Microsoft
Research

On Designing and Implementing Satisfiability Modulo Theory (SMT) Solvers SummerSchool 2009, Nancy Verification Technology, Systems and Applications

Leonardo de Moura
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools need some form of Symbolic Reasoning

Symbolic Reasoning

e Logic is "The Calculus of Computer Science" (Z. Manna).

Undecidable ($\mathrm{EOL}+\mathrm{LA}$)

- High computational complexity

Applications

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

Some Applications @ Microsoft

HAVOC

For ${ }^{\text {La }}$

Hyper-V
 Mrerosoft | Virtualization ${ }^{*}$

Terminator T-2

VCC

NModel

Vigilante

SpecExplorer

SAGE

F7

Test case generation

unsigned $\operatorname{GCD}(x, y)\{$
requires $(y>0)$;
while (true) \{
SSA unsigned $m=x \% y$;
if $(m==0)$ return y;

$$
x=y
$$

$$
y=m ;
$$

$$
\}
$$

\}

$$
\begin{array}{ll}
\left(y_{0}>0\right) \text { and } & x_{0}=2 \\
\left(m_{0}=x_{0} \% y_{0}\right) \text { and } & y_{0}=4 \\
\text { not }\left(m_{0}=0\right) \text { and } & m_{0}=2 \\
\left(x_{1}=y_{0}\right) \text { and } & x_{1}=4 \\
\left(y_{1}=m_{0}\right) \text { and } & y_{1}=2 \\
\left(m_{1}=x_{1} \% y_{1}\right) \text { and } & m_{1}=0 \\
\left(m_{1}=0\right) &
\end{array}
$$

We want a trace where the loop is executed twice.

Type checking

Signature:
div: int, $\{x:$ int $\mid x \neq 0\} \rightarrow$ int

Call site:
if $\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ then
return $\operatorname{div}(a, b)$

Verification condition
$\mathrm{a} \leq 1$ and $\mathrm{a} \leq \mathrm{b}$ implies $\mathrm{b} \neq 0$

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable modulo theory T ?

SMT solvers have specialized algorithms for T

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Arithmetic

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{ead}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Array Theory

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(r e a d(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Uninterpreted Functions

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

Substituting c by b+2

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\operatorname{read}(\text { write }(a, b, 3), b+2-2)) \neq f(b+2-b+1)
$$

Simplifying

Satisfiability Modulo Theories (SMT)

$b+2=c$ and $f(\operatorname{read}($ write $(a, b, 3), b)) \neq f(3)$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(\text { read }(\text { write }(a, b, 3), b)) \neq f(3)
$$

Applying array theory axiom forall $a, i, v:$ read(write $(a, i, v), i)=v$

Satisfiability Modulo Theories (SMT)

$$
b+2=c \text { and } f(3) \neq f(3)
$$

Inconsistent/Unsatisfiable

SMT-Lib

e Repository of Benchmarks
e http://www.smtlib.org

- Benchmarks are divided in "logics":
e QF_UF: unquantified formulas built over a signature of uninterpreted sort, function and predicate symbols.
e QF_UFLIA: unquantified linear integer arithmetic with uninterpreted sort, function, and predicate symbols.
- AUFLIA: closed linear formulas over the theory of integer arrays with free sort, function and predicate symbols.

Ground formulas

For most SMT solvers: \boldsymbol{F} is a set of ground formulas

Many Applications

Bounded Model Checking
Test-Case Generation

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Microsoft ${ }^{*}$
Research

Little Engines of Proof

An SMT Solver is a collection of Little Engines of Proof

Examples:
SAT Solver (Daniel's lectures) Equality solver

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

d,e

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e, a \neq s
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction
$\left.|M|=\left\{\diamond_{1},\right\rangle_{2}\right\} \quad$ (universe, aka domain)

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}\right\} \quad \text { (universe, aka domain) } \\
M(a)=\star_{1} \text { (assignment) }
\end{gathered}
$$

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction
$\left.|\mathrm{M}|-\left\{\wedge_{1},\right\rangle_{2}\right\} \quad$ (universe, aka domain) $\mathrm{M}(\mathrm{a})=1$ (assignment)

Deciding Equality

$$
a=b, b=c, d=e, b=s, d=t, a \neq e
$$

Model construction

$$
\begin{gathered}
|M|=\left\{\rightharpoonup_{2}\right\} \quad \text { (universe, aka domain) } \\
M(a)=M(b)=M(c)=M(s)=\rightharpoonup_{1} \\
M(d)=M(e)=M(t)={ }_{2}
\end{gathered}
$$

Deciding Equality:
 Termination, Soundness, Completeness

- Termination: easy
- Soundness
e Invariant: all constants in a "ball" are known to be equal.
- The "ball" merge operation is justified by:
- Transitivity and Symmetry rules.
- Completeness
e We can build a model if an inconsistency was not detected.
e Proof template (by contradiction):
e Build a candidate model.
- Assume a literal was not satisfied.
e Find contradiction.

Deciding Equality:
 Termination, Soundness, Completeness

- Completeness
e We can build a model if an inconsistency was not detected.
e Instantiating the template for our procedure:
e Assume some literal c = d is not satisfied by our model.
\ominus That is, $\mathrm{M}(\mathrm{c}) \neq \mathrm{M}(\mathrm{d})$.
\ominus This is impossible, c and d must be in the same "ball".

