

On Designing and Implementing Satisfiability Modulo Theory (SIMT) Solvers Summer School 2009, Nancy Verification Technology, Systems and Applications

Leonardo de Moura Microsoft Research

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

 Logic is "The Calculus of Computer Science" (Z. Manna).

NP-complete

(Propositional logic)

P-time

(Equality))

High computational complexity

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

Test case generation

Type checking

Verification condition

a
$$\leq$$
 1 and a \leq b implies b \neq 0

Is formula *F* satisfiable modulo theory *T* ?

SMT solvers have specialized algorithms for *T*

b + 2 = c and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

b + 2 = c and f(read(write(a,b,3), c-2)) \neq f(c-b+1)

Arithmetic

b + 2 = c and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Array Theory

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Uninterpreted Functions

b + 2 = c and f(read(write(a,b,3), c-2)) \neq f(c-b+1)

Substituting c by b+2

b + 2 = c and f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)

Simplifying

b + 2 = c and $f(read(write(a,b,3), b)) \neq f(3)$

b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

Applying array theory axiom forall a,i,v: read(write(a,i,v), i) = v

$$b + 2 = c \text{ and } f(3) \neq f(3)$$

Inconsistent/Unsatisfiable

SMT-Lib

- Repository of Benchmarks
- http://www.smtlib.org
- Benchmarks are divided in "logics":
 - QF_UF: unquantified formulas built over a signature of uninterpreted sort, function and predicate symbols.
 - QF_UFLIA: unquantified linear integer arithmetic with uninterpreted sort, function, and predicate symbols.
 - AUFLIA: closed linear formulas over the theory of integer arrays with free sort, function and predicate symbols.

Ground formulas

For most SMT solvers: F is a set of ground formulas

Many Applications Bounded Model Checking Test-Case Generation

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Examples: SAT Solver (Daniel's lectures) Equality solver

Microsoft[®]

Research

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

a = b, b = c, d = e, b = s, d = t, $a \neq e$, $a \neq s$

a = b, b = c, d = e, b = s, d = t, $a \neq e$, $a \neq s$

$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

t

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

t

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 e
a,b,c,s
d,e,t

Model construction

Model construction $|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$ (universe, aka domain)

Deciding Equality

Model construction $|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$ (universe, aka domain) $M(a) = \blacklozenge_1$ (assignment)

Deciding Equality

Deciding Equality

Model construction $|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$ (universe, aka domain) $M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$ $M(d) = M(e) = M(t) = \blacklozenge_2$

Research

Deciding Equality:

Termination, Soundness, Completeness

- Termination: easy
- Soundness
 - Invariant: all constants in a "ball" are known to be equal.
 - The "ball" merge operation is justified by:
 - Transitivity and Symmetry rules.
- Completeness
 - We can build a model if an inconsistency was not detected.
 - Proof template (by contradiction):
 - Build a candidate model.
 - Assume a literal was not satisfied.
 - Find contradiction.

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal c = d is not satisfied by our model.
 - That is, M(c) ≠ M(d).
 - This is impossible, c and d must be in the same "ball".

$$M(c) = M(d) = \blacklozenge_i$$

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal $c \neq d$ is not satisfied by our model.
 - That is, M(c) = M(d).
 - Key property: we only check the disequalities after we processed all equalities.
 - This is impossible, c and d must be in the different "balls"

 $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$

Deciding Equality + (uninterpreted) Functions $a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$

First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, f(a, v_1) \neq f(b, g(e)) $v_1 \equiv g(d)$

> > First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, f(a, v_1) \neq f(b, g(e)) $v_1 \equiv g(d)$

> > First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, f(a, v₁) \neq f(b, v₂) v₁ \equiv g(d), v₂ \equiv g(e)

> > First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, f(a, v₁) \neq f(b, v₂) v₁ \equiv g(d), v₂ \equiv g(e)

> > First Step: "Naming" subterms

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$

First Step: "Naming" subterms

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$

First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

> > First Step: "Naming" subterms

> a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

 $x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$ d = e implies g(d) = g(e)

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

 $x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$ $d = e \text{ implies } v_1 = v_2$

Research

d = e implies $v_1 = v_2$

Research

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

 $x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$ a = b, $v_1 = v_2 \text{ implies } f(a, v_1) = f(b, v_2)$

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

 $x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$ $a = b, v_1 = v_2 \text{ implies } v_3 = v_4$

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

 $x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$ $a = b, v_1 = v_2 \text{ implies } v_3 = v_4$

