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Verification/Analysis tools 
need some form of 

Symbolic Reasoning



Logic is “The Calculus of Computer 
Science” (Z. Manna).

High computational complexity



Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing



VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer



unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA



Signature:
div : int, { x : int | x  0 }  int

SubtypeCall site:
if a  1 and a  b then

return div(a, b)

Verification condition
a  1 and a  b implies b  0



Is formula F satisfiable
modulo theory T ? 

SMT solvers have 

specialized algorithms for T



b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



Arithmetic

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



ArithmeticArray Theory

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c  and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)



b + 2 = c and  f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Substituting c by b+2



b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-b+1)

Simplifying



b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)



b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

Applying array theory axiom

forall a,i,v: read(write(a,i,v), i) = v



b + 2 = c and f(3) ≠ f(3)

Inconsistent/Unsatisfiable



Repository of Benchmarks

http://www.smtlib.org

Benchmarks are divided in “logics”:
QF_UF: unquantified formulas built over a signature of 
uninterpreted sort, function and predicate symbols.

QF_UFLIA: unquantified linear integer arithmetic with 
uninterpreted sort, function, and predicate symbols. 

AUFLIA: closed linear formulas over the theory of integer 
arrays with free sort, function and predicate symbols. 

http://www.smtlib.org/


For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking

Test-Case Generation



An SMT Solver is a collection of

Little Engines of Proof



An SMT Solver is a collection of

Little Engines of Proof

Examples:
SAT Solver (Daniel’s lectures)
Equality solver



a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s t



a = b, b = c, d = e, b = s, d = t, a e, a s

a b c d e s t



a = b, b = c, d = e, b = s, d = t, a e, a s

c d e s ta,b



a = b, b = c, d = e, b = s, d = t, a e, a s

c d e s ta,b



a = b, b = c, d = e, b = s, d = t, a e, a s

d e s ta,b,c



a = b, b = c, d = e, b = s, d = t, a e, a s

d e s ta,b,c



d,e

a = b, b = c, d = e, b = s, d = t, a e, a s

s ta,b,c



a = b, b = c, d = e, b = s, d = t, a e, a s

s ta,b,c d,e



a,b,c,s

a = b, b = c, d = e, b = s, d = t, a e, a s

td,e



a = b, b = c, d = e, b = s, d = t, a e, a s

td,ea,b,c,s



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t



a = b, b = c, d = e, b = s, d = t, a e, a s

a,b,c,s d,e,t

Unsatisfiable



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

1 2



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = 1  (assignment)

1 2



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = 1  (assignment)

1 2

Alternative notation:
aM = 1 



a = b, b = c, d = e, b = s, d = t, a e

a,b,c,s d,e,t

Model construction

|M| = {1 ,2}   (universe, aka domain)

M(a) = M(b) = M(c) = M(s) = 1

M(d) = M(e) = M(t) = 2

1 2



Termination: easy

Soundness
Invariant: all constants in a “ball” are known to be equal.

The “ball” merge operation is justified by:

Transitivity and Symmetry rules.

Completeness
We can build a model if an inconsistency was not detected.

Proof template (by contradiction):

Build a candidate model.

Assume a literal was not satisfied.

Find contradiction.



Completeness
We can build a model if an inconsistency was not detected.

Instantiating the template for our procedure:

Assume some literal c = d is not satisfied by our model.

That is, M(c) ≠ M(d).

This is impossible, c and d must be in the same “ball”.

c,d,…

i

M(c) = M(d) = i



Completeness
We can build a model if an inconsistency was not detected.

Instantiating the template for our procedure:

Assume some literal c ≠ d is not satisfied by our model.

That is, M(c) = M(d).

Key property: we only check the disequalities after we 
processed all equalities.

This is impossible, c and d must be in the different “balls”

c,…
M(c) = i

M(d) = j

i

d,…
j



a = b, b = c, d = e, b = s, d = t, f(a, g(d))  f(b, g(e))

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, g(d))  f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, g(e))

v1  g(d)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, g(e))

v1  g(d)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, v2)

v1  g(d), v2  g(e)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, f(a, v1)  f(b, v2)

v1  g(d), v2  g(e)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3  f(b, v2)

v1  g(d), v2  g(e), v3  f(a, v1)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 f(b, v2)

v1  g(d), v2  g(e), v3  f(a, v1)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

First Step: “Naming” subterms

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies g(d) = g(e)

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies v1 = v2

a,b,c,s d,e,t v1 v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

d = e implies v1 = v2

a,b,c,s d,e,t v1,v2 v3 v4

We say:
v1 and v2 are congruent.



