SMT: Techniques, Hurdles, Applications SAT/SMT SummerSchool, MIT, 2011

Leonardo de Moura and Nikolaj Bjorner Microsoft Research

Satisfiability Modulo Theories (SMT)

A Satisfiability Checker with built-in support for useful theories

SMT@Microsoft: Solver

- Z3 is a solver developed at Microsoft Research.
e Development/Research driven by internal customers.
- Free for non-commercial use.
e Interfaces:

e http://research.microsoft.com/projects/z3

Some Microsoft Tools using Z3

Ask Ag!!

What does this dot graph look like? Ask Agl!

This tool requires a browser with Scalable Vector Graphics (SVG) support.
explore projects live permalink developer about
© 2010 Microsoft Corporation - Research in Software Engineering (RiSE) - Terms of Use - Privacy
Microsoft Research RiSE
http://research.microsoft.com/projects/z3

Some Microsoft Tools using Z3

Property Driven

cc

F7 is created to be a simple to use yet ideal Filesize: 3.2 MB typechecker for the F\# programming language. F7 supports static checking of properties expressed with \sum Download now refinement types. Screenshot

QF7 1.0 』 simple to use \boxtimes to use © Simple To programming language
 HAVOC Type Safety SLAyer

Execution
Guided

Over-
Approximation

Model
Based

Testing
M3

Analysis

FORMULA
 Modeling Foundations.

Synthesis

Microsoft
Research

Feature Usage

Features

API

Simplifier

Cores

Models

Proof's

$\longrightarrow \begin{aligned} & \text { Isabelle } \\ & \text { HOL4, } \mathrm{F}^{*}\end{aligned}$
Microsoft ${ }^{*}$
Research

Symbolic Reasoning

e Logic is "The Calculus of Computer Science" (Z. Manna).

Undecidable ($\mathrm{FOL}+\mathrm{L} A$)

- High computational complexity

Microsoft ${ }^{*}$
Research

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{ead}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(r e a d(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Uninterpreted Functions

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Substituting c by b+2

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), b+2-2)) \neq f(b+2-b+1)
$$

Simplifying

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), b)) \neq f(3)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), b)) \neq f(3)
$$

Applying array theory axiom forall $a, i, v:$ read(write $(a, i, v), i)=v$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(3) \neq f(3)
$$

Inconsistent

Application Scenarios

"Big" and hard formulas

Thousands of "small" and easy formulas

Short timeout (< 5secs)

Application Scenarios

"Big" and hard formulas

Spec\#

Programming System

HAVOC

Short timeout (< 5secs)

SAGE

Combining Engines

Current SMT solvers provide a combination of different engines

Combining Engines

Main Hurdles in Z3 2.x

Combining Engines

Unfairness

Quadratic behavior

Quantifiers

Abstraction/Relaxation

Linear Integer Arithmetic \rightarrow Linear Real Arithmetic

SMT \rightarrow SAT

Arrays $\boldsymbol{\rightarrow}$ Uninterpreted Functions

Abstraction/Relaxation

Linear Integer Arithmetic \rightarrow Linear Real Arithmetic

SMT \rightarrow SAT

Arrays \rightarrow Uninterpreted Functions

If the relaxation is unsat, then the original is also unsat

Abstraction/Relaxation

Linear Integer Arithmetic $\boldsymbol{\rightarrow}$ Linear Real Arithmetic Refinement: cuts

SMT \rightarrow SAT
Refinement: theory lemma

Arrays \rightarrow Uninterpreted Functions
Refinement: array axiom

SMT \rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) \quad p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)
$$

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

Assignment
Solver

$$
\begin{aligned}
& \text { ASSIgnment } \\
& p_{1}, p_{2}, \neg p_{3}, p_{4} \square \begin{array}{l}
x \geq 0, y=x+1 \\
\neg(y>2), y<1
\end{array}
\end{aligned}
$$

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT
Assignment
Solver

Unsatisfiable
$x \geq 0, y=x+1, y<1$
Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SMT \Rightarrow SAT Abstraction/Refinement

New Lemma

$\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}$$\quad$| Unsatisfiable |
| :--- |
| $x \geq 0, y=x+1, y<1$ |

Theory Solver

Model Guided Approaches

Model Based Theory Combination

Model Based Quantifier Instantiation

Simplex (Linear Real Arithmetic)

Boolector: Extensional Array Theory

CutSat (Linear Integer Arithmetic)