$M(c)=M(d)={ }_{i}$

Deciding Equality:
 Termination, Soundness, Completeness

- Completeness
e We can build a model if an inconsistency was not detected.
e Instantiating the template for our procedure:
e Assume some literal c $\neq \mathrm{d}$ is not satisfied by our model.
- That is, $M(c)=M(d)$.
e Key property: we only check the disequalities after we processed all equalities.
e This is impossible, c and d must be in the different "balls"

$$
\begin{aligned}
& M(c)=\star_{i} \\
& M(d)=\star_{j}
\end{aligned}
$$

Deciding Equality+

 (uninterpreted) Functions$$
a=b, b=c, d=e, b=s, d=t, f(a, g(d)) \neq f(b, g(e))
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
a=b, b=c, d=e, b=s, d=t, f(a, g(d)) \neq f(b, g(e))
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f(b, g(e)) \\
v_{1} \equiv g(d)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f(b, g(e)) \\
v_{1} \equiv g(d)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f\left(b, v_{2}\right) \\
v_{1} \equiv g(d), v_{2} \equiv g(e)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality+

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, f\left(a, v_{1}\right) \neq f\left(b, v_{2}\right) \\
v_{1} \equiv g(d), v_{2} \equiv g(e)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
a=b, b & =c, d=e, b=s, d=t, v_{3} \neq f\left(b, v_{2}\right) \\
v_{1} & \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{aligned}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
a=b, b & =c, d=e, b=s, d=t, v_{3} \neq f\left(b, v_{2}\right) \\
v_{1} & \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{aligned}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

First Step: "Naming" subterms

Congruence Rule:
$x_{1}=y_{1}, \ldots, x_{n}=y_{n}$ implies $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t V_{1}

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t V_{1} v_{2}Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } g(d)=g(e)
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } v_{1}=v_{2}
\end{gathered}
$$

Deciding Equality + (uninterpreted) Functions

We say:

v_{1} and v_{2} are congruent.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right)
\end{gathered}
$$

a, b, c, s d,e,t

$$
\mathrm{v}_{1}, \mathrm{v}_{2}
$$

V_{4}

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \operatorname{implies} f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
d=e \text { implies } v_{1}=v_{2}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } f\left(a, v_{1}\right)=f\left(b, v_{2}\right)
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t

Congruence Rule:

$$
\begin{gathered}
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
a=b, v_{1}=v_{2} \text { implies } v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, v_{3} \neq v_{4} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{gathered}
$$

a, b, c, s

 d,e,t
$\mathrm{V}_{3}, \mathrm{~V}_{4}$

Unsatisfiable

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Changing the problem

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

a, b, c, s

 d,e,t $v_{1}, v_{2}$$$
\mathrm{v}_{3}, \mathrm{v}_{4}
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

 (uninterpreted) Functions$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

a, b, c, s

 d,e,t $v_{1}, v_{2}$$$
\mathrm{V}_{3}, \mathrm{~V}_{4}
$$

Congruence Rule:

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n} \text { implies } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}\right\} \\
M(a)=M(b)=M(c)=M(s)={ }_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

Deciding Equality +

(uninterpreted) Functions

e Building the interpretation for function symbols

- $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $|\mathrm{M}|$
- Defined as:
$\mathrm{M}(\mathrm{g})\left(\boldsymbol{*}_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)=\star_{i} \\
& M(v)=\star_{j}
\end{aligned}
$$

$=\star_{k}$, otherwise $\left({ }_{k}\right.$ is an arbitrary element $)$

- Is $\mathrm{M}(\mathrm{g})$ well-defined?

Deciding Equality +

(uninterpreted) Functions

- Building the interpretation for function symbols
- $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $|\mathrm{M}|$
- Defined as:
$M(g)\left(*_{i}\right)=*_{j}$ if there is $v \equiv g(a)$ s.t.

$$
\begin{aligned}
& M(a)=i \\
& M(v)=
\end{aligned}
$$

$=\star_{k}$, otherwise $\left(\star_{k}\right.$ is an arbitrary element)

- Is $\mathrm{M}(\mathrm{g})$ well-defined?
- Problem: we may have

$$
v \equiv g(a) \text { and } w \equiv g(b) \text { s.t. }
$$

$$
M(a)=M(b)=\leqslant_{1} \text { and } M(v)=\diamond_{2} \neq M(w)
$$

So, is $\mathrm{M}(\mathrm{g})\left(\rightharpoonup_{1}\right)={ }_{2}$ or $\mathrm{M}(\mathrm{g})\left(\rightharpoonup_{1}\right)={ }_{3}$?

Deciding Equality +

(uninterpreted) Functions

- Building the interpretation for function symbols
- $\mathrm{M}(\mathrm{g})$ is a mapping from $|\mathrm{M}|$ to $\left.\right|^{\text {nı }}$
- Defined as:

This is impossible because of
$\mathrm{M}(\mathrm{g})\left(\star_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}$ the congruence rule!

$$
\mathrm{M}(\mathrm{a})=\mathrm{i}_{\mathrm{i}} \quad \mathrm{a} \text { and } \mathrm{b} \text { are in the same "ball", }
$$

$$
M(v)={ }_{j} \quad \text { then so are } v \text { and } w
$$

$={ }_{k}$, otherwise (\rangle_{k} i_ \ldots
e Is $\mathrm{M}(\mathrm{g})$ well-defined?

