sd ! P .
Pl Al Microsoft*

I . ﬁ@" ‘ .LI Research

Satisfiability Modulo Theories (SMT):
ideas and applications

Universita Degli Studi Di Milano

Scuola di Dottorato in Informatica, 2010

Leonardo de Moura
Microsoft Research



Linear Arithmetic

@ Many approaches
e Graph-based for difference logic: a—b <3
e Fourier-Motzkin elimination:
t1 <azxr, br <ty = bt; < aty
e Standard Simplex
e General Form Simplex

Microsoft

Research



Difference Logic: a—b<5

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.

Microsoft

Research



Job shop scheduling

d; ; | Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3
mar = 8
Solution

t1,1 = 5, tLQ = 7, fgjl = 2,
to2 =0, t31 =0, t32 =3

Encoding

(t11 2 0)A(lie>2tia+2) A (i +1 <8 A
(tz,l > U) A (52?2 > t2.1 + 3) A (52?2 + 1< 8) A\
(tg,l > U) A (53?2 > 131 + 2) A (53?2 + 3 < 8) A
(11 > to1+3)V(ta1 >t11+2)) A

(trn >ts1+2)V(ts1 >t11+2))

((t2g >tz 1 +2)V (31 >t21+3)) A
(tr12=>taa+ 1)V (taoa >tia+1)) A

(12 >ts2+3)V(tse>tia+1)) A

((tao >1t324+3)V (tza2 >taa+1))

Microsoft

Research



Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

11,1
S
f N0
z — ti1n <0 -2 N
z — ta1 <O | 0 4
z — t31 < 0 21— 2
tgjg — Z < 5 T !
tz1 — 132 < —2 -3 0 ;
t2n — t3n1 < —3 9 ! /
11 — 121 < —2 1"53.,2— — —""t3,1 /
, , - 5

Microsoft

Research



Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c +d-e =-1
a,b,c,d e=>0

Microsoft

Research



Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d -1
c+d-e =1
a,b,c,d,e>0
ra\
(100-12)|b| [3
010-10|/ c|=|1
\001 1-} d \.1)
e
A$ — b and 7 E () Microsoft’

Research



Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 < We say a,b,c are the
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,d e=>0
ra\
(100-12)b| (3]
010-10||c|=|1
Q) 011 -3 d \-1)
e

A:B _ b and T :_> 0 Microsoft:

Research



Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 _— Wesayab,carethe
b-d =1 basic (or dependent)
c +d-e =-1 variables

a,b,c,d e=>0 \
ra\
- ~ = We say d,e are the

100-12|| b non-basic (or non-
010-10||cl|=]1 dependent) variables.
Q) 011 -5 d \-1)
e
A:B — b and T :_> 0 Microsoft:

Research



Standard Simplex

e Incrementality: add/remove equations
@ Slow backtracking

e No theory propagation

Microso ft-

Research



Fast Linear Arithmetic

e Simplex General Form

@ Algorithm based on the dual simplex
© Non redundant proofs

e Efficient backtracking

e Efficient theory propagation

@ Support for string inequalities: t > 0
@ Preprocessing step

e Integer problems:
Gomory cuts, Branch & Bound, GCD test

Microso ft-

Research



General Form

General Form: Ax =0 and [; < x; < u;

Example:

r>0,(r4+y<2Vae+2y>6).(r+y=2Var+2y>4)
s
S1 =T+ Y, 8 =+ 2y,
r>0,(8 <2Vsy>6), (s =2V sy >4)
Only bounds (e.g., s1 < 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.



From Definitions to a Tableau

S;=X+Y, S,=X+2y

OOOOOOOO



From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

OOOOOOOO



From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-Xx-y =0
S, -X-2y=0

Microso ft-

Research



From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-x-y =0 s, s, are basic (dependent)
s,-X-2y=0 Xy are non-basic

Microso ft-

Research



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

Microsoft

Research



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

s, +x+y =0

S,-X-2y=0

Microsoft

Research



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0
S,-X-2y=0

s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

S;-x-y =0 It is just substituting

52"@\':0 \ equals by equals.
s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research



Definition:

PIVOtIng An assighment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s, and y
s;-X-y =0
S,-X-2y=0

It is just substituting
equals by equals.

s, +x+y =0

3 Key Property:
2 2y ° i If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

-sl+x+y =0
S,-25;+x=0




Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

S17%-y =0 It is just substituting
ch ﬁy =0 equals by equals.
Example:
M(X):l \7'5 +X+y =0 K 5
M(y) =1 S, - X - 2y 0 ey Property:
Mg)) =2 ’ < If an assignment satisfies the
|v|(51) =3 -0 equations before a pivoting
: _Sl rXtY = step, then it will also satisfy

5,725, +x=0 them after!




Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.
Equations + Bounds can be used to derive new bounds.
Example: v =y — 2z, y <2, 2 >3 ~x < —1.