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

a = b, b = c, d = e, b = s, d = t, $a \neq v_4, v_2 \neq v_3$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

a = b, b = c, d = e, b = s, d = t, $a \neq v_4$, $v_2 \neq v_3$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

a = b, b = c, d = e, b = s, d = t, a $\neq v_4, v_2 \neq v_3$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

Congruence Rule:

Deciding Equality + (uninterpreted) Functions a = b, b = c, d = e, b = s, d = t, a \neq v₄, v₂ \neq v₃ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$ d,e,t a,b,c,s V_{1}, V_{2} $V_{3}V_{4}$ Model construction: $|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$ M(a) = M(b) = M(c) = M(s) = 4M(d) = M(e) = M(t) = 4 $M(v_1) = M(v_2) = \blacklozenge_3$ $M(v_3) = M(v_4) = \blacklozenge_4$ Microsoft[®]

Research

Deciding Equality + (uninterpreted) Functions a = b, b = c, d = e, b = s, d = t, a \neq v₄, v₂ \neq v₃ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$ d,e,t a,b,c,s V_{1}, V_{2} $V_{3}V_{4}$ Model construction: Missing: $|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$ Interpretation for M(a) = M(b) = M(c) = M(s) = 4f and g. M(d) = M(e) = M(t) = 4 $M(v_1) = M(v_2) = \blacklozenge_3$ $M(v_3) = M(v_4) = \blacklozenge_4$ Microsoft[®] Research

- Building the interpretation for function symbols
 - M(g) is a mapping from |M| to |M|
 - Defined as:
 - $$\begin{split} \mathsf{M}(\mathsf{g})(\blacklozenge_{i}) = \blacklozenge_{j} & \text{if there is } \mathsf{v} \equiv \mathsf{g}(\mathsf{a}) \text{ s.t.} \\ \mathsf{M}(\mathsf{a}) = \blacklozenge_{i} \\ \mathsf{M}(\mathsf{v}) = \blacklozenge_{j} \\ = \blacklozenge_{k}, \text{ otherwise } (\diamondsuit_{k} \text{ is an arbitrary element}) \end{split}$$
 - Is M(g) well-defined?

- Building the interpretation for function symbols
 - M(g) is a mapping from |M| to |M|
 - Defined as:
 - $M(g)(\blacklozenge_{i}) = \blacklozenge_{j} \text{ if there is } v \equiv g(a) \text{ s.t.}$ $M(a) = \diamondsuit_{i}$ $M(v) = \diamondsuit_{j}$ $= \diamondsuit_{k}, \text{ otherwise } (\diamondsuit_{k} \text{ is an arbitrary element})$
 - Is M(g) well-defined?
 - Problem: we may have
 v ≡ g(a) and w ≡ g(b) s.t.
 M(a) = M(b) = ♦₁ and M(v) = ♦₂ ≠ ♦₃ = M(w)
 So, is M(g)(♦₁) = ♦₂ or M(g)(♦₁) = ♦₃?

Building the interpretation for function symbols 0

 $M(a) = \mathbf{A}_i$

- M(g) is a mapping from |M| to |M|
- Defined as:

This is impossible because of $M(g)(\blacklozenge_i) = \blacklozenge_i$ if there is $v \equiv g$ the congruence rule!

a and b are in the same "ball", $M(v) = \phi_i$ then so are v and w

 $= \mathbf{A}_{\mathbf{k}}$, otherwise ($\mathbf{A}_{\mathbf{k}}$

- Is M(g) well-defined?
 - Problem: we may have $v \equiv g(a)$ and $w \equiv g(b)$ s.t. $M(a) = M(b) = \blacklozenge_1$ and $M(v) = \blacklozenge_2 \neq \blacklozenge_3 = M(w)$ So, is $M(g)(\blacklozenge_1) = \diamondsuit_2$ or $M(g)(\diamondsuit_1) = \diamondsuit_3$?

Deciding Equality + (uninterpreted) Functions a = b, b = c, d = e, b = s, d = t, a \neq v₄, v₂ \neq v₃ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$ d,e,t a,b,c,s V_{1}, V_{2} $V_{3}V_{4}$ Model construction: $|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$ M(a) = M(b) = M(c) = M(s) = 4M(d) = M(e) = M(t) = 4 $M(v_1) = M(v_2) = \blacklozenge_3$ $M(v_3) = M(v_4) = \blacklozenge_4$ Microsoft[®]