- Problem: we may have

$$
v \equiv g(a) \text { and } w \equiv g(b) \text { s.t. }
$$

$$
M(a)=M(b)=\leqslant_{1} \text { and } M(v)=\diamond_{2} \neq M(w)
$$

$$
\text { So, is } \mathrm{M}(\mathrm{~g})\left(\rightharpoonup_{1}\right)=\star_{2} \text { or } \mathrm{M}(\mathrm{~g})\left(\rightharpoonup_{1}\right)=\diamond_{3} ?
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
|M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\}
$$

$$
\begin{gathered}
M(a)=M(b)=M(c)=M(s)={ }_{1} \\
M(d)=M(e)=M(t)={ }_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\star_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)={ }_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
|M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\}
$$

$$
\begin{gathered}
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)=\star_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)=\star_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4} \\
M(g)=\left\{\star_{2}\right\}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\star_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)={ }_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
|M|=\left\{\star_{1}, \star_{2}, \star_{3}, \star_{4}\right\}
$$

$$
\begin{gathered}
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)=\star_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)=\star_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)=\star_{4} \\
M(g)=\left\{\star_{2} \rightarrow{ }_{3}\right\}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)=\star_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2},{ }_{4}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)=\star_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)=\star_{3} \\
\left.M\left(v_{3}\right)=M\left(v_{4}\right)={ }_{4}, \text { else } \rightarrow{ }_{1}\right\}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)={ }_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality +

(uninterpreted) Functions

$$
\begin{aligned}
& a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
& v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)
\end{aligned}
$$

Model construction:

$$
\begin{gathered}
|M|=\left\{\star_{1}, \star_{2}, \star_{4}\right\} \\
M(a)=M(b)=M(c)=M(s)=\star_{1} \\
M(d)=M(e)=M(t)=\star_{2} \\
M\left(v_{1}\right)=M\left(v_{2}\right)={ }_{3} \\
M\left(v_{3}\right)=M\left(v_{4}\right)=\star_{4} \\
M(g)=\left\{\star_{2} \rightarrow \text { else } \rightarrow{ }_{1}\right\} \\
M(f)=\left\{\left(\star_{1}, \star_{3}\right) \rightarrow \text { else } \rightarrow \star_{1}\right\}
\end{gathered}
$$

$\mathrm{M}(\mathrm{g})\left(\diamond_{\mathrm{i}}\right)=\star_{\mathrm{j}}$ if there is $\mathrm{v} \equiv \mathrm{g}(\mathrm{a})$ s.t.

$$
\begin{aligned}
& M(a)={ }_{i} \\
& M(v)={ }_{j}
\end{aligned}
$$

$={ }_{k}$, otherwise

Deciding Equality + (uninterpreted) Functions

What about predicates?

$$
p(a, b), \quad \neg p(c, b)
$$

Deciding Equality + (uninterpreted) Functions

What about predicates?

$$
p(a, b), \quad \neg p(c, b)
$$

$$
f_{p}(a, b)=T, \quad f_{p}(c, b) \neq T
$$

Ackermannization

It is possible to eliminate function symbols using a method called Ackermannization.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right) \\
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
d \neq e \vee v_{1}=v_{2}, \\
a \neq v_{1} \vee b \neq v_{2} \vee v_{3}=v_{4}
\end{gathered}
$$

Ackermannization

It is possible to eliminate function symbols using a method called Ackermannization.

$$
\begin{gathered}
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
v_{1} \equiv g(d), v_{2} \equiv g(e), v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right) \\
a=b, b=c, d=e, b=s, d=t, a \neq v_{4}, v_{2} \neq v_{3} \\
d \neq e \vee v_{1}=v_{2} \\
a \neq v_{1} \vee b \neq v_{2} \vee v_{3}=v_{4}
\end{gathered}
$$

Deciding Equality + (uninterpreted) Functions

It is possible to implement our procedure in $O(n \log n)$

Deciding Equality + (uninterpreted) Functions

d,e,t Sets (equivalence classes)

$$
d, e
$$

Deciding Equality + (uninterpreted) Functions

d,e,t Sets (equivale Key observation: The sets are disjoint!

$d, e \cup t=d, e, t \quad$ Union

Deciding Equality + (uninterpreted) Functions

Union-Find data-structure
Every set (equivalence class) has a root element (representative).

Deciding Equality + (uninterpreted) Functions

Union-Find data-structure

S

$$
a, b, c, s, r
$$

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

$$
\begin{aligned}
& a_{1} \longrightarrow a_{2} \cup a_{3}=a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \cup a_{4}=a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow a_{4} \\
& \ldots \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow \ldots \longrightarrow a_{n-1} \cup a_{n}= \\
& a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow \ldots \longrightarrow a_{n-1} \longrightarrow a_{n}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

$$
\begin{aligned}
& a_{1} \longrightarrow a_{2} \cup a_{3}=a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \\
& \begin{array}{l}
a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \cup a_{4}=a_{1} \longrightarrow a_{2} \longleftarrow a_{3} \\
\ldots
\end{array}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Tracking the equivalence classes size is important!

Each constant has two fields: find and size.

Deciding Equality +

 (uninterpreted) FunctionsImplementing the congruence rule.
Occurrences of a constant: we say a occurs in viff $v \equiv f(\ldots, a, \ldots)$
When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

occurrences $[b]=\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$ occurrences[s] = $\left\{\mathrm{v}_{3} \equiv \mathrm{f}(\mathrm{r})\right\}$

Deciding Equality + (uninterpreted) Functions

 Implementing the congruence rule.Occurrences of a constant: we say a occurs in viff $v \equiv f(\ldots, a, \ldots)$
When we "merge" two equivalence classes we can traverse these occurrences to find new congruences.

