)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \ne f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \ne f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } g(d) = g(e)$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } V_1 = V_2$

We say: v_1 and v_2 are congruent.

$$a = b, b = c, d = e, b = s, d = t, v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } V_1 = V_2$

Research

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, v_1 = v_2 \text{ implies } f(a, v_1) = f(b, v_2)$

Research

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, v_1 = v_2 \text{ implies } v_3 = v_4$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, V_1 = V_2 \text{ implies } V_3 = V_4$

Research

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$a \neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

Changing the problem

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$a \neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

Model construction:

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

Research

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

a,b,c,s

Model construction:

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

Missing:

Interpretation for f and g.

Research

- Building the interpretation for function symbols
 - M(g) is a mapping from |M| to |M|
 - Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

M(v) = \blacklozenge_k, otherwise (\blacklozenge_k is an arbitrary element)
```

Is M(g) well-defined?

- Building the interpretation for function symbols
 - M(g) is a mapping from |M| to |M|
 - Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

M(v) = \blacklozenge_k, otherwise (\blacklozenge_k) is an arbitrary element)
```

- Is M(g) well-defined?
 - Problem: we may have v = g(a) and w = g(b) s.t. $M(a) = M(b) = \blacklozenge_1$ and $M(v) = \blacklozenge_2 \neq \blacklozenge_3 = M(w)$ So, is $M(g)(\blacklozenge_1) = \blacklozenge_2$ or $M(g)(\blacklozenge_1) = \blacklozenge_3$?

- Building the interpretation for function symbols
 - M(g) is a mapping from |M| to |M|
 - Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_i if there is v \equiv g the congruence rule!
                        M(a) = \bullet_i
                        M(v) = \bullet_i
            = ♦k, otherwise (♦k L
```

This is impossible because of a and b are in the same "ball",

then so are v and w

- Is M(g) well-defined?
 - Problem: we may have

$$v \equiv g(a)$$
 and $w \equiv g(b)$ s.t.
 $M(a) = M(b) = \blacklozenge_1$ and $M(v) = \blacklozenge_2 \neq \blacklozenge_3 = M(w)$
So, is $M(g)(\blacklozenge_1) = \blacklozenge_2$ or $M(g)(\blacklozenge_1) = \blacklozenge_3$?

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

Model construction:

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

Research

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g)(\blacklozenge_i) = \blacklozenge_j$$
 if there is $v \equiv g(a)$ s.t.
 $M(a) = \blacklozenge_i$
 $M(v) = \blacklozenge_j$
 $= \blacklozenge_k$, otherwise

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

$$M(g)(\blacklozenge_i) = \blacklozenge_j$$
 if there is $v \equiv g(a)$ s.t.
 $M(a) = \blacklozenge_i$
 $M(v) = \blacklozenge_j$
 $= \blacklozenge_k$, otherwise

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

$$M(g)(\blacklozenge_i) = \blacklozenge_j$$
 if there is $v \equiv g(a)$ s.t.
 $M(a) = \blacklozenge_i$
 $M(v) = \blacklozenge_j$
 $= \blacklozenge_k$, otherwise

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$M(g)(\blacklozenge_i) = \blacklozenge_j$$
 if there is $v \equiv g(a)$ s.t.
 $M(a) = \blacklozenge_i$
 $M(v) = \blacklozenge_j$
 $= \blacklozenge_k$, otherwise

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$M(f) = \{ (\blacklozenge_1, \blacklozenge_3) \rightarrow \blacklozenge_4, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$M(g)(\blacklozenge_i) = \blacklozenge_j$$
 if there is $v = g(a)$ s.t.
 $M(a) = \blacklozenge_i$
 $M(v) = \blacklozenge_j$
 $= \blacklozenge_k$, otherwise

It is possible to implement our procedure in O(n log n)

d,e,t

Sets (equivalence classes)

a,b,c,s

 $a \neq s$

Membership

d,e,t

Sets (equivale

Key observation:
The sets are disjoint!

d,e

 \bigcup

t

d,e,t

Union

a,b,c,s

 $a \neq s$

Membership

Union-Find data-structure

Every set (equivalence class) has a root element

(representative).

Union-Find data-structure

Tracking the equivalence classes size is important!

$$a_1 \longrightarrow a_2 \quad \cup \quad a_3 \quad = \quad a_1 \longrightarrow a_2 \longrightarrow a_3$$

$$a_1 \longrightarrow a_2 \longrightarrow a_3 \quad \cup \quad a_4 \quad = \quad a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow a_4$$
...
$$a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow ... \longrightarrow a_{n-1} \quad \cup \quad a_n \quad =$$

$$a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow ... \longrightarrow a_{n-1} \longrightarrow a_n$$

Tracking the equivalence classes size is important!

Tracking the equivalence classes size is important!

$$a_1 \longrightarrow a_2 \quad \cup \quad a_3 = a_1 \longrightarrow a_2 \longleftarrow a_3$$
 We can do n merges in O(n log n)

$$a_1 \longrightarrow a_2 \longleftarrow a_3 \quad \cup \quad a_4 = a_1 \longrightarrow a_2 \longleftarrow a_3$$
...

Each constant has two fields: find and size.

Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff $v \equiv f(...,a,...)$

When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

Occurrences(b) = {
$$v_1 \equiv g(b), v_2 \equiv f(a)$$
 }
Occurrences(s) = { $v_3 \equiv f(r)$ }

Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff $v \equiv f(...,a,...)$

When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

occurrences(b) = { $v_1 \equiv g(b), v_2 \equiv f(a)$ } occurrences(s) = { $v_3 \equiv f(r)$ }

Inefficient version:

for each v in occurrences(b)
for each w in occurrences(s)
if v and w are congruent
add (v,w) to todo queue

A queue of pairs that need to be merged.

nesearch

occurrences(b) = {
$$v_1 \equiv g(b), v_2 \equiv f(a)$$
 }
occurrences(s) = { $v_3 \equiv f(r)$ }

We also need to merge occurrences(b) with occurrences(s).

This can be done in constant time:

Use circular lists to represent the occurrences. (More later)

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cup v_3 = \begin{pmatrix} v_1 \\ v_3 \\ v_2 \end{pmatrix}$$

Research

Avoiding the nested loop:

```
for each v in occurrences(b) for each w in occurrences(s)
```

• • •

Avoiding the nested loop:

Use a hash table to store the elements $v_1 \equiv f(a_1, ..., a_n)$. Each constant has an identifier (e.g., natural number). Compute hash code using the identifier of the (equivalence class) roots of the arguments.

 $hash(v_1) = hash-tuple(id(f), id(root(a_1)), ..., id(root(a_n)))$

Avoiding the nested loop:

```
for each v in occurrences(b) for each w in occurrences(s)
```

• • •

Avoiding the nested loop:

Use a hash table to Each constant has Compute hash cod class) roots of the arguments.

, ..., a_n). Imber). (equivalence

 $hash(v_1) = hash-tuple(id(f), id(root(a_1)), ..., id(root(a_n)))$


```
Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a₁ and a₂
Assume a<sub>2</sub> is smaller than a<sub>1</sub>
Before merging the equivalence classes: a<sub>1</sub> and a<sub>2</sub>
for each v in occurrences(a<sub>2</sub>)
    remove v from the hash table (its hashcode will change)
After merging the equivalence classes: a<sub>1</sub> and a<sub>2</sub>
for each v in occurrences(a<sub>2</sub>)
   if there is w congruent to v in the hash-table
         add (v,w) to todo queue
   else add v to hash-table
                                                                      Microsoft*
```

Efficient implementation of the congrueres represent the occurrences Merging the equivalences classes with room

Assume a₂ is smaller than a₁

Before merging the equivalence classes: a₁ and a₂

for each v in occurrences(a₂)

remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a₁ and a₂

for each v in occurrences(a₂)

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table

add v to occurrences(a₁)

Use dynamic arrays to

Microsoft*

The efficient version is not optimal (in theory).

Problem: we may have $v = f(a_1, ..., a_n)$ with "huge" n.

Solution: currying

Use only binary functions, and represent $f(a_1, a_2, a_3, a_4)$ as

 $f(a_1, h(a_2, h(a_3, a_4)))$

This is not necessary in practice, since the n above is small.

Each constant has now three fields:

find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Case Analysis

Many verification/analysis problems require: case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Case Analysis

Many verification/analysis problems require: case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF

$$(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$$

Case Analysis

Many verification/analysis problems require:

case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF

$$(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$$

Too Inefficient! (exponential blowup)

SMT: Basic Architecture

Research

Guessing

Deducing

Backtracking

Modern DPLL

- Efficient indexing (two-watch literal)
- Non-chronological backtracking (backjumping)
- Lemma learning

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \vee p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$

$$p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

SAT Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Assignment
$$p_1$$
, p_2 , $\neg p_3$, p_4

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

$$Abstract (aka "naming" atoms)$$

$$p_{1}, p_{2}, (p_{3} \lor p_{4}) \qquad p_{1} \equiv (x \ge 0), p_{2} \equiv (y = x + 1),$$

$$p_{3} \equiv (y > 2), p_{4} \equiv (y < 1)$$

$$Assignment$$

$$p_{1}, p_{2}, \neg p_{3}, p_{4} \qquad x \ge 0, y = x + 1,$$

$$\neg (y > 2), y < 1$$

Basic Idea

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$
 $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

Assignment
 $p_1, p_2, \neg p_3, p_4$
 $x \ge 0, y = x + 1,$
 $p_1, p_2, \neg p_3, p_4$
 $x \ge 0, y = x + 1,$
 $p_1, p_2, \neg p_3, p_4$

SAT Solver

 $\neg (y > 2), y < 1$

Unsatisfiable

$$x \ge 0$$
, $y = x + 1$, $y < 1$

Theory Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$

$$p_1, p_2, (p_3 \vee p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$

$$p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

Assignment
$$p_1, p_2, \neg p_3, p_4$$
 $x \ge 0, y = x + 1, -(y > 2), y < 1$

$$x \ge 0, y = x + 1,$$

$$\neg (y > 2), y < 1$$

New Lemma

$$\neg p_1 \lor \neg p_2 \lor \neg p_4$$

Unsatisfiable

$$x \ge 0, y = x + 1, y < 1$$

Theory Solver

AKA
Theory conflict

SAT + Theory solvers: Main loop