The new bound may be inconsistent with the already known

bounds.

Example: + < —1, = > 0.



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent

variables.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 :> M(a) =1
M(b) =0 M(b) = 1
M(c) =0 M(c) = 1
M(d) =0 M(d)=0
l<c 1<c

Microsoft

Research



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables. Of course, we may introduce new “problems”.

a=c—d
b=c+d
M(a)=0
M(b)=0
M(c)=0
M(d) =0
1<c

a<o0

—

a=c—d
b=c+d
M(a) =1
M(b) =1
M(c) =1
M(d) =0
1<c

as<o

Microsoft

Research



“Repairing Models”

If the assignment of a basic variable does not satisfy a

bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a=c—d
b-c+d
M(a) =
M(b) =
Mk%-
M(d) =
1<a

c=a+d
b-a+2d
M(a) =
Mo -0 B
M(c)=0
M(d) =

1<a

c=a+d
b=a+2d
M(a) =
M(b) =
M(c) =
M(d) =
1<a

Microsoft

Research



“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to

pivot.
The value of M(a) is too big. We can
T=b—c reduce it by:

4<0 1<b c<0 - reducing M(b)

’ ’ not possible b is at lower bound
M(a) =1 - increasing M(c)
M(b) =1 not possible cis at upper bound
M(c)=0

Microsoft

Research



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

Microsoft

Research



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent

Microsoft

Research



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,0,0<c

M(a)=1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent

e e . Microsoft:
{a<0, 1<a+d, c+d<0, 0<c}isinconsistent Research



Strict Inequalities

The method described only handles non-strict inequalities (e.g.,
r < 2).

For integer problems, strict inequalities can be converted into

non-strict inequalities. © < 1 ~» o < 0.

For rational/real problems, strict inequalities can be converted into

non-strict inequalities usingasmall 0. © < 1 ~» 2 <1 — 0.
We do not compute a 0, we treat it symbolically.

0 is an infinitesimal parameter: (¢, k) = ¢ 4+ kd



» Initial state

s>1.x>0
(y<1ve>22),(v<-2Vev>20),v<—-2Vu<—1)

Model Equations Bounds
M(z) = 0 s = r+y
M(y) = 0 u = xr+2y
M(s) = 0 vo= Ty
M(u) = 0
M(v) = 0



» Assertings > 1

s>1,2 >0

(y<1vev>2)(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = T+
M(y) = 0 u = r+2y
M(s) = 0 vo= -y
M(u) = 0
M(v) = 0



» Asserting s =~ 1 assignment does not satisfy new bound.

s>1.x>0

(y<1lve>22),(v<-=2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 0 s = x4y s > 1
M(y) = 0 u = r+2y
M(s) = 0 vo= r—=y
M(u) = 0
M(v) = 0



» Asserting s > 1 pivot s and 7 (s is a dependent variable).

s>1,2>0

(y<1vev>2)(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = r+vy s > 1
M(y) = 0 u = r+2y
M(s) = 0 vo= r—y
M(u) = 0
M(v) = 0



» Asserting s > 1 pivot s and x (s is a dependent variable).

s>1.x2>0

(y<1vev>2),(v<-2Vv>0),(v <-2Vu<-1)

Model Equations Bounds
M(z) = 0 ro= s—1 s > 1
M(y) = 0 u = x+2y
M(s) = 0 vo= Tr—y
M(u) = 0
M(v) = 0



» Asserting s = 1 pivot s and x (s is a dependent variable).

s>1.x>0

(y<1ve>22),(v<-2Vev2>20),v<-2Vu<—1)

Model Equations Bounds
M(zx) = 0 r o= s—y s > 1
M(y) = 0 u = sty
M(s) = 0 v o= §—2uy
M(u) = 0
M(v) = 0



» Asserting s > 1 update assignment.

s>1.x2 >0

(y<1vev>2)(v<-2Vov>0),(v<-2Vu<—1)

Model Equations Bounds
M(x) = ro= s—y s > 1
M(y) = u = s+uy

vo= s—2y

p—
—~
—_—
W]
o S el e po—
|
o o = o o



» Asserting s > 1 update dependent variables assignment.

s>1,2 >0

(y<1vev>2)(v<-2Vv>0),(v<-2Vu<-—1)

Model Equations Bounds
M(xz) = r = s—y s > 1
M(y) = u = s+vy

vo= s—2y

p—
~
—_
o
T e T T
|
—_ = = D =



» Assertingx > 0

s>1, >0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<—1)

Model Equations Bounds
M(z) = 1 r o= s—y s > 1
M(y) = 0 u = sty
M(s) = 1 vo= s—2y
M(u) = 1
M(v) = 1



» Asserting » > 0 assignment satisfies new bound.