Inefficient version:
for each v in occurrences(b) for each w in occurrences(s) if v and w are congruent add (v, w) to todo queue
occurrences $(b)=\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$ occurrences(s) $=\left\{v_{3} \equiv f(r)\right\}$

A queue of pairs that need to be merged.

Deciding Equality +

 (uninterpreted) Functions
occurrences $[b]=\left\{\mathrm{v}_{1} \equiv \mathrm{~g}(\mathrm{~b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{a})\right\}$ occurrences $[\mathrm{s}]=\left\{\mathrm{v}_{3} \equiv \mathrm{f}(\mathrm{r})\right\}$

We also need to merge occurrences[b] with occurrences[s]. This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

Deciding Equality +
 (uninterpreted) Functions

Avoiding the nested loop: for each v in occurrences[b]
for each w in occurrences[s]

Use a hash table to store the elements $v_{1} \equiv f\left(a_{1}, \ldots, a_{n}\right)$. Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence class) roots of the arguments.
$\operatorname{hash}\left(\mathrm{v}_{1}\right)=$ hash-tuple(id(f), id(root $\left.\left.\left(\mathrm{a}_{1}\right)\right), \ldots, \operatorname{id}\left(\operatorname{root}\left(\mathrm{a}_{\mathrm{n}}\right)\right)\right)$

Deciding Equality +
 (uninterpreted) Functions

Avoiding the nested loop: for each v in occurrences(b)
for each w in occurrences(s)

Use a hash table to hash-tuple can be the Jenkin's Each constant has a Compute hash cod hash function for strings. Just adding the ids produces a very bad hash-code!
$\left., \ldots, a_{n}\right)$. mber). equivalence class) roots of the argur
$\operatorname{hash}\left(\mathrm{v}_{1}\right)=$ hash-tuple(id(f), id(root $\left.\left.\left(\mathrm{a}_{1}\right)\right), \ldots, \operatorname{id}\left(\operatorname{root}\left(\mathrm{a}_{\mathrm{n}}\right)\right)\right)$

Deciding Equality +
 (uninterpreted) Functions

Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a_{1} and a_{2} Assume a_{2} is smaller than a_{1}
Before merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right]$
remove v from the hash table (its hashcode will change)
After merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right.$]
if there is w congruent to v in the hash-table add (v, w) to todo queue else add v to hash-table

Deciding Equality +

(uninterpreted) Functi Trick:
Use dynamic arrays to
Efficient implementation of the congrı represent the occurrences
Merging the equivalences classes with roc and a_{2}
Assume a_{2} is smaller than a_{1}
Before merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right]$
remove v from the hash table (its hashcode will change)
After merging the equivalence classes: a_{1} and a_{2} for each v in occurrences $\left[a_{2}\right.$]
if there is w congruent to v in the hash-table add (v, w) to todo queue else add v to hash-table
add v to occurrences $\left(a_{1}\right)$

Deciding Equality + (uninterpreted) Functions

The efficient version is not optimal (in theory).
Problem: we may have $v \equiv f\left(a_{1}, \ldots, a_{n}\right)$ with "huge" n.

Solution: currying
Use only binary functions, and represent $f\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ as
$f\left(a_{1}, h\left(a_{2}, h\left(a_{3}, a_{4}\right)\right)\right)$

This is not necessary in practice, since the n above is small.

Deciding Equality + (uninterpreted) Functions

Each constant has now three fields:
find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Naïve Solution: Convert to DNF

$$
(x \geq 0, y=x+1, y>2) \vee(x \geq 0, y=x+1, y<1)
$$

Case Analysis

Many verification/analysis problems require: case-analysis

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Naïve Solution: Convert to DNF

$$
(x \geq 0, y=x+1, y>2) \vee(x \geq 0, y=x+1, y<1)
$$

Too Inefficient!
(exponential blowup)

Microsoft ${ }^{*}$
Research

SMT : Basic Architecture

SAT (propositional checkers): Case Analysis

$$
\begin{array}{rr}
p \vee q \\
p \vee \neg, \\
\neg p \vee \\
\neg p & q
\end{array},
$$

SAT (propositional checkers): Case Analysis

Assignment:
p = false,
q = false

SAT (propositional checkers): Case Analysis

Assignment:
p = false,
$q=$ true

SAT (propositional checkers): Case Analysis

$$
\begin{array}{r}
p \vee q, \\
p \vee \neg q, \\
\neg p \vee q, \\
\neg p \vee \neg q
\end{array}
$$

Assignment:
 p = true,
 q = false

SAT (propositional checkers): Case Analysis

$p \vee q$,
$p \vee \neg q$,
$\neg p \vee q$,
$\neg p \vee \neg q$

Assignment:
 p = true,
 q = true

Partial model

Set of clauses

DPLL

Guessing

$$
p \mid p \vee q, \neg q \vee r
$$

$$
p, \neg q \mid p \vee q, \neg q \vee r
$$

DPLL

Deducing

$$
\begin{aligned}
& p \mid p \vee q, \neg p \vee s \\
& p, s \mid p \vee q, \neg p \vee s
\end{aligned}
$$

DPLL

Backtracking

$$
p, \neg s, q \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

$$
p, s \mid p \vee q, s \vee q, \neg p \vee \neg q
$$

Modern DPLL

e Efficient indexing (two-watch literal)
e Non-chronological backtracking (backjumping)

- Lemma learning

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) \quad p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)
$$

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

Assignment

$$
\begin{aligned}
& \text { ASSIgnment } \\
& p_{1}, p_{2}, \neg p_{3}, p_{4} \square \begin{array}{l}
x \geq 0, y=x+1 \\
\neg(y>2), y<1
\end{array}
\end{aligned}
$$