Model Based Theory Combination

$$
x=f(y-1), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1
$$

Purifying

Model Based Theory Combination

$$
x=f(z), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1, z=y-1
$$

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$\begin{aligned} & x=f(z) \\ & f(x) \neq f(y) \end{aligned}$	$\begin{aligned} & \{x, f(z)\} \\ & \{y\} \\ & \{z\} \\ & \{f(x)\} \\ & \{f(y)\} \end{aligned}$	$\begin{aligned} E(x)= & *_{1} \\ E(y)= & *_{2} \\ E(z)= & *_{3} \\ E(f)= & \left\{*_{1} \mapsto *_{4},\right. \\ & *_{2} \mapsto *_{5}, \\ & *_{3} \mapsto *_{1}, \\ & \left.e / s e \mapsto *_{6}\right\} \end{aligned}$	$\begin{aligned} & 0 \leq x \leq 1 \\ & 0 \leq y \leq 1 \\ & z=y-1 \end{aligned}$	$\begin{aligned} & A(x)=0 \\ & A(y)=0 \\ & A(z)=-1 \end{aligned}$

Assume $x=y$

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, y, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{z\}$	$E(y)=*_{1}$	$0 \leq y \leq 1$	$A(y)=0$
$x=y$	$\{f(x), f(y)\}$	$E(z)=*_{2}$	$z=y-1$	$A(z)=-1$
		$E(f)=\left\{*_{1} \mapsto *_{3}\right.$,	$x=y$	
		$*_{2} \mapsto *_{1}$,		
		else $\left.\mapsto *_{4}\right\}$		

Unsatisfiable

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{y\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=0$
$x \neq y$	$\{z\}$	$E(z)=*_{3}$	$z=y-1$	$A(z)=-1$
	$\{f(x)\}$	$E(f)=\left\{*_{1} \mapsto *_{4}\right.$,	$x \neq y$	
	$\{f(y)\}$	$*_{2} \mapsto *_{5}$,		
		$*_{3} \mapsto *_{1}$,		
		else $\left.\mapsto *_{6}\right\}$		

Backtrack, and assert $x \neq y$.
\mathcal{T}_{A} model need to be fixed.

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{y\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{z\}$	$E(z)=*_{3}$	$z=y-1$	$A(z)=0$
	$\{f(x)\}$	$E(f)=\left\{*_{1} \mapsto *_{4}\right.$,	$x \neq y$	
	$\{f(y)\}$	$*_{2} \mapsto *_{5}$,		
		$*_{3} \mapsto *_{1}$,		
		else $\left.\mapsto *_{6}\right\}$		

Assume $x=z$

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		e/se $\left.\mapsto *_{4}\right\}$		

Satisfiable

Model Based Theory Combination

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		else $\left.\mapsto *_{4}\right\}$		

Let h be the bijection between $|E|$ and $|A|$.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Model Based Theory Combination

\mathcal{T}_{E}		\mathcal{T}_{A}	
Literals	Model	Literals	Model
$x=f(z)$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	$A(f)=\{0 \mapsto 0$
	$*_{2} \mapsto *_{3}$,	$x=z$	$1 \mapsto-1$
	else $\left.\mapsto *_{4}\right\}$		else $\mapsto 2\}$

Extending A using h.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Laziness

Delay "Expensive" Engines

Main problem: unfairness

Laziness

Delay "Expensive" Engines

Main problem: unfairness
Solutions:
Give a budget to each engine
A single engine should not take control of the whole solver
Allow user to specify their own strategies

Reduction

Problem 2

Reduction: Bit-Vector to SAT

x : bit-vector[2]
y : bit-vector[2]
$x+y=2$

Reduction: Bit-Vector to SAT

x : bit-vector[2]
y : bit-vector[2]
$x+y=2$

x_{0} : bool
x_{1} : bool
y_{0} : bool
y_{1} : bool
not (x_{0} xor y_{0})
$\mathrm{x}_{1} \operatorname{xor} \mathrm{y}_{1} \operatorname{xor}\left(\mathrm{x}_{0}\right.$ and $\left.\mathrm{y}_{0}\right)$

Reduction: Ackermann

Eliminate uninterpreted function symbols

$$
\begin{aligned}
& f(a) \neq f(b), \\
& b=f(c), \\
& a=f(d), \\
& c=d
\end{aligned}
$$