s>1.x>0

(y<1lve>22),(v<-2Ve>20),v<—-2Vu<—1)

Model Equations Bounds
M(z) = 1 r = §—y s > 1
M(y) = 0 U = s+ r > 0
M(s) = 1 vo= Ss—2y
M(u) = 1
Mv) = 1



» Case split -y < 1

s>1l,x >0

(y<1lve>22),(v<-=2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 1 r = Ss—y s > 1
M(y) = 0 u = s+uy r > 0
M(s) = 1 vo= s5— 2y
M(u) = 1
M(v) = 1



» Case split =y < 1 assignment does not satisfies new bound.

s>1l,2 >0

(y<1lvev>2)(v<-2Vev>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = 1 r = s—1 s = 1
M(y) = 0 U = s+vy r = 0

1

()
(Y)
M(s) = 1 vo= §— 2 T
(u)
(v)



» Case split =y < 1 update assignment.

s>1, x>0

Model Equations Bounds
M(z) = 1 r = s—1 s > 1
M(y) = 140 u = s+ r > 0
M(s) = 1 v o= s—2y y > 1



» Case split =y < 1 update dependent variables assignment.

s>1,r>0

(y<1lvev>2)(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(xz) = —0 r o= s—y s > 1
M(y) = 1+9 u = s+uy r > 0
M(s) = 1 vo= s—2y y > 1
M(u) = 2490
M(v) = —1—-2¢



» Bound violation

s>1,r>0

(y<1lvev>2),(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = —0 r = s—1 s = 1
M(y) = 1+ U = s+ r > 0
M(s) = 1 vo= Ss—2y y > 1
M(u) = 249

M) = —1-25



» Bound violation pivot  and s (x is a dependent variables).

s>1.2>0

(y<1vev>2),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = —0 ro= s5—1 s = 1
M(y) = 149 u = s+uy r > 0
M(s) = | vo= s—2y y > 1
M(u) = 2409

M) = —1-25



» Bound violation pivot > and s (x is a dependent variables).

s>1,2>0

(y<1lve>22),v<-2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(x) = —0 s = r+uy s = 1
M(y) = 1496 U = s+vy r > 0
M(s) = 1 vo= §— 2y y > 1
M(u) = 249
[(v)

M) = —1-26



» Bound violation pivot  and s (7 is a dependent variables).

s>1,2>0

(y<1lve>22),(v<-2Vev2>20),v<-2Vu<-—1)

Model Equations Bounds
M(x) = —0 s = x4y s = 1
M(y) = 140 u o= r+2 r > 0
M(s) = 1 vo= r—y y > 1
M(u) = 2496
M(v) = —1—-2¢



» Bound violation update assignment.

s>1,2>0

(y<1lve>22),v<-2Vev2>20),v<—-2Vu<-—1)

Model Equations Bounds
M(z) = 0 s = x4y s = 1
M(y) = 1496 U = r+2y r > 0
M(s) = 1 Vo= r—y y > 1
M(u) = 249
[(v)

Mv) = —1—-20



» Bound violation update dependent variables assignment.

s>1.x >0

(y<1lvev>=22),v<-=2Vev2>20),v<-2Vu<—1)

Model Equations Bounds
M(x) = 0 s = r+y s = 1
M(y) = 1409 U = r+2 r > 0
M(s) = 140 vo= xr—y y > 1
M(u) = 2420

M) = —1-34



» Theory propagation x > 0.1

(y<1lvev>2)(v<-2Vv2>0),(v<-2Vu<-1)

M(x)
M(y)
M(s)
M (u)
M(v)

Model

I+4+0

L4+0
2420
—1-9

U

Equations

Ty
xr—+ 2y

r—y

Bounds

s = 1

r = 0

Y

1

\/



» Theory propagation u > 2 ~» —u < —1

s>1.x >0

(y<1lvev>22),v<-=2Vev2>20),v<—-2Vu<—1)

Model Equations Bounds
M(x) = 0 s = x4y s > 1
M(y) = 1409 uw = r+2y r > 0
M(s) = 140 vo= x—Y y > 1
M(u) = 2420 w > 2

M) = —1-356



» Boolean propagation =y < 1 ~~» v >

s>1l.x>0

(y<1vv>2),(v<-2Vv>0),(v<-2Vu<-—1)

Equations
M (z)
r—+ 2y

Bounds

>

Y

r—y
M (u) 2+ 92)

—1-3

VooV

~2 f— (] f—t



» Theory propagation v > 2 ~» v < —2

(y <1V >2), (v

M(x)
M(y)
M(s)
M (u)
M(v)

