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Features 



Logic is “The Calculus of Computer 
Science” (Z. Manna). 

High computational complexity 



 

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1) 



 

Arithmetic 

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1) 



 

Arithmetic Array Theory 

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1) 



 

Arithmetic Array Theory 
Uninterpreted 

Functions 

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1) 



 

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1) 

 

Substituting c by b+2 



 

b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-b+1) 

 

Simplifying 



 

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3) 

 



 

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3) 

 

Applying array theory axiom 

 forall a,i,v: read(write(a,i,v), i) = v 

 



 

b + 2 = c and f(3) ≠ f(3) 

 

Inconsistent 

 



“Big” and hard formulas 

 

 

 

Thousands of “small” and easy formulas 

 

 

 

Short timeout (< 5secs) 



“Big” and hard formulas 

 

 

 

Thousands of “small” and easy formulas 

 

 

 

Short timeout (< 5secs) 

VCC HAVOC 

SAGE 



Current SMT solvers provide   

a combination 

of different engines 



DPLL 

Simplex 

Grobner 
Basis 

-
elimination 

Superposition 

Simplification 

Congruence 
Closure 

KB 
Completion 

SMT 

… 



Combining Engines 

 

Unfairness 

 

Quadratic behavior  

 

Quantifiers 



Linear Integer Arithmetic  Linear Real Arithmetic 

 

SMT  SAT 

 

Arrays  Uninterpreted Functions 



Linear Integer Arithmetic  Linear Real Arithmetic 

 

SMT  SAT 

 

Arrays  Uninterpreted Functions 

If the relaxation is unsat,  

then the original is also unsat 



Linear Integer Arithmetic  Linear Real Arithmetic 

Refinement: cuts 

 

SMT  SAT 

Refinement: theory lemma 

 

Arrays  Uninterpreted Functions 

Refinement: array axiom 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 
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SAT  
Solver 
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Assignment 
p1,  p2, p3, p4 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 

SAT  
Solver 

Assignment 
p1,  p2, p3, p4 x  0, y = x + 1,  

(y > 2), y < 1 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 
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Theory 
Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 



 

Basic Idea 
x  0, y = x + 1, (y > 2  y < 1)  

p1,  p2, (p3  p4) 

Abstract (aka “naming” atoms) 

p1  (x  0), p2  (y = x + 1),  

p3  (y > 2), p4  (y < 1) 

SAT  
Solver 

Assignment 
p1,  p2, p3, p4 x  0, y = x + 1,  

(y > 2), y < 1 

Theory 
Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 

New Lemma 

p1p2p4 

 

 



 

Theory 
Solver 

Unsatisfiable 

x  0, y = x + 1, y < 1 

New Lemma 

p1p2p4 

 

 
AKA 

Theory conflict 



Model Based Theory Combination 

 

Model Based Quantifier Instantiation 

 

Simplex (Linear Real Arithmetic) 

 

Boolector: Extensional Array Theory 

 

CutSat (Linear Integer Arithmetic) 





















Delay “Expensive” Engines 

 

Main problem: unfairness 



Delay “Expensive” Engines 

 

Main problem: unfairness 

Solutions: 

Give a budget to each engine 

A single engine should not take control of the 
whole solver 

Allow user to specify their own strategies 



Problem 1 Problem 2 



x : bit-vector[2] 

y : bit-vector[2] 

x + y = 2 



x : bit-vector[2] 

y : bit-vector[2] 

x + y = 2 

x0 : bool 

x1 : bool 

y0 : bool 

y1 : bool   

not (x0 xor y0) 

x1 xor y1 xor (x0 and y0) 



Eliminate uninterpreted function symbols  

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   



Eliminate uninterpreted function symbols  

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   

kf(a) ≠ kf(b), 

b = kf(c),  

a = kf(d),   

c = d   

Fresh 

constants 



Eliminate uninterpreted function symbols  

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   

kf(a) ≠ kf(b), 

b = kf(c),  

a = kf(d),   

c = d,   

a = b  kf(a) = kf(b), 

a = c  kf(a) = kf(c),  

… 

c = d  kf(c) = kf(d) 



Commutative Functions to Uninterpreted Functions    

f(a,b) ≠ c, 

c = f(d, a), 

b = d 



Commutative Functions to Uninterpreted Functions    

f(a,b) ≠ c, 

c = f(d, a), 

b = d 

f(a,b) ≠ c, 

c = f(d, a), 

b = d, 

f(a,b) = f(b, a), 

f(d, a) = f(a, d) 