Reduction: Ackermann

Eliminate uninterpreted function symbols

$$
\begin{aligned}
& f(a) \neq f(b), \\
& b=f(c), \\
& a=f(d), \\
& c=d
\end{aligned}
$$

$$
\begin{aligned}
& k_{f(a)} \neq k_{f(b)}, \\
& b=k_{f(c)}, \\
& a=k_{f(d)}, \\
& c=d
\end{aligned}
$$

Fresh constants

Reduction: Ackermann

Eliminate uninterpreted function symbols

$$
\begin{aligned}
& f(a) \neq f(b), \\
& b=f(c), \\
& a=f(d), \\
& c=d
\end{aligned}
$$

$$
\begin{aligned}
& k_{f(a)} \neq k_{f(b)} \\
& b=k_{f(c)} \\
& a=k_{f(d),} \\
& c=d, \\
& a=b \Rightarrow k_{f(a)}=k_{f(b)}, \\
& a=c \Rightarrow k_{f(a)}=k_{f(c),} \\
& \ldots \\
& c=d \Rightarrow k_{f(c)}=k_{f(d)}
\end{aligned}
$$

Reduction: Commutative Functions

Commutative Functions to Uninterpreted Functions

$$
\begin{aligned}
& f(a, b) \neq c, \\
& c=f(d, a), \\
& b=d
\end{aligned}
$$

Reduction: Commutative Functions

Commutative Functions to Uninterpreted Functions

$$
\begin{aligned}
& f(a, b) \neq c, \\
& c=f(d, a), \\
& b=d
\end{aligned}
$$

$$
\begin{aligned}
& f(a, b) \neq c, \\
& c=f(d, a), \\
& b=d, \\
& f(a, b)=f(b, a), \\
& f(d, a)=f(a, d)
\end{aligned}
$$

Lazy Reduction: Model guided + Reduction

Lazy Reduction: Model guided + Reduction

Lazy Reduction: Model guided + Reduction

Lazy Reduction: Model guided + Reduction

Lazy Reduction: Model guided + Reduction

Lazy Reduction: Variation

Simplification Blowup

Reduce Locally, but Expand Globally due to sharing

Simplification Blowup

Reduce Locally, but Expand Globally due to sharing

if $(\mathrm{c}, \mathrm{t}, \mathrm{O})=2 \quad \rightarrow \quad \mathrm{c}$ and $(\mathrm{t}=2)$

Simplification Blowup

Reduce Locally, but Expand Globally due to sharing

if(c, if(d, 2, t), 0) $=2 \rightarrow \mathrm{c}$ and (d or $\mathrm{t}=2$)
if(c, if(d, $2, t), 0)=0 \rightarrow($ not $c)$ or $(($ not $d)$ and $t=0)$

Simplification Blowup

Reduce Locally, but Expand Globally Solutions:

1. Apply only to unshared terms
2. Use a budget
3. k-level window

Application: Verifying Compilers

Main Challenge

© Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
$\forall \mathrm{h}, \mathrm{o}$, f:
IsHeap(h) $\wedge 0 \neq$ null \wedge read(h, o, alloc) $=t$
$\operatorname{read}(h, o, f)=\operatorname{null} \vee \operatorname{read}(h, \operatorname{read}(h, o, f), a l l o c)=t$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
$\forall \mathrm{o}$, f:
$\mathrm{o} \neq$ null \wedge read $\left(\mathrm{h}_{0}, \mathrm{o}\right.$, alloc $)=\mathrm{t} \Rightarrow$
$\operatorname{read}\left(\mathrm{h}_{1}, \mathrm{o}, \mathrm{f}\right)=\operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}, \mathrm{f}\right) \vee(\mathrm{o}, \mathrm{f}) \in \mathrm{M}$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
e User provided assertions
$\forall \mathrm{i}, \mathrm{j}: \mathrm{i} \leq \mathrm{j} \Rightarrow \operatorname{read}(\mathrm{a}, \mathrm{i}) \leq \operatorname{read}(\mathrm{b}, \mathrm{j})$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
© User provided assertions
- Theories
$\forall \mathrm{x}: \mathrm{p}(\mathrm{x}, \mathrm{x})$
$\forall \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{p}(\mathrm{x}, \mathrm{y}), \mathrm{p}(\mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{p}(\mathrm{x}, \mathrm{z})$
$\forall x, y: p(x, y), p(y, x) \Rightarrow x=y$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
© User provided assertions
- Theories
e Solver must be fast in satisfiable instances.

