
Leonardo de Moura and Nikolaj Bjorner
Microsoft Research

A Satisfiability Checker

 with built-in support for useful theories

Z3 is a solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for non-commercial use.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml

http://research.microsoft.com/projects/z3
http://research.microsoft.com/projects/z3

http://research.microsoft.com/projects/z3

http://pex4fun.com/default.aspx?language=CSharp&sample=HashSetTestAddContains
http://research.microsoft.com/projects/z3

Program

Verification

Auditing

Type Safety

Property Execution Model

Driven Guided Based

Over-

Approximation

Under-

Approximation

Testing

Analysis

Synthesis

SAGE

HAVOC

SLAyer

BEK

Arrrays

Bit-

Vectors

Arith


Inst

-
elim

SLAyer

SAGE
Models

Simplifier

Proofs

Cores

Isabelle

HOL4, F*

API

Features

Logic is “The Calculus of Computer
Science” (Z. Manna).

High computational complexity

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic Array Theory

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic Array Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Substituting c by b+2

b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-b+1)

Simplifying

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

Applying array theory axiom

 forall a,i,v: read(write(a,i,v), i) = v

b + 2 = c and f(3) ≠ f(3)

Inconsistent

“Big” and hard formulas

Thousands of “small” and easy formulas

Short timeout (< 5secs)

“Big” and hard formulas

Thousands of “small” and easy formulas

Short timeout (< 5secs)

VCC HAVOC

SAGE

Current SMT solvers provide

a combination

of different engines

DPLL

Simplex

Grobner
Basis

-
elimination

Superposition

Simplification

Congruence
Closure

KB
Completion

SMT

…

Combining Engines

Unfairness

Quadratic behavior

Quantifiers

Linear Integer Arithmetic  Linear Real Arithmetic

SMT  SAT

Arrays  Uninterpreted Functions

Linear Integer Arithmetic  Linear Real Arithmetic

SMT  SAT

Arrays  Uninterpreted Functions

If the relaxation is unsat,

then the original is also unsat

Linear Integer Arithmetic  Linear Real Arithmetic

Refinement: cuts

SMT  SAT

Refinement: theory lemma

Arrays  Uninterpreted Functions

Refinement: array axiom

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

Basic Idea
x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4 x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA

Theory conflict

Model Based Theory Combination

Model Based Quantifier Instantiation

Simplex (Linear Real Arithmetic)

Boolector: Extensional Array Theory

CutSat (Linear Integer Arithmetic)

Delay “Expensive” Engines

Main problem: unfairness

Delay “Expensive” Engines

Main problem: unfairness

Solutions:

Give a budget to each engine

A single engine should not take control of the
whole solver

Allow user to specify their own strategies

Problem 1 Problem 2

x : bit-vector[2]

y : bit-vector[2]

x + y = 2

x : bit-vector[2]

y : bit-vector[2]

x + y = 2

x0 : bool

x1 : bool

y0 : bool

y1 : bool

not (x0 xor y0)

x1 xor y1 xor (x0 and y0)

Eliminate uninterpreted function symbols

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

Eliminate uninterpreted function symbols

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

kf(a) ≠ kf(b),

b = kf(c),

a = kf(d),

c = d

Fresh

constants

Eliminate uninterpreted function symbols

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

kf(a) ≠ kf(b),

b = kf(c),

a = kf(d),

c = d,

a = b  kf(a) = kf(b),

a = c  kf(a) = kf(c),

…

c = d  kf(c) = kf(d)

Commutative Functions to Uninterpreted Functions

f(a,b) ≠ c,

c = f(d, a),

b = d

Commutative Functions to Uninterpreted Functions

f(a,b) ≠ c,

c = f(d, a),

b = d

f(a,b) ≠ c,

c = f(d, a),

b = d,

f(a,b) = f(b, a),

f(d, a) = f(a, d)

Partial
Reduction

Solve
Check

Model

Partial
Reduction

Solve
Check

Model

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

Partial
Reduction

Solve
Check

Model

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

kf(a) ≠ kf(b),

b = kf(c),

a = kf(d),

c = d,

Partial
Reduction

Solve
Check

Model

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

kf(a) ≠ kf(b),

b = kf(c),

a = kf(d),

c = d,

kf(a) = 0

kf(b) = 1

b = 2

kf(c) = 2

a = 3

kf(d) = 3

c = 4

d = 4

Partial
Reduction

Solve
Check

Model

f(a) ≠ f(b),

b = f(c),

a = f(d),

c = d

kf(a) ≠ kf(b),

b = kf(c),

a = kf(d),

c = d,

kf(a) = 0

kf(b) = 1

b = 2

kf(c) = 2

a = 3

kf(d) = 3

c = 4

d = 4

Expand

c = d  kf(c) = kf(d)