Model

= 1+
= 1496
= 2420
= —1-4

(&

Equations
= x+2y

Bounds

s >

~
[V

VoV

o = o



» Conflict empty clause

(y<1vwev>2),(v

Model
M(z) = 0
M(y) = 14090
M(s) = 1490
M(u) = 242

M) = —1-3

(&

Equations
= x+2y

Bounds

~
VooV IV
R N e



» Backtracking

s> 1,2 >0

(y<1vev>2),(v<-2Vov>0),(v<-2Vu<-1)

Model Equations Bounds
M(x) = 0 s = x+y s > 1
M(y) = 1409 u = x+2 r > 0
M(s) = 140 vo= xr—1y
M(u) = 2420

M) = —1-34



» Assertingy < 1

s>1.x >0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 s = x4y s > 1
M(y) = 149 uw = r+2 r > 0
M(s) = 1490 vo= x—1Y
M(u) = 2429

M) = —1-356



» Asserting y < | assignment does not satisfy new bound.

s>1.x >0

(yi1\/2.?22),(U£—2\/1120):(U§_QVulﬁ_1)

Model Equations Bounds
M(x) = 0 s = x4y s > 1
My) = 1+0o u = r+2y r = 0
M(s) = 140 vo= x—Y y < 1



» Asserting y < 1 update assignment.

s>1l,2>20

(y<1vev>2),(v<—-2Vev>0),(v<-2Vu<-1)

Model Equations Bounds
M(xz) = 0 s = x+vy s > 1
My) = 1 u o= r+2y r > 0
M(s) = 1+0 vo= r—y y < 1



» Asserting y < | update dependent variables assignment.

s>1l.x>0

(yi1\/‘1?2Z)ﬂ(?JJ{_:—Q\/?JJEO)‘I(UE_Zvug_1)

Model Equations Bounds
M(zx) = 0 s = x4y s > 1
M(y) = 1 u = xr+2y r > 0
M(s) = 1 Vo= r—y y < 1
M(u) = 2



{

> —1

» Theory propagation s > 1,y <1~ v

Y

s>1.x>0

(yﬂ1\/1"32)*(1’5:_2\/1’20)*(U£—2Vu§—1)

Model Equations Bounds
M(z) = 0 r = s—y s > 1
M(y) = 1 u = s+uy r > 0
M(s) = 1 vo= §— 2y y < 1
M(u) = 2

M(v) = -1



» Theory propagation v > —1 ~» —v < —2

s>1, x>0

(y{_—: 1‘\/’022),@‘ i —2\.,/1120)’(-3_7& oIV U< _1)

Model Equations Bounds
M(x) = 0 r = s—y s > 1
M(y) = 1 u = s+uy xr = 0
M(s) = 1 v o= §—2uy y < 1
M(u) = 2 vo> —1

M(v) = -1



» Boolean propagation —v < —2~sv >0

s>1, x>0

(y{_i 1\/1}22},({1 < —QV’L-‘EU):('.{‘E —QVH-E _1}

Model Equations Bounds
M(z) = 0 r o= s—y s > 1
M(y) = 1 u = s+ r > 0
M(s) = 1 vo= s—2y y < 1
M(u) = 2 vo> —1

M(v) = -1



» Bound violation assignment does not satisfy new bound.

o = = D

s>1,2>0

(y <1Vwv> 2), (P < —2Vuv > [])ﬂ (-E_f < —2Vu< _1)

(&

Equations

= s5—v
= 54y
= §— 2y

Bounds

S

£X

[V

[V

1
0

Y

A

Y

1
()



» Bound violation pivot © and s (u is a dependent variable).

s>1.x>0

(y<1vev>2),(v<-2Vev>0),(v<-2Vu<-—1)

Model Equations Bounds
M(z) = 0 r o= s—y s > 1
M(y) = 1 u = s+uy r > 0
M(s) = 1 vo= §—2y y < 1
M(u) = 2 > ()



» Bound violation pivot 1 and s (1 is a dependent variable).

s>1,2>0

(y<1vVo>2),(v<—2Vo>0)(v<—

Equations

U+ 2y

TR S Sy W A

()



» Bound violation pivot u and s (1 is a dependent variable).

s>1,x>0

(y<1voev>2),(v<-2Vo>0),(v<—-2Vu<-—1)

o = = D

Equations
r = v+y
U = v+ 3y
s = v+2y

Bounds

¥
[V

R
[V

NS
|/

AYS

0



» Bound violation update assignment.

s>1,z >0

(y <lvwv > 2), (t‘ < —2Vuv > (}): (-g_r < —2Vu< _1)

Model Equations Bounds
M(z) = 0 r = v+y s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 1 s = v+2y y < 1
M(u) = 2 v > 0



» Bound violation update dependent variables assignment.

s>1,z >0

(y<1vVuv>2),(v<—2Vo>0),(v<-2Vu<—1)

Model Equations Bounds
M(z) = 1 r = v+y s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 2 s = v+ 2y y < 1
M(u) = 3 v o> 0