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

Assignment

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

Basic Idea

$$
x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)

$$
\begin{array}{ll}
p_{1}, p_{2},\left(p_{3} \vee p_{4}\right) & p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1)
\end{array}
$$

SAT

Solver

Assignment

$$
p_{1}, p_{2}, \neg p_{3}, p_{4} \square \begin{aligned}
& x \geq 0, y=x+1 \\
& \neg(y>2), y<1
\end{aligned}
$$

New Lemma

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{4}
$$

Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

SAT + Theory solvers: Main loop

procedure SmtSolver(F) $\left(F_{p}, M\right):=\operatorname{Abstract}(F)$ loop
$(R, A):=$ SAT_solver $\left(F_{p}\right)$
if $R=$ UNSAT then return UNSAT
S := Concretize(A, M)
(R, S') := Theory_solver(S)
if $R=S A T$ then return SAT
L := New_Lemma(S', M)
Add L to F_{p}

SAT + Theory solvers

Basic Idea

$$
F: x \geq 0, y=x+1,(y>2 \vee y<1)
$$

Abstract (aka "naming" atoms)
$F_{p}: p_{1}, p_{2},\left(p_{3} \vee p_{4}\right)$
$M: p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1)$,

$$
p_{3} \equiv(y>2), p_{4} \equiv(y<1)
$$

A: Assignment
$p_{1}, p_{2}, \neg p_{3}, p_{4}$
$S: x \geq 0, y=x+1$, $\neg(y>2), y<1$

L: New Lemma
$\neg \mathfrak{p}_{1} \vee \neg \mathfrak{p}_{2} \vee \neg \mathfrak{p}_{4}$

S': Unsatisfiable
$x \geq 0, y=x+1, y<1$

Theory
Solver

SAT + Theory solvers

SAT + Theory solvers

State-of-the-art SMT solvers implement many improvements.

SAT + Theory solvers

Incrementality

Send the literals to the Theory solver as they are assigned by the SAT solver

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2}, p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

Partial assignment is already Theory inconsistent.

SAT + Theory solvers

Efficient Backtracking

We don't want to restart from scratch after each backtracking operation.

Deciding Equality + (uninterpreted) Functions

Efficient Lemma Generation (computing a small S')
(R, S') := Theory_solver(S)

When $\mathrm{R}=$ UNSAT (i.e., S is unsatisfiable), $S^{\prime} \subseteq S$ is also unsatisfiable

We say S^{\prime} is redundant iff
Exists $S^{\prime \prime} \subset S^{\prime}$ which is also unsatisfiable.

SAT + Theory solvers

Efficient Lemma Generation (computing a small S') Avoid lemmas containing redundant literals.

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1) \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2}, p_{3}, p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

$$
\neg p_{1} \vee \neg p_{2} \vee \neg p_{3} \vee \neg p_{4} \backsim \quad \text { Imprecise Lemma }
$$

SAT + Theory solvers

Theory Propagation

It is the SMT equivalent of unit propagation.

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right) \\
& p_{1}, p_{2} \text { imply } \neg p_{4} \text { by theory propagation } \\
& p_{1}, p_{2}, \neg p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

SAT + Theory solvers

Theory Propagation

It is the SMT equivalent of unit propagation.

$$
\begin{aligned}
& p_{1} \equiv(x \geq 0), p_{2} \equiv(y=x+1), \\
& p_{3} \equiv(y>2), p_{4} \equiv(y<1), p_{5} \equiv(x<2), \\
& p_{1}, p_{2} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right) \\
& p_{1}, p_{2}, \neg p_{4} \mid p_{1}, p_{2},\left(p_{3} \vee p_{4}\right),\left(p_{5} \vee \neg p_{4}\right)
\end{aligned}
$$

Tradeoff between precision \times performance.

Deciding Equality + (uninterpreted) Functions

Problem: our procedure for Equality + UF does not support:
Incrementality
Efficient Backtracking
Theory Propagation
Lemma Learning

Deciding Equality + (uninterpreted) Functions

Incrementality (main problem):
We were processing the disequalities after we processed all equalities.

$$
\begin{aligned}
& p_{1} \equiv a=b, p_{2} \equiv b=c, \\
& p_{3} \equiv d=e, p_{4} \equiv a=c \\
& p_{1}, \neg p_{4}, p_{2} \mid p_{1}, p_{3} \vee \neg p_{4}, p_{2} \vee p_{4} \\
& a=b, a \neq c, b=c,
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality (main problem):
We were processing the disequalities after we processed all equalities.

$$
\begin{aligned}
& p_{1} \equiv a=b, p_{2} \equiv b=c, \\
& p_{3} \equiv d=e, p_{4} \equiv a=c \\
& p_{1}, \neg p_{4}, p_{2} \mid p_{1}, p_{3} \vee \neg p_{4}, p_{2} \vee p_{4} \\
& a=b, a \neq c, b=c,
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

$$
a=b, a \neq c
$$

$$
\begin{aligned}
& \operatorname{diseqs}[b]=\{a \neq c\} \\
& \operatorname{diseqs}[c]=\{a \neq c\}
\end{aligned}
$$

Deciding Equality + (uninterpreted) Functions

Incrementality

Store the disequalities of a constant.
Very similar to the structure occurrences.

Deciding Equality + (uninterpreted) Functions

Incrementality

Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence classes, we must merge the sets diseqs. (circular lists again!)
diseqs(b) $=\{a \neq c\}$ diseqs $(c)=\{a \neq c\}$

Before merging two equivalence classes, traverse one (the smallest) set of diseqs. (track the size of diseqs!)