Partial 
Reduction 

Solve 
Check 

Model 



Partial 
Reduction 

Solve 
Check 

Model 

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   



Partial 
Reduction 

Solve 
Check 

Model 

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   

kf(a) ≠ kf(b), 

b = kf(c),  

a = kf(d),   

c = d,   



Partial 
Reduction 

Solve 
Check 

Model 

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   

kf(a) ≠ kf(b), 

b = kf(c),  

a = kf(d),   

c = d,   

kf(a) = 0 

kf(b) = 1 

b     = 2 

kf(c) = 2 

a     = 3  

kf(d) = 3  

c     = 4 

d    = 4  



Partial 
Reduction 

Solve 
Check 

Model 

f(a) ≠ f(b),   

b = f(c),  

a = f(d),   

c = d   

kf(a) ≠ kf(b), 

b = kf(c),  

a = kf(d),   

c = d,   

kf(a) = 0 

kf(b) = 1 

b     = 2 

kf(c) = 2 

a     = 3  

kf(d) = 3  

c     = 4 

d    = 4  

 

Expand 

c = d  kf(c) = kf(d) 

 



Partial 
Reduction 

Solve 

Check 

Model 

Patch 
Model 



Reduce Locally, but Expand Globally 

due to sharing 



Reduce Locally, but Expand Globally 

due to sharing 

 

if(c, t, 0) = 2          c and (t = 2) 



Reduce Locally, but Expand Globally 

due to sharing 

 

if(c, if(d, 2, t), 0) = 2   c and (d or t = 2) 

if(c, if(d, 2, t), 0) = 0   (not c) or ((not d) and t = 0) 

 



Reduce Locally, but Expand Globally 

Solutions: 

 

1. Apply only to unshared terms 

2. Use a budget 

3. k-level window 



Annotated 
Program 

Verification 
Condition F 

pre/post conditions 

invariants 

and other annotations 



 

Quantifiers, quantifiers, quantifiers, … 

Modeling the runtime 

 h,o,f: 
 IsHeap(h)  o ≠ null  read(h, o, alloc) = t 
  
 read(h,o, f) = null  read(h, read(h,o,f),alloc) = t 



 

Quantifiers, quantifiers, quantifiers, … 

Modeling the runtime 

Frame axioms 

 o, f: 
 o ≠ null  read(h0, o, alloc) = t  
    read(h1,o,f) = read(h0,o,f)  (o,f)  M  

 



 

Quantifiers, quantifiers, quantifiers, … 

Modeling the runtime 

Frame axioms 

User provided assertions 

 i,j: i  j  read(a,i)  read(b,j) 
 



 

Quantifiers, quantifiers, quantifiers, … 

Modeling the runtime 

Frame axioms 

User provided assertions 

Theories 
 x: p(x,x) 

 x,y,z: p(x,y), p(y,z)  p(x,z) 

 x,y: p(x,y), p(y,x)  x = y 

 

 



 

Quantifiers, quantifiers, quantifiers, … 

Modeling the runtime 

Frame axioms 

User provided assertions 

Theories 
Solver must be fast in satisfiable instances. 

 

 We want to find bugs! 



 

There is no sound and refutationally complete 

procedure for  

linear arithmetic + unintepreted function symbols 



 

Heuristic quantifier instantiation 

Quantifier Elimination 

Complete quantifier instantiation 

Model based quantifier instantiation 

Superposition Calculus 



 

SMT solvers use heuristic quantifier instantiation. 

E-matching (matching modulo equalities). 

Example: 

 x: f(g(x)) = x { f(g(x)) } 

a = g(b),  

b = c, 

f(a)  c  
 

Trigger 



 

SMT solvers use heuristic quantifier instantiation. 

E-matching (matching modulo equalities). 

Example: 

 x: f(g(x)) = x { f(g(x)) } 

a = g(b),  

b = c, 

f(a)  c  
 

x=b f(g(b)) = b 

Equalities and ground terms come 

from the partial model M 



 

Integrates smoothly with DPLL. 

Software verification problems are big & shallow. 

Decides useful theories:  

Arrays 

Partial orders 

… 



 

E-matching is NP-Hard. 

In practice 

Problem Indexing Technique 

Fast retrieval 
 

E-matching code trees 

Incremental E-Matching Inverted path index 



 

Trigger:   
 
f(x1, g(x1, a), h(x2), b) 

Instructions: 
 
1. init(f, 2) 
2. check(r4, b, 3) 
3. bind(r2, g, r5, 4) 
4. compare(r1, r5, 5) 
5. check(r6, a, 6) 
6. bind(r3, h, r7, 7) 
7. yield(r1, r7) 

Compiler 

Similar triggers share several 
instructions. 

