

SMT: Techniques, Hurdles, Applications SAT/SIVIT Summer School, MIT, 2011

Leonardo de Moura and Nikolaj Bjorner Microsoft Research

A Satisfiability Checker with built-in support for useful theories

SMT@Microsoft: Solver

- Z3 is a solver developed at Microsoft Research.
- Development/Research driven by internal customers.
- Free for non-commercial use.
- Interfaces:

<u>http://research.microsoft.com/projects/z3</u>

Some Microsoft Tools using Z3

What does this dot graph look like? Ask AgL!

Research RiSE

http://research.microsoft.com/projects/z3

Some Microsoft Tools using Z3

Feature Usage

Features

Symbolic Reasoning

Logic is "The Calculus of Computer Undecidable (<u>FOL</u> + LA) Science" (Z. Manna). High computational complexity Semi-decidable (First-order logic) **NEXPTime-complete** (EPR) PSpace-complete (QBF) **NP-complete**

(Propositional logic)

P-time

Equality))

b + 2 = c and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

b + 2 = c and f(read(write(a,b,3), c-2)) \neq f(c-b+1)

Arithmetic

b + 2 = c and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Array Theory

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Uninterpreted Functions

b + 2 = c and f(read(write(a,b,3), c-2)) \neq f(c-b+1)

Substituting c by b+2

b + 2 = c and f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)

Simplifying

b + 2 = c and $f(read(write(a,b,3), b)) \neq f(3)$

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

Applying array theory axiom forall a,i,v: read(write(a,i,v), i) = v

$b + 2 = c \text{ and } f(3) \neq f(3)$

Inconsistent

Application Scenarios

"Big" and hard formulas

Thousands of "small" and easy formulas

Short timeout (< 5secs)

Application Scenarios

"Big" and hard formulas

Thousands of "small" and easy formulas

Short timeout (< 5secs)

Combining Engines

Current SMT solvers provide a combination of different engines

Combining Engines

Main Hurdles in Z3 2.x

Combining Engines

Unfairness

Quadratic behavior

Quantifiers

Abstraction/Relaxation

Linear Integer Arithmetic 🗲 Linear Real Arithmetic

SMT -> SAT

Arrays -> Uninterpreted Functions

Abstraction/Relaxation

Linear Integer Arithmetic 🗲 Linear Real Arithmetic

SMT -> SAT

Arrays -> Uninterpreted Functions

If the relaxation is unsat, then the original is also unsat

Abstraction/Relaxation

Linear Integer Arithmetic → Linear Real Arithmetic Refinement: cuts

SMT → SAT Refinement: theory lemma

Arrays → Uninterpreted Functions Refinement: array axiom

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \, (p_3 \lor p_4) & p_1 \!\equiv (x \ge 0), \, p_2 \!\equiv (y = x + 1), \\ & p_3 \!\equiv (y > 2), \, p_4 \!\equiv (y < 1) \end{array}$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \ (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1), \\ & & p_3 \equiv (y > 2), \ p_4 \equiv (y < 1) \end{array}$$

SAT Solver

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \, (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \, p_2 \equiv (y = x + 1), \\ & & p_3 \equiv (y > 2), \, p_4 \equiv (y < 1) \end{array}$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)
 $p_1, p_2, (p_3 \lor p_4)$ $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$
 $p_2 \equiv (y > 2), p_4 \equiv (y < 1)$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

Unsatisfiable Theory $x \ge 0, y = x + 1, y < 1$ Solver

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

¬(y > 2), y < 1 Unsatisfiable $x \ge 0, y = x + 1, y < 1$ New Lemma Theory $\neg p_1 \lor \neg p_2 \lor \neg p_4$ Solver

Solver

Model Guided Approaches

Model Based Theory Combination

Model Based Quantifier Instantiation

Simplex (Linear Real Arithmetic)

Boolector: Extensional Array Theory

CutSat (Linear Integer Arithmetic)

$$x = f(y - 1), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1$$

Purifying

 $x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$

${\cal T}_E$			${\cal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$\{y\}$	$E(y) = *_2$	$0 \leq y \leq 1$	A(y) = 0
	$\{z\}$	$E(z) = *_3$	z = y - 1	A(z) = -1
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4, $		
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		else $\mapsto *_6 \}$		

Assume x = y

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, y, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$\{z\}$	$E(y) = *_1$	$0 \leq y \leq 1$	A(y) = 0
x = y	$\{f(x),f(y)\}$	$E(z) = *_2$	z = y - 1	A(z) = -1
		$E(f) = \{ *_1 \mapsto *_3, $	x = y	
		$*_2 \mapsto *_1,$		
		$\textit{else}\mapsto *_4 \bigr\}$		

Unsatisfiable
${\cal T}_E$			${\cal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$\{y\}$	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 0
$x \neq y$	$\{z\}$	$E(z) = *_3$	z = y - 1	A(z) = -1
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4, $	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		$\textit{else}\mapsto *_6\}$		

Backtrack, and assert $x \neq y$. \mathcal{T}_A model need to be fixed.