We want to find bugs!

Non ground clauses + interpreted symbols

There is no sound and refutationally complete procedure for
linear arithmetic + unintepreted function symbols

Quantifiers: Approaches used in Z3

Heuristic quantifier instantiation

Quantifier Elimination

Complete quantifier instantiation

Model based quantifier instantiation

Superposition Calculus

E-matching \& Quantifier instantiation

© SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).
e Example:
$\forall x: f(g(x))=x\{f(g(x))\}$
$a=g(b)$,
$b=c$,
$f(a) \neq c$

Trigger

E-matching \& Quantifier instantiation

© SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).
e Example:
$\begin{aligned} & \forall x: f(g(x))=x\{f(g(x))\} \\ & a=g(b), \\ & b=c,\end{aligned} \quad \mathrm{x}=\mathrm{b}(\mathrm{g}(\mathrm{b}))=\mathrm{b}$
$f(a) \neq c$
Equalities and ground terms come from the partial model M

E-matching: why do we use it?

- Integrates smoothly with DPLL.
- Software verification problems are big \& shallow.
e Decides useful theories:
- Arrays
- Partial orders
© ...

Efficient E-matching

e E-matching is NP-Hard.

- In practice

Problem
Indexing Technique
Fast retrieval
E-matching code trees
Incremental E-Matching Inverted path index