Combine code sequences 
in a code tree 



Limitations 

E-matching needs ground seeds. 

x: p(x), 

x: not p(x) 
 



Limitations 

E-matching needs ground seeds. 

Bad user provided triggers: 

x: f(g(x))=x { f(g(x)) } 

g(a) = c, 

g(b) = c, 

a  b 

 
 

Trigger is too 

restrictive 



Limitations 

E-matching needs ground seeds. 

Bad user provided triggers: 

x: f(g(x))=x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b 

 
 

More “liberal” 

trigger 



Limitations 

E-matching needs ground seeds. 

Bad user provided triggers: 

x: f(g(x))=x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b, 

f(g(a)) = a, 

f(g(b)) = b 

 
 

a=b 



Limitations 

E-matching needs ground seeds. 

Bad user provided triggers. 

It is not refutationally complete. 

 

 
 

False positives 



 

Universal variables only occur as arguments of 
uninterpreted symbols. 

x: f(x) + 1 > g(f(x)) 

x,y: f(x+y) = f(x) + f(y) 

Essentially Uninterpreted Fragment. 



 

Almost Uninterpreted Fragment. 

Relax restriction on the occurrence of universal 
variables. 

not (x  y) 

not (x  t) 

f(x + c) 

x =c t 

… 



 

If F is in the almost uninterpreted fragment 

Convert F into an equisatisfiable (modulo T) set of 
ground clauses F*  

F* may be infinite  

It is a decision procedure if F* is finite 

Subsumes EPR, Array Property Fragment, 
Stratified Vocabularies for Many Sorted Logic 



 

F induces a system F of set constraints 

Sk,i set of ground instances for variable xi in clause Ck 

Af,j set of ground j-th arguments of f 

 
j-th argument of f in clause Ck Set Constraint 

a ground term t t  Af,j 

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j 

xi Sk,i  Af,j 

F* is generated using the least solution of F 

F* = { Ck [Sk,1,…,Sk,n] | Ck  F } 
 



 

F induces a system F of set constraints 

Sk,i set of ground instances for variable xi in clause Ck 

Af,j set of ground j-th arguments of f 

 
j-th argument of f in clause Ck Set Constraint 

a ground term t t  Af,j 

t [x1,…,xn] t [Sk,1,…,Sk,n]  Af,j 

xi Sk,i  Af,j 

F* is generated using the least solution of F 

F* = { Ck [Sk,1,…,Sk,n] | Ck  F } 
 

We assume the 

least solution is 

not empty 



 

g(x1, x2) = 0  h(x2) = 0, 

g(f(x1),b) + 1 < f(x1), 

h(b) = 1,    f(a) = 0 

S1,1= Ag,1 = { f(a) }  

S1,2= Ag,2 = Ah,1 = {b} 

S2,1= Af,1= {a} 

S1,1= Ag,1, S1,2= Ag,2, S1,2= Ah,1 

S2,1= Af,1,  f(S2,1)  Ag,1,  b  Ag,2 

b  Ah,1,  a  Af,1 

 
Least solution 

F F 

g(f(a), b) = 0  h(b) = 0, 

g(f(a),b) + 1 < f(a), 

h(b) = 1,    f(a) = 0 

F* 



 

Complete Instantiation – CAV 
2009 

M 

a  2, b  2, c  3 
f(x)  2 
h(x)  if(x=2, 0, 1) 
g(x,y)   if(x=0y=2,-1, 0) 

x1, x2: if(x1=0x2=2,-1,0) = 0  if(x2=2,0,1) = 0   is valid 

Does M satisfies? 
x1, x2 : g(x1, x2) = 0  h(x2) = 0 

x1, x2: if(x1=0x2=2,-1,0)  0  if(x2=2,0,1)  0    is unsat 

if(s1=0s2=2,-1,0)  0  if(s2=2,0,1)  0    is unsat 



 

Suppose M does not satisfy a clause C[x] in F. 

Complete Instantiation – CAV 
2009 

Add an instance C[t] which “blocks” this spurious model. 
Issue: how to find t? 

Use a clause C[t] that is in F*. 



 

Linear Real/Integer Arithmetic 

Recursive Datatypes 

(some support for) Non-Linear Arithmetic 



 



 

SMT is hot at Microsoft 

Z3 is available for non-commercial use 

Main challenges:  

Combining Engines 

Quantifiers 

95% transpiration + 5% inspiration 

Future: “Opening the Black Box” 