Deciding Equality + (uninterpreted) Functions

Backtracking

Option 1: functional data-structures (too slow).
Option 2: trail stack (aka undo stack, fine grain backtracking) Associate an undo operation to each update operation.
"Log" all update operations in a stack.
During backtracking execute the associated undo operations.

Deciding Equality + (uninterpreted) Functions

Backtracking

We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Deciding Equality + (uninterpreted) Functions

Backtracking

We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

Before:

Fields: find, size

After:

Fields: root, next, size

Deciding Equality +

(uninterpreted) Functions

Backtracking
We can do b Minimiz traversing the next fields. Do not t
ructure a little bit.

Fields: find, size
Fields: root, next, size

Deciding Equality + (uninterpreted) Functions

New union-find:

Deciding Equality + (uninterpreted) Functions

New union-find:

> What was updated? root[s], root[r], next[b], next[s], size[b]

Deciding Equality + (uninterpreted) Functions

New union-find:

Microsoft ${ }^{*}$
Research

Deciding Equality + (uninterpreted) Functions

What about the congruence table?
hash table used to implement the congruence rule.
Let us use an additional field cg .
It is only relevant for subterms: $\mathrm{v}_{3} \equiv \mathrm{f}\left(\mathrm{a}, \mathrm{v}_{1}\right)$
Invariant: a constant (e.g., v_{3}) is in the table iff $\mathrm{cg}\left[\mathrm{v}_{3}\right]=\mathrm{v}_{3}$
Otherwise, $\mathrm{cg}\left[\mathrm{v}_{3}\right]$ contains the subterm congruent to v_{3}
Example:
$v_{3} \equiv f\left(a, v_{1}\right), v_{4} \equiv f\left(b, v_{2}\right)$
Assume v_{3} and v_{4} are congruent (i.e., $a=b$ and $v 1=v 2$)
Moreover, v_{3} is in the congruence table.
Then: $\operatorname{cg}\left[\mathrm{v}_{4}\right]=\mathrm{v}_{3}$ and $\operatorname{cg}\left[\mathrm{v}_{3}\right]=\mathrm{v}_{3}$

Deciding Equality +

(uninterpreted) Functions

procedure Merge(a, b)
$a_{r}:=\operatorname{root}[a] ; b_{r}:=\operatorname{root}[b]$
if $a_{r}=b_{r}$ then return
if not CheckDiseqs $\left(a_{r}, b_{r}\right)$ then return if size[a] < size[b] then swap a, b; swap a_{r}, b_{r} AddToTrailStack(MERGE, b_{r})
RemoveParentsFromHashTable(b_{r})
$\mathrm{c}:=\mathrm{b}_{\mathrm{r}}$
do

$$
\begin{aligned}
& \operatorname{root}[c]:=a_{r} \\
& c:=\operatorname{next}[c]
\end{aligned}
$$

while $c \neq b_{r}$
ReinsertParentsToHashTable(b_{r})
swap next[a_{r}], next[b_{r}]
$\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]+\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right]$

Deciding Equality +

(uninterpreted) Functions

procedure UndoMerge(b_{r})
$a_{r}:=\operatorname{root}\left[b_{r}\right]$
$\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]-\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right]$
swap next[a_{r}], next[b_{r}]
RemoveParentsFromHashTable(b_{r})
$\mathrm{c}:=\mathrm{b}_{\mathrm{r}}$
do

$$
\operatorname{root}[c]:=b_{r}
$$

$$
c:=n e x t[c]
$$

while $c \neq b_{r}$
for each parent p of b_{r}

$$
\text { if } p=c g[p] \text { or not congruent(} p, c g[p])
$$

add p to hash table
cg[p] := p

Deciding Equality + (uninterpreted) Functions

procedure UndoMerge $\left(b_{r}\right)$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{r}}:=\operatorname{root}\left[\mathrm{b}_{\mathrm{r}}\right] \\
& \operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]:=\operatorname{size}\left[\mathrm{a}_{\mathrm{r}}\right]-\operatorname{size}\left[\mathrm{b}_{\mathrm{r}}\right] \\
& \operatorname{swap} \operatorname{next}\left[\mathrm{a}_{\mathrm{r}}\right], \operatorname{next}\left[\mathrm{b}_{\mathrm{r}}\right]
\end{aligned}
$$

p was in the hash table
before and after the merge

while \quad| p was in the |
| :--- |
| before but n |
| merge. |

if $p=c g[p]$ or not congruent $p, c g[p])$
$\operatorname{cg}[p]:=p$

Microsoft ${ }^{*}$
Research

Deciding Equality + (uninterpreted) Functions

Propagating equalities (and disequalities)
Store the atom occurrences of a constant.

$$
\begin{aligned}
& p_{1} \equiv \mathrm{a}=\mathrm{b}, \mathrm{p}_{2} \equiv \mathrm{~b}=\mathrm{c}, \\
& \mathrm{p}_{3} \equiv \mathrm{~d}=\mathrm{e}, \mathrm{p}_{4} \equiv \mathrm{a}=\mathrm{c}
\end{aligned}
$$

$$
\text { atom_occs[a] }=\left\{p_{1}, p_{4}\right\}
$$

$$
\text { atom_occs }[b]=\left\{p_{1}, p_{2}\right\}
$$

$$
\text { atom_occs }[c]=\left\{p_{2}, p_{4}\right\}
$$

$$
\text { atom_occs[d] = \{ } \left.p_{3}\right\}
$$

$$
\text { atom_occs }[e]=\left\{p_{4}\right\}
$$

Deciding Equality +
 (uninterpreted) Functions

Propagating disequalities (hard case)
$v_{1} \equiv \mathrm{f}(\mathrm{a}, \mathrm{b}), \mathrm{v}_{2} \equiv \mathrm{f}(\mathrm{c}, \mathrm{d})$
Assume we know that

$$
\begin{aligned}
& v_{1} \neq v_{2} \\
& a=c
\end{aligned}
$$

Then, $b \neq d$

More about that later.