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \leq x \leq 1$	A(x) = 0
$f(x) \neq f(y)$	$\{y\}$	$E(y) = *_2$	$0 \leq y \leq 1$	A(y)=1
$x \neq y$	$\{z\}$	$E(z) = *_3$	z = y - 1	A(z) = 0
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4, $	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		else $\mapsto *_6 \}$		

Assume x = z

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, z,$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y) = *_2$	$0 \leq y \leq 1$	A(y)=1
$x \neq y$	$\{y\}$	$E(z) = *_1$	z = y - 1	A(z) = 0
x = z	$\{f(y)\}$	$E(f) = \{ *_1 \mapsto *_1, $	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else} \mapsto *_4 \bigr\}$		

Satisfiable

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, z,$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y) = *_2$	$0 \leq y \leq 1$	A(y)=1
$x \neq y$	$\{y\}$	$E(z) = *_1$	z = y - 1	A(z) = 0
x = z	$\{f(y)\}$	$E(f) = \{ *_1 \mapsto *_1, $	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else} \mapsto *_4 \bigr\}$		

Let *h* be the bijection between |E| and |A|.

 $h = \{*_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots\}$

${\cal T}_E$		\mathcal{T}_A		
Literals	Model	Literals	Model	
x = f(z)	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0	
$f(x) \neq f(y)$	$E(y) = *_2$	$0 \leq y \leq 1$	A(y) = 1	
$x \neq y$	$E(z) = *_1$	z = y - 1	A(z) = 0	
x = z	$E(f) = \{ *_1 \mapsto *_1, $	$x \neq y$	$A(f) = \{0 \mapsto 0$	
	$*_2 \mapsto *_3,$	x = z	$1\mapsto -1$	
	$\textit{else}\mapsto *_4 \bigr\}$		else $\mapsto 2 \}$	

Extending A using h.

 $h = \{*_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots\}$

Delay "Expensive" Engines

Main problem: unfairness

Delay "Expensive" Engines

Main problem: unfairness

Solutions:

Give a budget to each engine

A single engine should not take control of the whole solver

Allow user to specify their own strategies

Reduction

Reduction: Bit-Vector to SAT

x : bit-vector[2]
y : bit-vector[2]
x + y = 2

Reduction: Bit-Vector to SAT

x : bit-vector[2]
y : bit-vector[2]
x + y = 2

- x₀ : bool
- x₁ : bool
- y₀ : bool
- y₁ : bool
- not ($x_0 x or y_0$)
- $x_1 \text{ xor } y_1 \text{ xor } (x_0 \text{ and } y_0)$

Reduction: Ackermann

Eliminate uninterpreted function symbols

Reduction: Ackermann

Eliminate uninterpreted function symbols

Reduction: Ackermann

Eliminate uninterpreted function symbols

$$f(a) \neq f(b),$$

$$b = f(c),$$

$$a = f(d),$$

$$c = d$$

$$\begin{split} k_{f(a)} &\neq k_{f(b)}, \\ b &= k_{f(c)}, \\ a &= k_{f(d)}, \\ c &= d, \\ a &= b \Longrightarrow k_{f(a)} = k_{f(b)}, \\ a &= c \Longrightarrow k_{f(a)} = k_{f(c)}, \\ ... \\ c &= d \Longrightarrow k_{f(c)} = k_{f(d)} \end{split}$$

Reduction: Commutative Functions

Commutative Functions to Uninterpreted Functions

f(a,b) ≠ c, c = f(d, a), b = d

Reduction: Commutative Functions

Commutative Functions to Uninterpreted Functions

 $f(a,b) \neq c,$ c = f(d, a),b = d f(a,b) ≠ c, c = f(d, a), b = d, f(a,b) = f(b, a),f(d, a) = f(a, d)

Lazy Reduction: Variation

Reduce Locally, but Expand Globally due to sharing

Reduce Locally, but Expand Globally due to sharing

if(c, t, 0) = 2 \rightarrow c and (t = 2)

Reduce Locally, but Expand Globally due to sharing

if(c, if(d, 2, t), 0) = $2 \rightarrow c$ and (d or t = 2) if(c, if(d, 2, t), 0) = $0 \rightarrow (not c)$ or ((not d) and t = 0)