```
procedure SmtSolver(F)
   (F_n, M) := Abstract(F)
   loop
       (R, A) := SAT\_solver(F_p)
        if R = UNSAT then return UNSAT
       S := Concretize(A, M)
       (R, S') := Theory_solver(S)
        if R = SAT then return SAT
        L := New Lemma(S', M)
       Add L to F<sub>n</sub>
```

Basic Idea

F:
$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$F_p: p_1, p_2, (p_3 \vee p_4)$$

M: $p_1 \equiv (x \ge 0)$, $p_2 \equiv (y = x + 1)$, $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

A: Assignment
$$p_1$$
, p_2 , $\neg p_3$, p_4

S:
$$x \ge 0$$
, $y = x + 1$, $\neg (y > 2)$, $y < 1$

L: New Lemma

$$\neg p_1 \lor \neg p_2 \lor \neg p_4$$

S': Unsatisfiable

$$x \ge 0$$
, $y = x + 1$, $y < 1$

Theory Solver

```
F: x \ge 0, y = x + 1, (y > 2 \lor y < 1)
                                                   Abstract (aka "naming" atoms)
              \mathbf{F_p}: p_1, \ p_2, \ (p_3 \lor p_4) M: p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1),
                                                   p_3 \equiv (y > 2), p_4 \equiv (y < 1)
                             A: Assignment p_1, p_2, \neg p_3, p_4 S: x \ge 0, y = x + 1, \neg (y > 2), y < 1
                 SAT
               Solver
L: New Lemma p_1 \lor p_2 \lor p_4 S': Unsatisfiable x \ge 0, y = x + 1, y < 1
                                                               Theory
                                                               Solver
                 procedure SMT Solver(F)
                       (F_n, M) := Abstract(F)
                       loop
                               (R, A) := SAT_solver(F_n)
                               if R = UNSAT then return UNSAT
                                                                                    "Lazy translation"
                               S = Concretize(A, M)
                               (R, S') := Theory_solver(S)
                                                                                                to
                               if R = SAT then return SAT
                                                                                               DNF
                                L := New Lemma(S, M)
                               Add L to F<sub>n</sub>
```

State-of-the-art SMT solvers implement many improvements.

Incrementality

Send the literals to the Theory solver as they are assigned by the SAT solver

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$$

 $p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2),$
 $p_1, p_2, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$

Partial assignment is already Theory inconsistent.

Efficient Backtracking

We don't want to restart from scratch after each backtracking operation.

Efficient Lemma Generation (computing a small S')

Avoid lemmas containing redundant literals.

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$$

 $p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2),$
 $p_1, p_2, p_3, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$

$$\neg p_1 \lor \neg p_2 \lor \neg p_3 \lor \neg p_4$$

Imprecise Lemma

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{aligned} p_1 &\equiv (x \geq 0), \ p_2 &\equiv (y = x + 1), \\ p_3 &\equiv (y > 2), \ p_4 &\equiv (y < 1), \ p_5 &\equiv (x < 2), \\ p_1, \ p_2 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4) \end{aligned}$$

$$p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation$$

$$p_1, \ p_2, \ \neg p_4 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4)$$

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{aligned} p_1 &\equiv (x \geq 0), \ p_2 &\equiv (y = x + 1), \\ p_3 &\equiv (y > 2), \ p_4 &\equiv (y < 1), \ p_5 &\equiv (x < 2), \\ p_1, \ p_2 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4) \end{aligned}$$

$$p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation$$

$$p_1, \ p_2, \ \neg p_4 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4)$$

Tradeoff between precision × performance.

An Architecture: the core

An Architecture: the core

An Architecture: the core

predicates