Research

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4, v_2 \neq v_3$$

v₁ = g(d), v₂ = g(e), v₃ = f(a, v₁), v₄ = f(b, v₂)

$$|M| = \{ \blacklozenge_{1}, \blacklozenge_{2}, \diamondsuit_{3}, \blacklozenge_{4} \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_{1}$$

$$M(d) = M(e) = M(t) = \blacklozenge_{2}$$

$$M(v_{1}) = M(v_{2}) = \diamondsuit_{3}$$

$$M(v_{3}) = M(v_{4}) = \blacklozenge_{4}$$

$$M(g)(\diamondsuit_{i}) = \diamondsuit_{j} \text{ if there is } v \equiv g(a) \text{ s.t.}$$

$$M(g)(\bigstar_{i}) = \diamondsuit_{j} \text{ if there is } v \equiv g(a) \text{ s.t.}$$

$$M(g)(\bigstar_{i}) = \bigstar_{j} \text{ if there is } v \equiv g(a) \text{ s.t.}$$

$$M(g)(\bigstar_{i}) = \bigstar_{j} \text{ if there is } v \equiv g(a) \text{ s.t.}$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$\mathsf{M}(a) = \mathsf{M}(b) = \mathsf{M}(c) = \mathsf{M}(s) = \blacklozenge_1$$

$$\mathsf{M}(d) = \mathsf{M}(e) = \mathsf{M}(t) = \blacklozenge_2$$

$$\mathsf{M}(v_1) = \mathsf{M}(v_2) = \diamondsuit_3$$

$$\mathsf{M}(v_3) = \mathsf{M}(v_4) = \blacklozenge_4$$

$$\mathsf{M}(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

$$\mathsf{M}(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3 \}$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$\mathsf{M}(a) = \mathsf{M}(b) = \mathsf{M}(c) = \mathsf{M}(s) = \blacklozenge_1$$

$$\mathsf{M}(d) = \mathsf{M}(e) = \mathsf{M}(t) = \blacklozenge_2$$

$$\mathsf{M}(v_1) = \mathsf{M}(v_2) = \diamondsuit_3$$

$$\mathsf{M}(v_3) = \mathsf{M}(v_4) = \blacklozenge_4$$

$$\mathsf{M}(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \blacklozenge_3 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3 \}$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4, v_2 \neq v_3$$

v₁ = g(d), v₂ = g(e), v₃ = f(a, v₁), v₄ = f(b, v₂)

$$|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \diamondsuit_3, \blacklozenge_4 \}$$

$$\mathsf{M}(a) = \mathsf{M}(b) = \mathsf{M}(c) = \mathsf{M}(s) = \blacklozenge_1$$

$$\mathsf{M}(d) = \mathsf{M}(e) = \mathsf{M}(t) = \blacklozenge_2$$

$$\mathsf{M}(v_1) = \mathsf{M}(v_2) = \diamondsuit_3$$

$$\mathsf{M}(v_3) = \mathsf{M}(v_4) = \diamondsuit_4$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3, \text{ else } \rightarrow \diamondsuit_1 \}$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

Model construction:

$$|\mathsf{M}| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$\mathsf{M}(a) = \mathsf{M}(b) = \mathsf{M}(c) = \mathsf{M}(s) = \blacklozenge_1$$

$$\mathsf{M}(d) = \mathsf{M}(e) = \mathsf{M}(t) = \blacklozenge_2$$

$$\mathsf{M}(v_1) = \mathsf{M}(v_2) = \blacklozenge_3$$

$$\mathsf{M}(v_3) = \mathsf{M}(v_4) = \blacklozenge_4$$

$$\mathsf{M}(g) = \{ \diamondsuit_2 \rightarrow \diamondsuit_3, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(f) = \{ (\bigstar_1, \bigstar_3) \rightarrow \blacklozenge_4, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_1, \circlearrowright_3, \circlearrowright_4, \text{ else } \rightarrow \blacklozenge_1 \}$$

$$\mathsf{M}(g) = \{ \diamondsuit_1, \circlearrowright_3, \circlearrowright_4, \text{ else } \rightarrow \blacklozenge_1 \}$$

What about predicates?

p(a, b), ¬p(c, b)

What about predicates?

p(a, b), $\neg p(c, b)$ $\int_{f_p}(a, b) = T, f_p(c, b) \neq T$

Ackermannization

It is possible to eliminate function symbols using a method called **Ackermannization**.

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4, v_2 \neq v_3$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$
a = b, b = c, d = e, b = s, d = t, a $\neq v_4, v_2 \neq v_3$
 $d \neq e \lor v_1 = v_2,$
 $a \neq v_1 \lor b \neq v_2 \lor v_3 = v_4$

Research

Ackermannization

It is possible to eliminate function symbols using a method called **Ackermannization**.