Deciding Equality +

 (uninterpreted) FunctionsEfficient Lemma Generation (computing a small S^{\prime})
In EUF (equality + UF) a minimal unsatisfiable set is composed on:
n equalities
1 disequality

It is easy to find the disequality $\mathrm{a} \neq \mathrm{b}$.
So, our problem consists in finding the minimal set of equalities that implies $\mathrm{a}=\mathrm{b}$.

Deciding Equality + (uninterpreted) Functions

Efficient Lemma Generation (computing a small S')
First idea:
If $a=b$ is implied by a set of equalities, then a and b are in the same equivalence class.

Store all equalities used to "create" the equivalence class.

$$
\begin{aligned}
& p_{1} \equiv(a=c), p_{2} \equiv(b=c), \\
& p_{3} \equiv(s=r), p_{4} \equiv(c=r) \\
& p_{1}, p_{2}, p_{3}, p_{4}, \ldots \mid \ldots
\end{aligned}
$$

Too imprecise for justifying $\mathrm{a}=\mathrm{b}$. We need only p_{1}, p_{2}.

The equivalence class was "created" using $p_{1}, p_{2}, p_{3}, p_{4}$

Deciding Equality +

(uninterpreted) Functions

Efficient Lemma Generation (computing a small S')
Second idea: Store a "proof tree".
Each constant c has a non-redundant "proof" for $\mathrm{c}=\operatorname{root}[\mathrm{c}]$.
The proof is a path from c to root[c]

$$
\begin{aligned}
& p_{1} \equiv(a=c), p_{2} \equiv(b=c), \\
& p_{3} \equiv(s=r), p_{4} \equiv(c=r)
\end{aligned}
$$

Microsoft ${ }^{*}$
Research

Deciding Equality +

 (uninterpreted) Functionsprocedure $\operatorname{Merge}\left(a, b, p_{i}\right)$
$a_{r}:=\operatorname{root}[a] ; b_{r}:=\operatorname{root}[b]$
if $a_{r}=b_{r}$ then return
if not CheckDiseqs $\left(a_{r}, b_{r}\right)$ then return
if size[a] < size[b] then swap a, b; swap a_{r}, b_{r} InvertPathFrom(b, b_{r}); AddProofEdge(b, a, p_{i})
AddToTrailStack(MERGE, $\left.\mathrm{b}_{\mathrm{r}}, \mathrm{b}\right)$

Deciding Equality + (uninterpreted) Functions

Microsoft*
Research

Deciding Equality + (uninterpreted) Functions

Extract a non redundant proof for $\mathrm{a}=\mathrm{r}, \mathrm{a}=\mathrm{b}$ and $\mathrm{a}=\mathrm{s}$.

Deciding Equality + (uninterpreted) Functions

What about congruence?
New form of justification for an edge in the "proof tree".

$$
v_{1} \equiv f(b), v_{2} \equiv f(c)
$$

Deciding Equality +

(uninterpreted) Functions

What about congruence?
New form of justification for an edge in the "proof tree".

$$
v_{1} \equiv f(b), v_{2} \equiv f(c)
$$

When computing the "proof" for $\mathrm{a}=\mathrm{v}_{2}$ Recursive call for computing the proof for $v_{1}=v_{2}$ Result: $\left\{p_{1}, p_{2}\right\}$

Deciding Equality + (uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{a}_{1}\right) \stackrel{\underline{p}_{1}}{=} \mathrm{a}_{1} \stackrel{\mathrm{q}_{1}}{=} \mathrm{a}_{2} \stackrel{\mathrm{~S}_{1}}{=} \mathrm{f}_{1}\left(\mathrm{a}_{5}\right) \\
& f_{2}\left(a_{1}\right) \stackrel{p_{2}}{=} a_{2}=a_{3}{ }^{\mathrm{S}_{2}} \mathrm{f}_{2}\left(a_{5}\right) \\
& f_{3}\left(a_{1}\right) \stackrel{\underline{p}_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4} \stackrel{S_{3}}{=} f_{3}\left(a_{5}\right) \\
& \mathrm{f}_{4}\left(\mathrm{a}_{1}\right) \stackrel{\mathrm{p}_{4}}{=} \mathrm{a}_{4} \stackrel{\mathrm{q}_{4}}{=} \mathrm{a}_{5}{ }^{\mathrm{S}_{4}} \mathrm{f}_{4}\left(\mathrm{a}_{5}\right)
\end{aligned}
$$

Deciding Equality +
 (uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver $f_{1}\left(a_{1}\right) \stackrel{p_{1}}{=} a_{1} q_{1} a_{2} \stackrel{S_{1}}{=} f_{1}\left(a_{5}\right) \quad$ Two non redundant proofs $f_{2}\left(a_{1}\right)=f_{2}\left(a_{5}\right)$: $f_{2}\left(a_{1}\right) \stackrel{p_{2}}{=} a_{2} \stackrel{q_{2}}{=} a_{3}=f_{2}\left(a_{5}\right) \quad\left\{p_{2}, q_{2}, s_{2}\right\}$ using transitivity $f_{3}\left(a_{1}\right) \stackrel{\underline{p}_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4}=f_{3}\left(a_{5}\right) \quad\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ using congruence $a_{1}=a_{5}$ $\mathrm{f}_{4}\left(\mathrm{a}_{1}\right) \stackrel{\mathrm{p}_{4}}{=} \mathrm{a}_{4} \stackrel{\mathrm{q}_{4}}{=} \mathrm{a}_{5}{ }_{5}^{\mathrm{S}_{4}} \mathrm{f}_{4}\left(\mathrm{a}_{5}\right) \quad$ Similar for $\mathrm{f}_{1}, \mathrm{f}_{3}, \mathrm{f}_{4}$.