Partial
Reduction

Solve

Check

Model

Patch
Model

Reduce Locally, but Expand Globally

due to sharing

Reduce Locally, but Expand Globally

due to sharing

if(c, t, 0) = 2  c and (t = 2)

Reduce Locally, but Expand Globally

due to sharing

if(c, if(d, 2, t), 0) = 2  c and (d or t = 2)

if(c, if(d, 2, t), 0) = 0  (not c) or ((not d) and t = 0)

Reduce Locally, but Expand Globally

Solutions:

1. Apply only to unshared terms

2. Use a budget

3. k-level window

Annotated
Program

Verification
Condition F

pre/post conditions

invariants

and other annotations

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
 IsHeap(h)  o ≠ null  read(h, o, alloc) = t
 
 read(h,o, f) = null  read(h, read(h,o,f),alloc) = t

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
 o ≠ null  read(h0, o, alloc) = t 
 read(h1,o,f) = read(h0,o,f)  (o,f)  M

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

 We want to find bugs!

There is no sound and refutationally complete

procedure for

linear arithmetic + unintepreted function symbols

Heuristic quantifier instantiation

Quantifier Elimination

Complete quantifier instantiation

Model based quantifier instantiation

Superposition Calculus

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

Trigger

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come

from the partial model M

Integrates smoothly with DPLL.

Software verification problems are big & shallow.

Decides useful theories:

Arrays

Partial orders

…

E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval

E-matching code trees

Incremental E-Matching Inverted path index

Trigger:

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several
instructions.

Combine code sequences
in a code tree

Limitations

E-matching needs ground seeds.

x: p(x),

x: not p(x)

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b

Trigger is too

restrictive

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b

More “liberal”

trigger

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b

a=b

Limitations

E-matching needs ground seeds.

Bad user provided triggers.

It is not refutationally complete.

False positives

Universal variables only occur as arguments of
uninterpreted symbols.

x: f(x) + 1 > g(f(x))

x,y: f(x+y) = f(x) + f(y)

Essentially Uninterpreted Fragment.

Almost Uninterpreted Fragment.

Relax restriction on the occurrence of universal
variables.

not (x  y)

not (x  t)

f(x + c)

x =c t

…

If F is in the almost uninterpreted fragment

Convert F into an equisatisfiable (modulo T) set of
ground clauses F*

F* may be infinite

It is a decision procedure if F* is finite

Subsumes EPR, Array Property Fragment,
Stratified Vocabularies for Many Sorted Logic

F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i  Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }

F induces a system F of set constraints

Sk,i set of ground instances for variable xi in clause Ck

Af,j set of ground j-th arguments of f

j-th argument of f in clause Ck Set Constraint

a ground term t t  Af,j

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j

xi Sk,i  Af,j

F* is generated using the least solution of F

F* = { Ck [Sk,1,…,Sk,n] | Ck  F }

We assume the

least solution is

not empty

g(x1, x2) = 0  h(x2) = 0,

g(f(x1),b) + 1 < f(x1),

h(b) = 1, f(a) = 0

S1,1= Ag,1 = { f(a) }

S1,2= Ag,2 = Ah,1 = {b}

S2,1= Af,1= {a}

S1,1= Ag,1, S1,2= Ag,2, S1,2= Ah,1

S2,1= Af,1, f(S2,1)  Ag,1, b  Ag,2

b  Ah,1, a  Af,1

Least solution

F F

g(f(a), b) = 0  h(b) = 0,

g(f(a),b) + 1 < f(a),

h(b) = 1, f(a) = 0

F*

Complete Instantiation – CAV
2009

M

a  2, b  2, c  3
f(x)  2
h(x)  if(x=2, 0, 1)
g(x,y)  if(x=0y=2,-1, 0)

x1, x2: if(x1=0x2=2,-1,0) = 0  if(x2=2,0,1) = 0 is valid

Does M satisfies?
x1, x2 : g(x1, x2) = 0  h(x2) = 0

x1, x2: if(x1=0x2=2,-1,0)  0  if(x2=2,0,1)  0 is unsat

if(s1=0s2=2,-1,0)  0  if(s2=2,0,1)  0 is unsat

Suppose M does not satisfy a clause C[x] in F.

Complete Instantiation – CAV
2009

Add an instance C[t] which “blocks” this spurious model.
Issue: how to find t?

Use a clause C[t] that is in F*.

Linear Real/Integer Arithmetic

Recursive Datatypes

(some support for) Non-Linear Arithmetic

SMT is hot at Microsoft

Z3 is available for non-commercial use

Main challenges:

Combining Engines

Quantifiers

95% transpiration + 5% inspiration

Future: “Opening the Black Box”