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4, v_2 \neq v_3$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$
a = b, b = c, d = e, b = s, d = t, a $\neq v_4, v_2 \neq v_3$
 $d \neq e \lor v_1 = v_2,$
 $a \neq v_1 \lor b \neq v_2 \lor v_3 = v_4$

Main Problem: quadratic blowup

Research

It is possible to implement our procedure in O(n log n)

Union-Find data-structure

Every set (equivalence class) has a root element (representative).

Union-Find data-structure

Tracking the equivalence classes size is important!

Tracking the equivalence classes size is important!

Tracking the equivalence classes size is important!

Each constant has two fields: find and size.

Research

Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff $v \equiv f(...,a,...)$

When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

occurrences[b] = { $v_1 \equiv g(b), v_2 \equiv f(a)$ } occurrences[s] = { $v_3 \equiv f(r)$ }

Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff $v \equiv f(...,a,...)$

When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

Inefficient version:

for each v in occurrences(b) for each w in occurrences(s) if v and w are congruent add (v,w) to todo queue

occurrences(b) = { $v_1 \equiv g(b), v_2 \equiv f(a)$ } occurrences(s) = { $v_3 \equiv f(r)$ }

A queue of pairs that need to be merged.

occurrences[b] = { $v_1 \equiv g(b), v_2 \equiv f(a)$ } occurrences[s] = { $v_3 \equiv f(r)$ }

We also need to merge occurrences[b] with occurrences[s]. This can be done in constant time: Use circular lists to represent the occurrences. (More later)

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cup v_3 = \begin{pmatrix} v_1 \\ v_3 \\ v_2 \end{pmatrix}$$

r

Research

Avoiding the nested loop: for each v in occurrences[b] for each w in occurrences[s]

Use a hash table to store the elements $v_1 \equiv f(a_1, ..., a_n)$. Each constant has an identifier (e.g., natural number). Compute hash code using the identifier of the (equivalence class) roots of the arguments.

hash(v₁) = hash-tuple(id(f), id(root(a₁)), ..., id(root(a_n)))

Avoiding the nested loop: for each v in occurrences(b) for each w in occurrences(s)

Use a hash table to Each constant has a Compute hash code class) roots of the argur

, ...*,* a_n). mber). equivalence

hash(v₁) = hash-tuple(id(f), id(root(a₁)), ..., id(root(a_n)))

Efficient implementation of the congruence rule. Merging the equivalences classes with roots: a_1 and a_2 Assume a_2 is smaller than a_1

Before merging the equivalence classes: a₁ and a₂

for each v in occurrences[a₂]

remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a₁ and a₂

for each v in occurrences[a₂]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table

Deciding Equality + (uninterpreted) Function Trick: Use dynamic arrays to

Efficient implementation of the congrumeres represent the occurrences Merging the equivalences classes with roc a_1 and a_2 Assume a_2 is smaller than a_1

Before merging the equivalence classes: a₁ and a₂

for each v in occurrences[a₂]

remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a₁ and a₂

for each v in occurrences[a₂]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table

add v to occurrences(a₁)

Research

The efficient version is not optimal (in theory). Problem: we may have $v \equiv f(a_1, ..., a_n)$ with "huge" n.

Solution: currying Use only binary functions, and represent f(a₁, a₂,a₃,a₄) as f(a₁, h(a₂, h(a₃, a₄)))

This is not necessary in practice, since the n above is small.

Each constant has now three fields: find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Case Analysis

Many verification/analysis problems require: case-analysis $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$

Case Analysis

Many verification/analysis problems require: case-analysis $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF $(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$

Case Analysis

Many verification/analysis problems require: case-analysis $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF $(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$

Too Inefficient! (exponential blowup)

SMT : Basic Architecture

 $p \lor q,$ $p \lor \neg q,$ $\neg p \lor q,$ $\neg p \lor \neg q$

p ∨ q, p ∨ ¬q, ¬p ∨ q, ¬p ∨ q,

Assignment: p = false, q = false

p∨ q, p∨¬q, ¬p∨ q, ¬p∨ q,

Assignment: p = false, q = true

p∨ q, p∨¬q, ¬p∨ q, ¬p∨ q,

Assignment: p = true, q = false

p∨ q, p∨¬q, ¬p∨ q, ¬p∨ q,

Assignment: p = true, q = true

DPLL

Guessing $p \mid p \lor q, \neg q \lor r$ $p, \neg q \mid p \lor q, \neg q \lor r$

Deducing $p \mid p \lor q, \neg p \lor s$ $p, s \mid p \lor q, \neg p \lor s$

DPLL

Backtracking

p, s | $p \lor q$, s $\lor q$, $\neg p \lor \neg q$

Modern DPLL

- Efficient indexing (two-watch literal)
- Non-chronological backtracking (backjumping)
- Lemma learning