Deciding Equality +
 (uninterpreted) Functions

The new algorithm may compute redundant proofs for EUF.
Using notation $\mathrm{a} \stackrel{\mathrm{p}}{=} \mathrm{b}$ for $\mathrm{p} \equiv \mathrm{a}=\mathrm{b}$, and p assigned by SAT solver
$f_{1}\left(a_{1}\right) \stackrel{p_{1}}{=} a_{1} \stackrel{q_{1}}{=} a_{2} \stackrel{S_{1}}{=} f_{1}\left(a_{5}\right) \quad$ Two non redundant proofs $f_{2}\left(a_{1}\right)=f_{2}\left(a_{5}\right)$: $f_{2}\left(a_{1}\right){ }^{p_{2}} a_{2}=a_{3}{ }_{3}=f_{2}\left(a_{5}\right) \quad\left\{p_{2}, q_{2}, s_{2}\right\}$ using transitivity $f_{3}\left(a_{1}\right) \stackrel{p_{3}}{=} a_{3} \stackrel{q_{3}}{=} a_{4}=f_{3}\left(a_{5}\right) \quad\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ using congruence $a_{1}=a_{5}$ $f_{4}\left(a_{1}\right) \stackrel{p_{4}}{=} a_{4} \xlongequal{q_{4}} a_{5}{ }_{5}=f_{4}\left(a_{5}\right) \quad$ Similar for f_{1}, f_{3}, f_{4}.

So there are 16 proofs for $g\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{1}\right), f_{3}\left(a_{1}\right), f_{4}\left(a_{1}\right)\right)=g\left(f_{1}\left(a_{5}\right), f_{2}\left(a_{5}\right), f_{3}\left(a_{5}\right), f_{4}\left(a_{5}\right)\right)$ The only non redundant is $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$

Deciding Equality +

 (uninterpreted) FunctionsSome benchmarks are very hard for our procedure.

$$
\begin{aligned}
& p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, \quad p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
& p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, \\
& p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1}, \\
& \ldots, \\
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Deciding Equality +

 (uninterpreted) FunctionsSome benchmarks are very hard for our procedure.

$$
\begin{aligned}
& p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, \quad p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
& p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, \quad p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1}, \\
& \ldots, \\
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Deciding Equality + (uninterpreted) Functions

Some benchmarks are very hard for our procedure.

$$
\begin{array}{ll}
p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, & p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, & p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1},
\end{array}
$$

$$
\begin{aligned}
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!
Solution: congruence rule suggests which new atoms must be created.

Deciding Equality + (uninterpreted) Functions

Some benchmarks are very hard for our procedure.

$$
\begin{array}{ll}
p_{1} \vee a_{1}=c_{0}, \neg p_{1} \vee a_{1}=c_{1}, & p_{1} \vee b_{1}=c_{0}, \neg p_{1} \vee b_{1}=c_{1}, \\
p_{2} \vee a_{2}=c_{0}, \neg p_{2} \vee a_{2}=c_{1}, & p_{2} \vee b_{2}=c_{0}, \neg p_{2} \vee b_{2}=c_{1},
\end{array}
$$

$$
\begin{aligned}
& p_{n} \vee a_{n}=c_{0}, \neg p_{n} \vee a_{n}=c_{1}, \quad p_{n} \vee b_{n}=c_{0}, \neg p_{n} \vee b_{n}=c_{1}, \\
& f\left(a_{n}, \ldots, f\left(a_{2}, a_{1}\right) \ldots\right) \neq f\left(b_{n}, \ldots, f\left(b_{2}, b_{1}\right) \ldots\right)
\end{aligned}
$$

Solution: congruence rule suggests which new atoms must be created.
Whenever, the congruence rules

$$
a_{i}=b_{i}, a_{j}=b_{j} \text { implies } f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)
$$

is used to (immediately) deduce a conflict. Add the clause:

$$
a_{i} \neq b_{i} \vee a_{j} \neq b_{j} \vee f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)
$$

Deciding Equality + (uninterpreted) Functions

Solution: congruence rule suggests which new atoms must be created.
Whenever, the congruence rules
$a_{i}=b_{i}, a_{j}=b_{j}$ implies $f\left(a_{i}, a_{j}\right)=f\left(b_{i}, b_{j}\right)$
is used to (immediately) deduce a conflict. Add the clause:
$\mathrm{a}_{\mathrm{i}} \neq \mathrm{b}_{\mathrm{i}} \vee \mathrm{a}_{\mathrm{j}} \neq \mathrm{b}_{\mathrm{j}} \vee \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{b}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right)$
"Dynamic Ackermannization"
It allows the solver to perform the missing disequality propagation.

Summary

We can solve the QF_UF SMT-Lib benchmarks!