Reduce Locally, but Expand Globally Solutions:

- 1. Apply only to unshared terms
- 2. Use a budget
- 3. k-level window

Application: Verifying Compilers

pre/post conditions invariants and other annotations

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
 - ∀ h,o,f:
 IsHeap(h) ∧ o ≠ null ∧ read(h, o, alloc) = t
 ⇒
 read(h,o, f) = null ∨ read(h, read(h,o,f),alloc) = t

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
 - ∀ **o**, **f**:
 - o ≠ null ∧ read(h₀, o, alloc) = t \Rightarrow read(h₁,o,f) = read(h₀,o,f) ∨ (o,f) ∈ M

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
 - \forall i,j: i \leq j \Rightarrow read(a,i) \leq read(b,j)

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories
 - ∀ x: p(x,x)
 - $\forall x,y,z: p(x,y), p(y,z) \Longrightarrow p(x,z)$
 - $\forall x,y: p(x,y), p(y,x) \Longrightarrow x = y$

- Quantifiers, quantifiers, quantifiers, ...
- Modeling the runtime
- Frame axioms
- User provided assertions
- Theories
- Solver must be fast in satisfiable instances.

We want to find bugs!

Non ground clauses + interpreted symbols

There is no sound and refutationally complete procedure for linear arithmetic + unintepreted function symbols

Quantifiers: Approaches used in Z3

Heuristic quantifier instantiation

Quantifier Elimination

Complete quantifier instantiation

Model based quantifier instantiation

Superposition Calculus

E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).

Example:

```
\forall x: f(g(x)) = x \{ f(g(x)) \} \\ a = g(b), \\ b = c, \\ f(a) \neq c  Trigger
```


E-matching & Quantifier instantiation

- SMT solvers use heuristic quantifier instantiation.
- E-matching (matching modulo equalities).
- Example:

E-matching: why do we use it?

- Integrates smoothly with DPLL.
- Software verification problems are big & shallow.
- Decides useful theories:
 - Arrays
 - Partial orders
 - Θ...

Efficient E-matching

- E-matching is NP-Hard.
- In practice

Problem	Indexing Technique
Fast retrieval	E-matching code trees
Incremental E-Matching	Inverted path index

E-matching code trees

Combine code sequences in a code tree

Instructions:

- 1. init(f, 2)
- 2. check(r4, b, 3)
- 3. bind(r2, g, r5, 4)
- 4. compare(r1, r5, 5)
- 5. check(r6, a, 6)
- 6. bind(r3, h, r7, 7)
- 7. yield(r1, r7)

- E-matching needs ground seeds.
 - ∀x: p(x),
 - $\forall x: not p(x)$

- E-matching needs ground seeds.
- Bad user provided triggers: $\forall x: f(g(x)) = x \{ f(g(x)) \}$ g(a) = c, g(b) = c, $a \neq b$

Trigger is too restrictive

- E-matching needs ground seeds.
- Bad user provided triggers:
 - $\forall x: f(g(x))=x \{ g(x) \}$ g(a) = c, g(b) = c, $a \neq b$

More "liberal" trigger

- E-matching needs ground seeds.
- Bad user provided triggers:

```
\forall x: f(g(x))=x \{ g(x) \}

g(a) = c,

g(b) = c,

a \neq b,

f(g(a)) = a,

f(g(b)) = b a=b
```


- E-matching needs ground seeds.
- Bad user provided triggers.
- It is not refutationally complete.

Complete Quantifier Instantiation

Essentially Uninterpreted Fragment.

Universal variables only occur as arguments of uninterpreted symbols.

$$\forall x: f(x) + 1 > g(f(x))$$

$$\forall x,y: f(x+y) = f(x) + f(y) \bigcirc$$

Complete Quantifier Instantiation

Almost Uninterpreted Fragment.

Relax restriction on the occurrence of universal variables.

not
$$(x \le y)$$

not $(x \le t)$
 $f(x + c)$
 $x =_c t$

. . .