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4) \qquad p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1), \\ p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

Basic Idea

 $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$ Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \ (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1), \\ & p_3 \equiv (y > 2), \ p_4 \equiv (y < 1) \end{array}$$

SAT Solver

Basic Idea

 $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$ Abstract (aka "naming" atoms)

$$\begin{array}{ll} p_1, \ p_2, \ (p_3 \lor p_4) & p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1), \\ & & & \\ p_3 \equiv (y > 2), \ p_4 \equiv (y < 1) \end{array}$$

Basic Idea

 $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$ Abstract (aka "naming" atoms)

Basic Idea

 $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$ Abstract (aka "naming" atoms)

Solver

 $x \ge 0, y = x + 1, y < 1$

Basic Idea

 $x \ge 0, y = x + 1, (y > 2 \lor y < 1)$ Abstract (aka "naming" atoms)

New Lemma $\neg p_1 \lor \neg p_2 \lor \neg p_4$ Unsatisfiable $x \ge 0, y = x + 1, y < 1$ Theory Solver

SAT + Theory solvers: Main loop

```
procedure SmtSolver(F)
   (F_{p}, M) := Abstract(F)
   loop
       (R, A) := SAT\_solver(F_p)
        if R = UNSAT then return UNSAT
        S := Concretize(A, M)
        (R, S') := Theory_solver(S)
        if R = SAT then return SAT
        L := New Lemma(S', M)
       Add L to F<sub>n</sub>
```

Basic Idea

F: $x \ge 0$, y = x + 1, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

State-of-the-art SMT solvers implement many improvements.

Incrementality

Send the literals to the Theory solver as they are assigned by the SAT solver

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1), p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2), p_1, p_2, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$$

Partial assignment is already Theory inconsistent.

Efficient Backtracking

We don't want to restart from scratch after each backtracking operation.

Efficient Lemma Generation (computing a small S')

(R, S') := Theory_solver(S)

When R = UNSAT (i.e., S is unsatisfiable), S' \subseteq S is also unsatisfiable

We say S' is redundant iff Exists S'' \subset S' which is also unsatisfiable.

Efficient Lemma Generation (computing a small S') Avoid lemmas containing redundant literals.

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$$

$$p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2),$$

$$p_1, p_2, p_3, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$$

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{array}{l} p_1 \equiv (x \geq 0), \ p_2 \equiv (y = x + 1), \\ p_3 \equiv (y > 2), \ p_4 \equiv (y < 1), \ p_5 \equiv (x < 2), \\ p_1, \ p_2 \ | \ p_1, \ p_2, \ (p_3 \lor p_4), \ (p_5 \lor \neg p_4) \\ & & & & \\ & & & \\ p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation \\ p_1, \ p_2, \ \neg p_4 \ | \ p_1, \ p_2, \ (p_3 \lor p_4), \ (p_5 \lor \neg p_4) \end{array}$$

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{array}{l} p_1 \equiv (x \geq 0), \ p_2 \equiv (y = x + 1), \\ p_3 \equiv (y > 2), \ p_4 \equiv (y < 1), \ p_5 \equiv (x < 2), \\ p_1, \ p_2 \mid \ p_1, \ p_2, \ (p_3 \lor p_4), \ (p_5 \lor \neg p_4) \\ & & & & \\ & & & \\ p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation \\ p_1, \ p_2, \ \neg p_4 \mid \ p_1, \ p_2, \ (p_3 \lor p_4), \ (p_5 \lor \neg p_4) \end{array}$$

Tradeoff between precision × **performance.**

Problem: our procedure for Equality + UF does not support:

- Incrementality
- **Efficient Backtracking**
- **Theory Propagation**
- Lemma Learning

Incrementality (main problem):

We were processing the disequalities after we processed **all** equalities.

$$p_1 \equiv a = b, p_2 \equiv b = c,$$

$$p_3 \equiv d = e, p_4 \equiv a = c$$

$$p_1, \neg p_4, p_2 \mid p_1, p_3 \lor \neg p_4, p_2 \lor p_4$$

$$a = b, a \neq c, b = c,$$

Incrementality (main problem):

We were processing the disequalities after we processed **all** equalities.

$$p_1 \equiv a = b, p_2 \equiv b = c,$$

$$p_3 \equiv d = e, p_4 \equiv a = c$$

$$p_1, \neg p_4, p_2 \mid p_1, p_3 \lor \neg p_4, p_2 \lor p_4$$

$$a = b, a \neq c, b = c,$$

Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

```
a = b, a \neq c
b c
a
diseqs[b] = { a \neq c }
diseqs[c] = { a \neq c }
```


Incrementality

Store the disequalities of a constant.