» Boolean propagation —v < =2~ u < —1

s> 1,z >0

(y<1Ve>2),(v<—2Ve20), (< -

Model Equations
M(z) = 1 r = vty
M(y) = 1 u = vt 3y
M(s) = 2 s = v+2y
M(u) = 3
M(v) = 0

Bounds

AVARRAVS

NI
S = | O =



» Bound violation assignment does not satisfy new bound.

s> 1.x>0

(y<1Ve>2),(0<-2Ve>0),@< -

Equations

v+ 3y

v+ 2y

L S e

Bounds
s > 1
r > 0
y < 1

0

(&

U

[V

| A\



» Bound violation pivot © and vy (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2Ve>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r = vty s > 1
M(y) = 1 u = v+ 3y r > 0
M(s) = 2 s = v+2y y < 1
M(u) = 3 v > 0
M(v) = 0 u < —1



» Bound violation pivot u and y (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2vVe>0),(v<-2Vu<-1)

Model

M (x)
M(y)
M (s)
M (u)
M (v)

Equations Bounds

r = v+y s = 1
y = %u—%t} r = 0
s = v+2y y < 1
v > 0
u < —1



» Bound violation pivot u and y (u is a dependent variable).

s>1,x>0

(y<1ve>2),(v<-2vVe>0),(v<-2Vu<-1)

Model

M(x) =
M(y) =
M(s) =
M(u) =
M(v) =

Equations Bounds
r = %’EL—I—%U s > 1
y = %u—%t} r = 0
s = 2u+3v y < 1

v > 0
u < —1



» Bound violation

Model
M(z) =
M(y) =
M(s) =
M(u) =
M(v) =

update assignment.

s>1,2>0

(y<1vev>2),(v<-2Vv20),(v< -2Vu< -1

Y

Equations

1 2
3“’ 31

1 1
— =3 — =7
315 31

_ 2 1
— 31L+3'v

Bounds
s = 1
r = 0
y < 1
v = 0
u < —1



» Bound violation update dependent variables assignment.

s>1,x>0

(y<1Ve>2),(v< -2V >0),(vs—

Model Equations
M(z) = —1 r o= lu+y
My) = —3 y = tu—1o
M(s) = _g s = %H—F%’U
M(u) = -1
M(v) = 0

Bounds
s = 1
r = 0
y < 1
vo> 0
u < —1



» Bound violations

s>1.2>0

(y<ive=2),(v<-2Ve20),(v<-2vVa<—l)

Model Equations Bounds
M(z) = — r o= fu+2v s > 1
M(y) = —3 Yy = suU—3U r > 0
M(s) = —% s = %u + %fu y < 1
M(u) = -1 v > 0

M(v) =

-
=
A
|
—



» Bound violations pivot s and v (s is a dependent variable).

s>1.2>0

(y<ive=2),(v<-2Ve20),(v<-2vVa<—l)

Model Equations Bounds
M(z) = — r o= fu+2v s = 1
M(y) = —3 Yy = fu—3U r > 0
M(s) = -2 s = 2u+3v y < 1
M(u) = -1 v > 0
M(v) = 0 u < —1



» Bound violations pivot s and v (s is a dependent variable).

s>1,2>0

(y<1Vu>2),(v<—-2Vo>0),(v<-2Vu<-1)

Model Equations Bounds
M(z) = —% T o= Fu+2v s > 1
M(y) = —3 Yy = zu—3U r > 0
M(s) = —3 vo= 35— 2u y < 1
M(u) = —1 v > 0
M(v) = 0 u < —1



» Bound violations pivot s and v (s is a dependent variable).

s>1,r >0

(y<ive=2),(v<-2Ve20),(v<-2Vu< 1)

Model Equations Bounds
M(z) = —3 r = 2s—u s > 1
M(y) = —3 y = —s+u r > 0
M(s) = —3 v = 3s5—2u y < 1
M(u) = -1 v > 0
M(v) = 0 u < —1



» Bound violations update assignment.

s>1,2>0

(y<ive=2),(v<-2Vez0),(v<-2va< 1)

Model Equations Bounds
M(z) = — r = 2s—u s > 1
M(y) = —3 y = —s+u r > 0
M(s) = 1 v = 35—2u y < 1
M(u) = -1 v = 0

M(v) = 0 u

A
|
—



» Bound violations update dependent variables assignment.

s>1, x>0

(y<1vev>2),(v<-2Vev>0),(v< —2Vu<—1)

Model
M(z) = 3
M(y) = -2
M(s) = 1
M(u) = -1

M(v) = 5

Y

Equations
= 25—u
= —S+u

= J3s —2u

Bounds
s > 1
r = 0
y < 1
v = 0
u < —1



Bounds

Equations

258 — U

Y,

—S T+ U

Y,

3s — 2u

AVARR VA

A

1
0
1
0

—1



Correctness

Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not
satisfy its bounds, then select the smallest non-basic in the
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of
configurations. Then, any infinite trace will have cycles.

