
Leonardo de Moura
Microsoft Research



Many approaches
Graph-based for difference logic:  a – b  3

Fourier-Motzkin elimination:

Standard Simplex

General Form Simplex



Very useful in practice!

Most arithmetical constraints in software 
verification/analysis are in this fragment.

x := x + 1

x1 = x0 + 1

x1 - x0  1, x0 - x1  -1   





Chasing negative cycles!

Algorithms based on Bellman-Ford (O(mn)).



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1  1 -1

a

b

c

d

e

3

1

-1

=



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1  1 -1

a

b

c

d

e

3

1

-1

=

We say a,b,c are the 
basic (or dependent) 
variables



Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d         = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1  1 -1

a

b

c

d

e

3

1

-1

=

We say a,b,c are the 
basic (or dependent) 
variables

We say d,e are the 
non-basic (or non-
dependent) variables.



Incrementality: add/remove equations

Slow backtracking

No theory propagation



Simplex General Form

Algorithm based on the dual simplex

Non redundant proofs

Efficient backtracking

Efficient theory propagation

Support for string inequalities: t > 0

Preprocessing step

Integer problems: 
Gomory cuts,  Branch & Bound, GCD test





s1  x + y,    s2  x + 2y



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0



s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0

s1, s2  are basic (dependent) 

x,y are non-basic



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!



A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s2 and y 

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!

Example:
M(x) = 1
M(y) = 1
M(s1) = 2
M(s2) = 3





If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all dependent 
variables.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c 



If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all dependent 
variables. Of course, we may introduce new “problems”.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a  0

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c

a  0



If the assignment of a basic variable does not satisfy a 
bound, then pivot it, fix it, and propagate the change to its 
new dependent variables. 

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  a 



Sometimes, a model cannot be repaired. It is pointless to 
pivot.

a = b – c

a  0, 1  b, c  0

M(a) = 1

M(b) = 1

M(c) = 0

The value of M(a) is too big. We can 
reduce it by:
- reducing M(b) 

not possible b is at lower bound
- increasing M(c)

not possible c is at upper bound



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent



s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent

{ a  0,  1  a + d,  c + d  0,  0  c } is inconsistent





SMT@Microsoft



SMT@Microsoft



SMT@Microsoft







































































































Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.

Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not 
satisfy its bounds, then select the smallest non-basic in the 
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of 
configurations. Then, any infinite trace will have cycles.



Array of rows (equations).

Each row is a dynamic array of tuples:

(coefficient, variable, pos_in_occs, is_dead)

Each variable x has a “set” (dynamic array) of occurrences:

(row_idx, pos_in_row, is_dead)

Each variable x has a “field” row*x+

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x

Each variable x has “fields”: lower*x+, upper*x+, and value*x+



rows: array of rows (equations).

Each row is a dynamic array of tuples:

(coefficient, variable, pos_in_occs, is_dead)

occs[x]: Each variable x has a “set” (dynamic array) of 
occurrences:

(row_idx, pos_in_row, is_dead)

row[x]:

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x

Other “fields”: lower[x], upper[x], and value[x]

atoms[x]: atoms (assigned/unassigned) that contains x



s1  a + b, s2  c – b

p1  a  0, p2  1  s1, p3  1  s2

p1, p2 were already assigned

a - s1 + s2 + c = 0 

b- c + s2 = 0

a  0, 1  s1

M(a) = 0      value[a] = 0

M(b) = -1     value[a] = -1

M(c) = 0       value[c] = 0

M(s1) = 1      value[s1] = 1

M(s2) = 1      value[s2] = 1

rows = [

[(1, a, 0, t), (-1, s1, 0, t), (1, s2, 1, t), (1, c, 0, t)],

[(1,b, 0, t), (-1, c, 1, t), (1, s2, 2, t)] ]

occs[a] = [(0, 0, f)]

occs[b] = [(1,0,f)]

occs[c] = [(0,3,f), (1,1,f)]

occs[s1] = [(0,1,f)]

occs[s2] = [(0,0,t), (0,2,f), (1,2,f)] 

row[a] = 0, row[b] = 1, row[c] = -1, …

upper[a] = 0, lower[s1] = 1

atoms[a] = {p1}, atoms[s1] = {p2}, …



In practice, we need a combination of theories.

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories T1  T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for

T1  T2?



Two theories are disjoint if they do not share 
function/constant and predicate symbols.

= is the only exception.

Example:

The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0, -1, 1, -2, 2, …, +, -, *, >, <,  ≥, }

Array symbols: { read, write }



It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5) 



It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5) 

b + 2 = c, v1  3, v3  c-2, v5  c-b+1,

v2  write(a, b, v1), v4  read(v2, v3),

v6  f(v4), v7  f(v5), v6 ≠ v7



A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.



The union of two consistent, disjoint, stably infinite 
theories is consistent.



A theory T is convex iff

for all finite sets S of literals and

for all a1 = b1 …  an = bn

S implies a1 = b1 …  an = bn

iff

S implies ai = bi for some  1  i  n



Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.

formulas of the form s1 ≠ r1 …  sn ≠ rn  t = t’

Linear rational arithmetic is convex.



Linear integer arithmetic is not convex

1  a  2, b = 1, c = 2  implies a = b  a = c

Nonlinear arithmetic

a2 = 1, b = 1, c = -1 implies a = b  a = c

Theory of bit-vectors

Theory of arrays

c1 = read(write(a, i, c2), j), c3 = read(a, j)

implies c1 = c2  c1 = c3



EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add 

f(a1, a2, a3) ≠ f(0, 1, 0)



EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add 

f(a1, a2, a3) ≠ f(0, 1, 0)

a1 ≠ 0  a2 ≠ 1  a3 ≠ 0

implies















b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  c-2, 

v5  c-b+1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3)

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  c-2, 

v5  c-b+1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3)

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7

Substituting c



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7

Propagating  v3 = b



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b

Deducing v4 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b

Propagating v4 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1

Propagating v5 = v1



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1Congruence: v6 = v7



b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c, 

v1  3, 

v3  b, 

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1), 
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4), 

v7  f(v5), 

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1 , 

v6 = v7

Unsatisfiable



Deterministic procedure may fail for non-convex theories.

0  a  1, 0  b  1, 0  c  1,

f(a) ≠ f(b),

f(a) ≠ f(c),

f(b) ≠ f(c)



























Model mutation without pivoting

For each non basic variable xj compute [Lj, Uj]

Each row containing xj enforces a limit on how much it can 
be increase and/or decreased without violating the bounds 
of the basic variable in the row.



We say a variable is fixed if the lower and upper bound are the same.

1  x  1

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma 2x1 + x2, 

we use M(P) to denote 2M(x1) + M(x2)



M

M M

M M





A reduction function reduces the satifiability problem for a 
complex theory into the satisfiability problem of a simpler 
theory.

Ackermannization is a reduction function.



EUF