С

Very similar to the structure occurrences.

a = b, a ≠ c

b

When we merge two equivalence classes, we must merge the sets diseqs. (circular lists again!)

а

diseqs[b] = $\{a \neq c\}$ diseqs[c] = $\{a \neq c\}$

Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

 $a = b, a \neq c$

b

When we merge two equivalence classes, we must merge the sets diseqs. (circular lists again!)

а

diseqs(b) = { $a \neq c$ } diseqs(c) = { $a \neq c$ }

С

Before merging two equivalence classes, traverse one (the smallest) set of diseqs. (track the size of diseqs!)

Backtracking

Option 1: functional data-structures (too slow).

- Option 2: trail stack (aka undo stack, fine grain backtracking)
 - Associate an undo operation to each update operation.

"Log" all update operations in a stack.

During backtracking execute the associated undo operations.

Backtracking

We can do better: coarse grain backtracking. Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).

Backtracking

We can do better: coarse grain backtracking. Minimize the size of the undo stack. Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

Backtracking We can do b Minimiz Do not t

A New design possibility:
 A New design possibility:
 A We do not need to merge occurrences and diseqs.
 A We can access all occurrences and diseqs by
 A Traversing the next fields.

Let us change the union-fina .

ructure a little bit.

Before:

Fields: find, size

а

After:

Fields: root, next, size

New union-find:

New union-find:

What was updated? root[s], root[r], next[b], next[s], size[b]

New union-find:

What about the congruence table?

hash table used to implement the congruence rule.

Let us use an additional field cg.

It is only relevant for subterms: $v_3 \equiv f(a, v_1)$

Invariant: a constant (e.g., v_3) is in the table iff $cg[v_3] = v_3$

Otherwise, $cg[v_3]$ contains the subterm congruent to v_3

Example:

 $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$ Assume v_3 and v_4 are congruent (i.e., a = b and v1 = v2) Moreover, v_3 is in the congruence table. Then: $cg[v_4] = v_3$ and $cg[v_3] = v_3$

Research

```
procedure Merge(a, b)
     a<sub>r</sub> := root[a]; b<sub>r</sub> := root[b]
     if a<sub>r</sub> = b<sub>r</sub> then return
     if not CheckDiseqs(a<sub>r</sub>, b<sub>r</sub>) then return
     if size[a] < size[b] then swap a, b; swap a, b,
     AddToTrailStack(MERGE, b<sub>r</sub>)
     RemoveParentsFromHashTable(b<sub>r</sub>)
     c := b_r
     do
            root[c] := a_r
            c := next[c]
     while c \neq b_r
     ReinsertParentsToHashTable(b<sub>r</sub>)
     swap next[a<sub>r</sub>], next[b<sub>r</sub>]
     size[a_r] := size[a_r] + size[b_r]
```

Research

```
procedure UndoMerge(b<sub>r</sub>)
    a_r := root[b_r]
    size[a_r] := size[a_r] - size[b_r]
     swap next[a<sub>r</sub>], next[b<sub>r</sub>]
    RemoveParentsFromHashTable(b<sub>r</sub>)
    c := b_r
    do
           root[c] := b_r
           c := next[c]
    while c \neq b_r
    for each parent p of b<sub>r</sub>
           if p = cg[p] or not congruent(p, cg[p])
              add p to hash table
              cg[p] := p
```


Research

Propagating equalities (and disequalities)

Store the atom occurrences of a constant.

 $p_1 \equiv a = b, p_2 \equiv b = c,$ $p_3 \equiv d = e, p_4 \equiv a = c$

atom_occs[a] = { p_1, p_4 } atom_occs[b] = { p_1, p_2 } atom_occs[c] = { p_2, p_4 } atom_occs[d] = { p_3 } atom_occs[e] = { p_4 } When merging or adding new disequalities traverse these sets.

Propagating disequalities (hard case)

 $v_1 \equiv f(a, b), v_2 \equiv f(c, d)$ Assume we know that

 $v_1 \neq v_2$ a = c Then, b \neq d

More about that later.

Deciding Equality + (uninterpreted) Functions Efficient Lemma Generation (computing a small S')

In EUF (equality + UF) a minimal unsatisfiable set is composed on: n equalities

1 disequality

It is easy to find the disequality $a \neq b$.

So, our problem consists in finding the minimal set of equalities that implies a = b.

Efficient Lemma Generation (computing a small S')

First idea:

If a = b is implied by a set of equalities, then a and b are in the same equivalence class.