E-matching code trees

Trigger:
 ```\[f(x 1, g(x 1, a), h(x 2), b) \]```

Similar triggers share several instructions.

Combine code sequences in a code tree

Instructions:

1. init(f, 2$)$
2. $\operatorname{check}(r 4, b, 3)$
3. bind($r 2, g, r 5,4)$
4. compare(r1, r5, 5)
5. check($\mathrm{r} 6, \mathrm{a}, 6$)
6. \quad bind $(r 3, h, r 7,7)$
7. yield(r1, r7)

E-matching:

e E-matching needs ground seeds.
$\forall \mathrm{x}$: $\mathrm{p}(\mathrm{x})$,
$\forall x$: not $p(x)$

E-matching:

e E-matching needs ground seeds.

- Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{f(g(x))\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b
\end{aligned}
$$

Trigger is too restrictive

E-matching:

e E-matching needs ground seeds.
e Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{g(x)\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b
\end{aligned}
$$

More "liberal" trigger

E-matching:

e E-matching needs ground seeds.

- Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{g(x)\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b, \\
& f(g(a))=a, \\
& f(g(b))=b
\end{aligned}
$$

$$
a=b
$$

E-matching:

e E-matching needs ground seeds.

- Bad user provided triggers.
e It is not refutationally complete.

Complete Quantifier Instantiation

Essentially Uninterpreted Fragment.

Universal variables only occur as arguments of uninterpreted symbols.

$$
\begin{gathered}
\forall x: f(x)+1>g(f(x)) \\
\forall x, y: f(x+y)=f(x)+f(y)
\end{gathered}
$$

Complete Quantifier Instantiation

Almost Uninterpreted Fragment.

Relax restriction on the occurrence of universal variables.

$$
\begin{gathered}
\text { not }(x \leq y) \\
\operatorname{not}(x \leq t) \\
f(x+c) \\
x={ }_{c} t
\end{gathered}
$$

Complete Quantifier instantiation

- If F is in the almost uninterpreted fragment
e Convert F into an equisatisfiable (modulo T) set of ground clauses F^{*}
- F^{*} may be infinite
- It is a decision procedure if F^{*} is finite
- Subsumes EPR, Array Property Fragment, Stratified Vocabularies for Many Sorted Logic

Generating F^{*} (Iortiesselizi:uriteprededifenneri)

- F induces a system Δ_{F} of set constraints
- $S_{k, i}$ set of ground instances for variable x_{i} in clause C_{k}
- $A_{f, j}$ set of ground j-th arguments of f

j-th argument of f in clause C_{k}	Set Constraint
a ground term t	$t \in A_{f, j}$
$t\left[x_{1}, \ldots, x_{n}\right]$	$t\left[S_{k, 1}, \ldots, S_{k, n}\right] \in A_{f, j}$
x_{i}	$S_{k, i} \in A_{f, j}$

$\ominus F^{*}$ is generated using the least solution of Δ_{F}
ө $F^{*}=\left\{C_{k}\left[S_{k, 1}, \ldots, S_{k, n}\right] \mid C_{k} \in F\right\}$

e F induces a system Δ_{F} of set cons ${ }^{\dagger}$

- $S_{k, i}$ set of ground instances for va
- $A_{f, j}$ set of ground j-th arguments

We assume the least solution is not empty

j-th argument of f in clause C_{k}	Set Con
a ground term t	$t \in A_{f, j}$
$t\left[x_{1}, \ldots, x_{n}\right]$	$t\left[S_{k, 1}, \ldots\right.$
x_{i}	$S_{k, i} \in \int_{f, j}$

$\ominus F^{*}$ is generated using the least solution of Δ_{F}

- $F^{*}=\left\{C_{k}\left[S_{k, 1}, \ldots, S_{k, n}\right] \mid C_{k} \in F\right\}$

Generating F*: Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \text {, } \\
& g\left(f\left(x_{1}\right), b\right)+1<f\left(x_{1}\right) \text {, } \\
& h(b)=1, f(a)=0 \\
& \text { Least solution } \\
& \Delta_{F} \\
& \mathrm{~S}_{1,1}=\mathrm{A}_{\mathrm{g}, 1} \mathrm{~S}_{1,2}=\mathrm{A}_{\mathrm{g}, 2}, \mathrm{~S}_{1,2}=\mathrm{A}_{\mathrm{h}, 1} \\
& \mathrm{~S}_{2,1}=\mathrm{A}_{\mathrm{f}, 1}, \mathrm{f}\left(\mathrm{~S}_{2,1}\right) \subseteq \mathrm{A}_{\mathrm{g}, 1}, \mathrm{~b} \in \mathrm{~A}_{\mathrm{g}, 2} \\
& b \in A_{h, 1}, a \in A_{f, 1} \\
& \text { F* } \\
& \mathrm{S}_{1,1}=\mathrm{A}_{\mathrm{g}, 1}=\{\mathrm{f}(\mathrm{a})\} \\
& \mathrm{S}_{1,2}=\mathrm{A}_{\mathrm{g}, 2}=\mathrm{A}_{\mathrm{h}, 1}=\{\mathrm{b}\} \\
& \mathrm{S}_{2,1}=\mathrm{A}_{\mathrm{f}, 1}=\{\mathrm{a}\} \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), b)+1<f(a) \text {, } \\
& h(b)=1, f(a)=0
\end{aligned}
$$

Model Checking Quantifiers

M

$$
\begin{aligned}
& a \rightarrow 2, b \rightarrow 2, c \rightarrow 3 \\
& f(x) \rightarrow 2 \\
& h(x) \rightarrow i f(x=2,0,1) \\
& g(x, y) \rightarrow \text { if(} x=0 \wedge y=2,-1,0)
\end{aligned}
$$

Does M satisfies?

$\forall \mathrm{x}_{1}, \mathrm{x}_{2}: \mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0 \vee \mathrm{~h}\left(\mathrm{x}_{2}\right)=0$
$\forall x_{1}, x_{2}: \operatorname{if}\left(x_{1}=0 \wedge x_{2}=2,-1,0\right)=0 \vee \operatorname{if}\left(x_{2}=2,0,1\right)=0$ is valid
$\exists x_{1}, x_{2}:$ if $\left(x_{1}=0 \wedge x_{2}=2,-1,0\right) \neq 0 \wedge \mathrm{if}\left(x_{2}=2,0,1\right) \neq 0$ is unsat

$$
\operatorname{if}\left(s_{1}=0 \wedge s_{2}=2,-1,0\right) \neq 0 \wedge \operatorname{if}\left(s_{2}=2,0,1\right) \neq 0 \quad \text { is unsat }
$$

Model-based Quantifier Instantiation

Suppose M does not satisfy a clause C $[x]$ in F.
Add an instance C[t] which "blocks" this spurious model. Issue: how to find t ?

Use a clause C[t] that is in F^{*}.

Quantifier Elimination

e Linear Real/Integer Arithmetic

- Recursive Datatypes
e (some support for) Non-Linear Arithmetic

Model Base Quantifier Instantiation

 Demo
Conclusion

e SMT is hot at Microsoft
Ө Z3 is available for non-commercial use

- Main challenges:
e Combining Engines
e Quantifiers
e 95\% transpiration $+5 \%$ inspiration
ө Future: "Opening the Black Box"