Microsoft

Research



Data-structures

Array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)
Each variable x has a “set” (dynamic array) of occurrences:
(row_idx, pos_in_row, is_dead)
Each variable x has a “field” row[x]
row[x] is -1 if x is non basic
otherwise, row[x] contains the idx of the row containing x
Each variable x has “fields”: lower[x], upper[x], and value[x]

Microsoft

Research



Data-structures

rows: array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)

occs[x]: Each variable x has a “set” (dynamic array) of
occurrences:

(row_idx, pos_in_row, is_dead)
row[x]:

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x
Other “fields”: lower|[x], upper[x], and value[x]
atoms[x]: atoms (assigned/unassigned) that contains x

Microsoft

Research



Data-structures

51§a+b, SZEC—b
p;=a=<0,p,=1=<s;,p3=1<s5,
p,, P, were already assigned
a-S;+s,+cC= 0

b-c+s,=0

a<0,1<s,

M(a)=0 value[a] =0
M(b)=-1 value[a] =-1
M(c)=0  valuel[c]=0
M(s;) =1 value[s;]=1
M(s,) =1 wvalue[s,] =1

rows = [
[(11 d, O; t)l (_1; S1/ Or t)l (1) Sy, 1; t)) (11 C, Or t)]r
[(1rbr O) t)l (_1; C, 1; t)r (11 52, 21 t)] ]

occs[a] =[(0, O, f)]

occs[b] = [(1,0,)]

occs[c] =[(0,3,f), (1,1,f)]
occs[s,] = [(0,1,f)]

occs[s,] = [(0,0,t), (0,2,f), (1,2,f)]

row[a] =0, row[b] =1, row[c] =-1, ...
upper[a] =0, lower[s,] =1
atoms[a] = {p,}, atoms[s;] = {p,}, -..

Microsoft

Research



Combining Theories

In practice, we need a combination of theories.
b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
A theory is a set (potentially infinite) of first-order sentences.

Main questions:
Is the union of two theories T1 U T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for
T1UT2?

Microsoft

Research



Disjoint Theories

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0,-1,1,-2,2, ..., +, -, *, > <, 2, <
Array symbols: { read, write }

Microsoft

Research



Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), v;=c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

Microsoft

Research



Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), v;=c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

U

b+2=c,v,=3,v3;=c-2, v. =c-b+],
v, = write(a, b, v,), v, =read(v,, v;), —
Ve =f(v,), vo = f(ve), ve 2 v, Research



Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Microsoft

Research



Important Result

The union of two consistent, disjoint, stably infinite
theories is consistent.

Microsoft

Research



Convexity

A theory T is convex iff
for all finite sets S of literals and
foralla,=b,v..va, =b,
Simpliesa, =b,v..va, =b,
iff
Simplies a,=b, forsome 1<i<n

Microsoft

Research



Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.
formulas of the form s, #r;v ... vs #r vi=t

Linear rational arithmetic is convex.

Microsoft

Research



Convexity: Negative Results

Linear integer arithmetic is not convex
1<a<2,b=1,c=2 impliesa=bva=c

Nonlinear arithmetic

a’=1,b=1,c=-1limpliesa=bva=c

Theory of bit-vectors

Theory of arrays
c, = read(write(a, i, ¢,), j), c; = read(a, j)
impliesc,=c,vc,=¢

Microsoft

Research



Combination of non-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, a, a3) #f(0, 1, 0)

Microsoft

Research



Combination of non-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, a, a3) #f(0, 1, 0)

@ implies

a;z0va,#z1va;#0

Microsoft

Research



Nelson-Oppen Combination

Let 71 and 7 5 be consistent, stably infinite theories over disjoint
(countable) signhatures. Assume satisfiability of conjunction of
literals can decided in O(77(n)) and O(T5(n)) time respectively.
Then,

1. The combined theory 7 is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in 7 can be
decided in O(2"" x (Ty(n) + Ta(n)).

3. If 7, and 7 5 are convex, then so is 7 and satisfiability in 7 is
in O(n® x (T1(n) + Ta(n))).

Microsoft

Research



Nelson-Oppen Combination

The combination procedure:

Initial State: ¢ is a conjunction of literals over X1 U X.o.

Purification: Preserving satisfiability transform ¢ into ¢; A @9,
such that, ¢; € ;.

Interaction: Guess a partition of V(o) M V(¢9) into disjoint
subsets. Express it as conjunction of literals .
Example. The partition {2}, {29, 23}, {24} is represented
as Iy # To, T, F T4.T9 F Ty, To = I3.