Store all equalities used to "create" the equivalence class.

 $p_1 \equiv (a = c), p_2 \equiv (b = c),$ $p_3 \equiv (s = r), p_4 \equiv (c = r)$ $p_1, p_2, p_3, p_4, \dots \mid \dots$

Too imprecise for justifying a = b. We need only p₁, p₂.

The equivalence class was "created" using p_1 , p_2 , p_3 , p_4

Efficient Lemma Generation (computing a small S')

Second idea: Store a "proof tree".

Each constant c has a non-redundant "proof" for c = root[c]. The proof is a path from c to root[c]

$$p_1 \equiv (a = c), p_2 \equiv (b = c),$$

 $p_3 \equiv (s = r), p_4 \equiv (c = r)$

procedure Merge(a, b, p_i)
a_r := root[a]; b_r := root[b]
if a_r = b_r then return
if not CheckDiseqs(a_r, b_r) then return
if size[a] < size[b] then swap a, b; swap a_r, b_r
InvertPathFrom(b, b_r); AddProofEdge(b, a, p_i)
AddToTrailStack(MERGE, b_r, b)

•••

Extract a non redundant proof for a = r, a = b and a = s.

What about congruence?

New form of justification for an edge in the "proof tree".

What about congruence?

New form of justification for an edge in the "proof tree".

When computing the "proof" for $a = v_2$

Recursive call for computing the proof for $v_1 = v_2$ Result: {p₁, p₂}

Research

The new algorithm may compute redundant proofs for EUF. Using notation $a \stackrel{p}{=} b$ for $p \equiv a = b$, and p assigned by SAT solver

$$f_{1}(a_{1}) \stackrel{p_{1}}{=} a_{1} \stackrel{q_{1}}{=} a_{2} \stackrel{s_{1}}{=} f_{1}(a_{5})$$

$$f_{2}(a_{1}) \stackrel{p_{2}}{=} a_{2} \stackrel{q_{2}}{=} a_{3} \stackrel{s_{2}}{=} f_{2}(a_{5})$$

$$f_{3}(a_{1}) \stackrel{p_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4} \stackrel{s_{3}}{=} f_{3}(a_{5})$$

$$f_{4}(a_{1}) \stackrel{p_{4}}{=} a_{4} \stackrel{q_{4}}{=} a_{5} \stackrel{s_{4}}{=} f_{4}(a_{5})$$

The new algorithm may compute redundant proofs for EUF. Using notation $a \stackrel{p}{=} b$ for $p \equiv a = b$, and p assigned by SAT solver

$f_1(a_1) \stackrel{p_1}{=} a_1 \stackrel{q_1}{=} a_2 \stackrel{s_1}{=} f_1(a_5)$
$f_2(a_1) \stackrel{p_2}{=} a_2 \stackrel{q_2}{=} a_3 \stackrel{s_2}{=} f_2(a_5)$
$f_3(a_1) \stackrel{p_3}{=} a_3 \stackrel{q_3}{=} a_4 \stackrel{s_3}{=} f_3(a_5)$
$f_4(a_1) \stackrel{p_4}{=} a_4 \stackrel{q_4}{=} a_5 \stackrel{s_4}{=} f_4(a_5)$

Two non redundant proofs $f_2(a_1) = f_2(a_5)$: { p_2 , q_2 , s_2 } using transitivity { q_1 , q_2 , q_3 , q_4 } using congruence $a_1 = a_5$ Similar for f_1 , f_3 , f_4 .

The new algorithm may compute redundant proofs for EUF. Using notation $a \stackrel{p}{=} b$ for $p \equiv a = b$, and p assigned by SAT solver

 $\begin{array}{l} f_1(a_1) \stackrel{p_1}{=} a_1 \stackrel{q_1}{=} a_2 \stackrel{s_1}{=} f_1(a_5) & \text{Two non redundant proofs } f_2(a_1) = f_2(a_5): \\ f_2(a_1) \stackrel{p_2}{=} a_2 \stackrel{q_2}{=} a_3 \stackrel{s_2}{=} f_2(a_5) & \{p_2, q_2, s_2\} \text{ using transitivity} \\ f_3(a_1) \stackrel{p_3}{=} a_3 \stackrel{q_3}{=} a_4 \stackrel{s_3}{=} f_3(a_5) & \{q_1, q_2, q_3, q_4\} \text{ using congruence } a_1 = a_5 \\ f_4(a_1) \stackrel{p_4}{=} a_4 \stackrel{q_4}{=} a_5 \stackrel{s_4}{=} f_4(a_5) & \text{Similar for } f_1, f_3, f_4. \end{array}$