Research

Complete Quantifier instantiation

- If F is in the almost uninterpreted fragment
- Convert F into an equisatisfiable (modulo T) set of ground clauses F*
- *F** may be infinite
- It is a decision procedure if F* is finite
- Subsumes EPR, Array Property Fragment, Stratified Vocabularies for Many Sorted Logic

Generating F* (for the essentially uninterpreted fragment)

- *F* induces a system Δ_F of set constraints
- $S_{k,i}$ set of ground instances for variable x_i in clause C_k
- A_{f,j} set of ground j-th arguments of f

<i>j</i> -th argument of f in clause C_k	Set Constraint
a ground term <i>t</i>	$t \in A_{f,j}$
$t[x_1,,x_n]$	$t\left[S_{k,1},\ldots,S_{k,n}\right] \in A_{f,j}$
X _i	$S_{k,i} \in A_{f,j}$

- F^* is generated using the least solution of Δ_F
- $F^* = \{ C_k [S_{k,1}, ..., S_{k,n}] \mid C_k \in F \}$

Generating F* (for the essentially uninterpreted fragment)

- *F* induces a system Δ_F of set const
- S_{k,i} set of ground instances for va
- $A_{f,j}$ set of ground *j*-th arguments

We assume the least solution is not empty

<i>j</i> -th argument of f in clause C_k	Set Con
a ground term <i>t</i>	$t \in A_{f,j}$
$t [x_1,, x_n]$	$t [S_{k,1}, \dots, n] \in A_{f,j}$
X _i	$S_{k,i} \in I_{f,j}$

- F^* is generated using the least solution of Δ_F
- $F^* = \{ C_k [S_{k,1}, ..., S_{k,n}] \mid C_k \in F \}$

Generating F*: Example

$$\begin{array}{c} \mathsf{F} & \Delta_{\mathsf{F}} \\ g(x_1, x_2) = 0 \lor h(x_2) = 0, \\ g(f(x_1), b) + 1 < f(x_1), \\ h(b) = 1, \quad f(a) = 0 \end{array} \\ \begin{array}{c} \mathsf{S}_{1,1} = \mathsf{A}_{g,1}, \ \mathsf{S}_{1,2} = \mathsf{A}_{g,2}, \ \mathsf{S}_{1,2} = \mathsf{A}_{h,1} \\ \mathsf{S}_{2,1} = \mathsf{A}_{f,1}, \ \mathsf{f}(\mathsf{S}_{2,1}) \subseteq \mathsf{A}_{g,1}, \ \mathsf{b} \in \mathsf{A}_{g,2} \\ \mathsf{b} \in \mathsf{A}_{h,1}, \ \mathsf{a} \in \mathsf{A}_{f,1} \\ \\ \mathbb{F}^* \\ \mathsf{S}_{1,2} = \mathsf{A}_{g,2} = \mathsf{A}_{h,1} = \{\mathsf{f}(\mathsf{a})\} \\ \mathsf{S}_{2,1} = \mathsf{A}_{f,1} = \{\mathsf{a}\} \end{array} \\ \begin{array}{c} \mathsf{f}(\mathsf{a}), \mathsf{b}) = \mathsf{0} \lor \mathsf{h}(\mathsf{b}) = \mathsf{0}, \\ g(\mathsf{f}(\mathsf{a}), \mathsf{b}) + \mathsf{1} < \mathsf{f}(\mathsf{a}), \\ \mathsf{h}(\mathsf{b}) = \mathsf{1}, \ \mathsf{f}(\mathsf{a}) = \mathsf{0} \end{array}$$

Model Checking Quantifiers

M $a \rightarrow 2, b \rightarrow 2, c \rightarrow 3$ Does M satisfies? $f(x) \rightarrow 2$ $\forall x_1, x_2 : g(x_1, x_2) = 0 \lor h(x_2) = 0$ $h(x) \rightarrow if(x=2, 0, 1)$ $g(x,y) \rightarrow if(x=0 \land y=2,-1, 0)$ $\forall x_1, x_2$: if(x_1=0 $\land x_2$ =2,-1,0) = 0 \lor if(x_2=2,0,1) = 0 is valid $\exists x_1, x_2: if(x_1=0 \land x_2=2,-1,0) \neq 0 \land if(x_2=2,0,1) \neq 0$ is unsat $if(s_1=0 \land s_2=2,-1,0) \neq 0 \land if(s_2=2,0,1) \neq 0$ is unsat

Model-based Quantifier Instantiation

Suppose M does not satisfy a clause C[x] in F.

Add an instance C[t] which "blocks" this spurious model. Issue: how to find t?

Use a clause C[t] that is in F*.

Quantifier Elimination

- Linear Real/Integer Arithmetic
- Recursive Datatypes
- (some support for) Non-Linear Arithmetic

Model Base Quantifier Instantiation Demo

Conclusion

- SMT is hot at Microsoft
- Z3 is available for non-commercial use
- Main challenges:
 - Combining Engines
 - Quantifiers
- 95% transpiration + 5% inspiration
- Future: "Opening the Black Box"