Component Procedures : Use individual procedures to decide
whether ¢; A 1) is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Microsoft:

Research



Soundness

Each step is satisfiability preserving.
Say ¢ is satisfiable (in the combination).
» Purification: ¢ A @9 is satisfiable.
» Iteration: for some partition 10, &1 A &9 A 1) is satisfiable.
» Component procedures: ¢ A 1’ and ¢y A 1) are both
satisfiable in component theories.
» Therefore, if the procedure return unsatisfiable, then ¢ is

unsatisfiable.

Microsoft

Research



Completeness

Suppose the procedure returns satisfiable.

»

»

Let 1/ be the partition and A and 3 be models of 71 A 1 A
and TQ A E)g A ’l_*
The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

A| and | B| such that
h(A(z)) = B(x) for each shared variable.

Let /1 be a bijection between

Extend B to B by interpretations of symbols in X

B(f)(b1.....bn) = h(A(f)(R7 (b1). ..., A7 (bn)))

B is a model of:

Tl A\ (_;':-3'1 A\ TZ AN, 5 . A .ET___-']
oft’

Research



NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.

Interaction: Deduce an equality r — -
TiF (= 2=y

Update ¢9 := @9 A 2 = 1. And vice-versa. Repeat until no
further changes.

Component Procedures : Use individual procedures to decide
whether ¢, is satisfiable.

Remark: 7; F (&; = x = y) iff ¢; A\ 2 # y is not satisfiable in

TE' ) ‘osoft
Kesearch



NO deterministic procedure

Assume the theories are convex.
» Suppose ¢; is satisfiable.
» Let £ be the set of equalities 7; = 2, (J # k) such that,
T,V ¢i = vj = Tk
» By convexity, 7, I/ ¢; = \/ p x; = 4.
» 0; N \p xj # 11 is satisfiable.
» The proof now is identical to the nondeterministic case.

» Sharing equalities is sufficient, because a theory 7 can
assume that 2% = y” whenever 2 = v is not implied by 7 5
and vice versa.

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays

b+2-=c, v, = write(a, b, v,),
v, =3, v, =read(v,, vs)

V3 =C-2,

Ve = C-b+1

EUF

ve = f(v,),
v, = f(ve),
Vg % Vs

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2-=c, v, = write(a, b, v,), ve = f(v,),
v, =3, v, = read(v,, v;) v, = f(ve),
V3 =C-2, Ve # V7

Ve = C-b+1

Substituting ¢

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v;=b, Ve # V5

Ve =3

Propagating v;=Db

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, V), v, = f(vs),
v; = b, v3=b Vg # Vs,
Ve = 3 Vy =

Deducing v, = v,

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v; = b, V3 =h, Vg # V-,
Ve = 3 V=V, Vy =

Propagating v, = v,

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, = read(v,, v;), v, = f(ve),
v; = b, V3 =h, Vg # V-,
v, =3, Va=Vq V3 =D,
V, =V, V, =V,

Propagating v. = v,

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF

b+2=c, Vv, = write(a, b, Vl)' Vg = f(V4),

v, =3, v, =read(v,, v3), v, = f(vg),

vy =b, V3= b, Ve # V7,

Ve =3, Va=Va V3 =D,

Va=Vq Va=Vy
Vs =V,

Congruence: v, =V,

Microsoft

Research



NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(vy),
v, =3, v, =read(v,, v3), v, = f(ve),
v; = b, V3 =h, Vg % V5,
Ve =3, Vo=V V3 =D,
Va=Vq Va =V
Ve =V,

Unsatisfiable

Microsoft

Research



NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

0<a<1,0<b<1,0<c<],
f(a) # f(b),
f(a) # f(c),
f(b) = f(c)

Microso ft-

Research



Combining Procedures in Practice

Propagate all implied equalities.
» Deterministic Nelson-Oppen.
» Complete only for convex theories.

» It may be expensive for some theories.

Delayed Theory Combination.
» Nondeterministic Nelson-Oppen.

» Create set of interface equalities (r = ) between shared
variables.
» Use SAT solver to guess the partition.

» Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables. Microsoft

Research



Combining Procedures in Practice

Common to these methods is that they are pessimistic about which

equalities are propagated.
Model-based Theory Combination
» Optimistic approach.
» Use a candidate model M; for one of the theories 7 ; and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.
if M, =7,UT;U{u=uv} then propagate u = v .
» If not, use backtracking to fix the model.

» Itis cheaper to enumerate equalities that are implied in a

particular model than of all models.