So there are 16 proofs for

 $g(f_1(a_1), f_2(a_1), f_3(a_1), f_4(a_1)) = g(f_1(a_5), f_2(a_5), f_3(a_5), f_4(a_5))$ The only non redundant is $\{q_1, q_2, q_3, q_4\}$

Some benchmarks are very hard for our procedure.

$$p_1 \lor a_1 = c_0, \neg p_1 \lor a_1 = c_1, \quad p_1 \lor b_1 = c_0, \neg p_1 \lor b_1 = c_1,$$

 $p_2 \lor a_2 = c_0, \neg p_2 \lor a_2 = c_1, \quad p_2 \lor b_2 = c_0, \neg p_2 \lor b_2 = c_1,$
...,

$$p_n \lor a_n = c_0, \neg p_n \lor a_n = c_1, \quad p_n \lor b_n = c_0, \neg p_n \lor b_n = c_1,$$

 $f(a_n, ..., f(a_2, a_1)...) \neq f(b_n, ..., f(b_2, b_1)...)$

Some benchmarks are very hard for our procedure.

$$p_1 \lor a_1 = c_0, \neg p_1 \lor a_1 = c_1, \quad p_1 \lor b_1 = c_0, \neg p_1 \lor b_1 = c_1,$$

 $p_2 \lor a_2 = c_0, \neg p_2 \lor a_2 = c_1, \quad p_2 \lor b_2 = c_0, \neg p_2 \lor b_2 = c_1,$
...,

$$p_n \lor a_n = c_0, \neg p_n \lor a_n = c_1, \quad p_n \lor b_n = c_0, \neg p_n \lor b_n = c_1,$$

 $f(a_n, ..., f(a_2, a_1)...) \neq f(b_n, ..., f(b_2, b_1)...)$

Lemmas learned during the search are not useful. They only use atoms that are already in the problem!

Some benchmarks are very hard for our procedure.

 $p_{1} \lor a_{1} = c_{0}, \neg p_{1} \lor a_{1} = c_{1}, \quad p_{1} \lor b_{1} = c_{0}, \neg p_{1} \lor b_{1} = c_{1},$ $p_{2} \lor a_{2} = c_{0}, \neg p_{2} \lor a_{2} = c_{1}, \quad p_{2} \lor b_{2} = c_{0}, \neg p_{2} \lor b_{2} = c_{1},$ $\dots,$ $p_{n} \lor a_{n} = c_{0}, \neg p_{n} \lor a_{n} = c_{1}, \quad p_{n} \lor b_{n} = c_{0}, \neg p_{n} \lor b_{n} = c_{1},$

$$f(a_n, ..., f(a_2, a_1)...) \neq f(b_n, ..., f(b_2, b_1)...)$$

Lemmas learned during the search are not useful. They only use atoms that are already in the problem! Solution: congruence rule suggests which new atoms must be created.

Some benchmarks are very hard for our procedure.

 $p_1 \lor a_1 = c_0, \neg p_1 \lor a_1 = c_1, \quad p_1 \lor b_1 = c_0, \neg p_1 \lor b_1 = c_1,$ $p_2 \lor a_2 = c_0, \neg p_2 \lor a_2 = c_1, \quad p_2 \lor b_2 = c_0, \neg p_2 \lor b_2 = c_1,$...,

$$p_n \lor a_n = c_0, \neg p_n \lor a_n = c_1, \quad p_n \lor b_n = c_0, \neg p_n \lor b_n = c_1,$$

 $f(a_n, ..., f(a_2, a_1)...) \neq f(b_n, ..., f(b_2, b_1)...)$

Solution: congruence rule suggests which new atoms must be created.

Whenever, the congruence rules

$$a_{i} = b_{i}, a_{j} = b_{j} \text{ implies } f(a_{i}, a_{j}) = f(b_{i}, b_{j})$$

is used to (immediately) deduce a conflict. Add the clause:
$$a_{i} \neq b_{i} \lor a_{j} \neq b_{j} \lor f(a_{i}, a_{j}) = f(b_{i}, b_{j})$$

Resea

Solution: congruence rule suggests which new atoms must be created.

Whenever, the congruence rules

$$a_i = b_i$$
, $a_j = b_j$ implies $f(a_i, a_j) = f(b_i, b_j)$

is used to (immediately) deduce a conflict. Add the clause:

$$a_i \neq b_i \lor a_j \neq b_j \lor f(a_i, a_j) = f(b_i, b_j)$$

"Dynamic Ackermannization"

It allows the solver to perform the missing disequality propagation.

Summary

We can solve the QF_UF SMT-Lib benchmarks!