Microsoft

Research



Example

r=fly—1),f(z) # f(y),0<2r<10<y<1
Purifying

Microso ft-

Research



Example

r=[f(2),flx)# f(y),0<r<1,0<y <1,z

y—1

Microso ft-

Research



TE Ta

Literals Eq. Classes | Model Literals Model
r=f()  |{2.f()} |E@) = 0<a<l|A@)=0
@) # f() | {v) E(y) = % 0<y<1|Ay) =0

{z} E(2) = *3 z=y—1]A(z) =-1

{fl)p | E(f) ={x1— x4

()} *9 = kg

*3 > ¥]

Assume X =y




Example

else — *4|

TE T4
Literals Eq. Classes Model Literals Model
v=f()  |[{z.u.f()} | B@)=x 0<a<1|Ad2)=0
fla) # fly) | 1z} E(y) = #1 0<y<1]A(y)=0
=1y (@), f(y)} | E(2) = *9 z=y—1]A(2)=-1
E(f)={n+ |z=y
9 T ¥,

Unsatisfiable




Example

TE T A
Literals Eq. Classes | Model Literals Model
r = f(2) {x, f(2)} | E(x) =% 0<z<1|Ax)=0
flz) # f(y) | {y} E(y) = 2 0<y<1]Aly =0
x# Y 12} E(z) = z=y—1]1A()=-1
()} E(f)z{*w—wa; x# Y
(W)} k9 = ks,
*3 = ¥,
else — g}

Backtrack, and assert = # .
7 4 model need to be fixed.



Example

TE Ta
Literals Eq. Classes | Model Literals Model
r=f(z) |H{zf(2)} | E®)=m O0<a<1|A(r)=0
flx) # f(y) | {y} E(y) = 2 0<y<1]|A(y =1
r#y {2} E(z) = *3 z2=y—1]|A(2)=0
{f(x)} E(f)={x1—x*1, |2#y
{f()} k9 = k5,
*3 — *1,
else — ¢}

Assume x =2




Tk T 4

Literals Eq. Classes | Model Literals Model
r= f(2) {x, 2, E(x) =% O0<aer<1]|A(x)=0
fla) # fy) | flx), f(2)} | E(y) =% 0<y<1|Ay)=1
r#Y {y} E(z) == z=y—1|A(2)=0
T =z ()} E(f)={x1—*. |z#y

ko = %3 r ==z

else — 4}

Satisfiable




Example

Tk T A

Literals Eq. Classes | Model Literals Model
r= f(2) {z, 2, E(x) =% O<az<1|A(x)=0
fla) # fly) | f(2), f(2)} | E(y) = *2 O0<y<1]Ay =1
T Fy {y} E(z) == z=y—1]A()=0
r ==z {f(y)} E(f)=1{x1—*1, |x#yY

%o b= *3, | X =2

else — 4}

Let /1 be the bijection between || and |A|.

h-:{?leD,?kQH 1,$31—>—1,$4i—?’2,...}



Example

TE Ta

Literals Model Literals Model

r = f(2) E(z) = % 0<z<1|A(x)=

flx) # f(y) | E(y) = *2 O0<y<1|Ay =1

r £y E(z) =% >=y—1|A(2)=0

r ==z E(f)={xs1—=*, |z2#Y A(f)={0~0
%o — %3 r==z 1— -1
else — *4} else — 2}

Extending A using 5.

/’1-:{1#:1?—}-0,#:2?—} ]_,3*:31—2*—1,:#:41—}2,...}



Model Mutation

Sometimes M () = M (y) by accident.

N
i=1

Model mutation: diversify the current model.



Freedom Intervals

Model mutation without pivoting
For each non basic variable x; compute [L;, U]

Each row containing x; enforces a limit on how much it can
be increase and/or decreased without violating the bounds
of the basic variable in the row.



Opportunistic Equality Propagation

We say a variable is fixed if the lower and upper bound are the same.
1<x<1

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma 2x, + x,,
we use M(P) to denote 2M(x,) + M(x,)



Opportunistic Equality Propagation

FixedEq

l; < a; < uy, Ej ST S U=

EqRow
v =a;+ P —
EqOffsetRows
ri =1+ P
—
Tj =Tk + Py
EqRows
r, =P+ P
—
Ty = P+ P

11::1-:-?
T = 1y
11::1-:}
QEij

if

- if

if

- if

JE' = U; = ﬂj — Uy

P is fixed, andM(F) = 0

|
|

P; and P are fixed, and
M(FPy) =M(Ps)

P; and P are fixed, and
M(FP1) = M(Ps)



Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?

Solution: add a predicate fS-bV(f[f) to the bit-vector theory (intuition:

is-bv(x) is true iff 2 is a bitvector).

The result of the bit-vector operation op(:zt, y) is not specified if

—is-bv(a) or —is-bv(y).

The new bit-vector theory is stably-infinite.



Reduction Functions

A reduction function reduces the satifiability problem for a
complex theory into the satisfiability problem of a simpler
theory.

Ackermannization is a reduction function.



Reduction Functions

Theory of commutative functions.
» Vay.fz.y) = fy, z)
» Reduction to EUF
» Forevery f(a,b)ing,do¢:=o A fla,b) = f(b,a).