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies f(a, v1) = f(b, v2)

a,b,c,s d,e,t v1,v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies v3 = v4

a,b,c,s d,e,t v1,v2 v3 v4



a = b, b = c, d = e, b = s, d = t, v3 v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a = b, v1 = v2 implies v3 = v4

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, v3  v4

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4

Unsatisfiable



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4

Changing the problem



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

a,b,c,s d,e,t v1,v2 v3,v4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4

Missing:
Interpretation for 
f and g.



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?

Problem: we may have 

v  g(a) and w  g(b)  s.t.

M(a) = M(b) = 1  and M(v) = 2 ≠ 3 = M(w)

So, is M(g)(1) = 2 or M(g)(1) = 3?



Building the interpretation for function symbols
M(g) is a mapping from |M| to |M|

Defined as:
M(g)(i) = j if there is v  g(a) s.t.

M(a) = i

M(v) = j

= k, otherwise (k is an arbitrary element)

Is M(g) well-defined?

Problem: we may have 

v  g(a) and w  g(b)  s.t.

M(a) = M(b) = 1  and M(v) = 2 ≠ 3 = M(w)

So, is M(g)(1) = 2 or M(g)(1) = 3?

This is impossible because of 
the congruence rule!
a and b are in the same “ball”, 
then so are v and w



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

a,b,c,s d,e,t v1,v2 v3,v4

1 2 3 4



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3, else →1}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

Model construction:

|M| = {1 ,2 ,3 ,4}  

M(a) = M(b) = M(c) = M(s) = 1 

M(d) = M(e) = M(t) = 2

M(v1) = M(v2) = 3

M(v3) = M(v4) = 4

M(g) = {2 →3, else →1}

M(f) = { (1 ,3) →4, else →1}

M(g)(i) = j if there is v  g(a) s.t.
M(a) = i

M(v) = j

= k, otherwise



What about predicates?

p(a, b),   p(c, b)



What about predicates?

p(a, b),   p(c, b)

fp(a, b) = T,    fp (c, b) ≠ T



It is possible to eliminate function symbols using a 
method called Ackermannization.

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

d  e  v1 = v2,

a  v1  b  v2  v3 = v4



It is possible to eliminate function symbols using a 
method called Ackermannization.

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

v1  g(d), v2  g(e), v3  f(a, v1) , v4  f(b, v2)

a = b, b = c, d = e, b = s, d = t, a v4, v2  v3

d  e  v1 = v2,

a  v1  b  v2  v3 = v4

Main Problem: quadratic blowup



It is possible to implement our procedure in

O(n log n)



d,e,t Sets (equivalence classes)

td,e  = d,e,t Union

a sa,b,c,s Membership



Sets (equivalence classes)d,e,t

td,e  = d,e,t Union

a sa,b,c,s Membership

Key observation:

The sets are disjoint!



Union-Find data-structure

Every set (equivalence class) has a root element 
(representative).

a,b,c,s,r

a

b

c

s

r

root

We say: find[c] is b



Union-Find data-structure

a,b,c

a

b

c

s

r

s,r

 =

a

b

c

s

r

a,b,c,s,r



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3 a4

…

a1 a2 a3  an =… an-1

a1 a2 a3 … an-1 an



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3

a4…

a1

a2

a3

 an
=

…
an-1 a1

a2

a3

…
an-1

an



Tracking the equivalence classes size is important!

a1 a2  a3 = a1 a2 a3

a1 a2 a3  a4 = a1 a2 a3

a4…

a1

a2

a3

 an
=

…
an-1 a1

a2

a3

…
an-1

an

We can do n merges in 
O(n log n)

Each constant has two fields: find and size.



Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff v  f(…,a,…)

When we “merge” two equivalence classes we can traverse these 
occurrences to find new congruences.

a

b

c

s

r



occurrences[b] = { v1  g(b), v2  f(a) }
occurrences[s] = { v3  f(r) }



Implementing the congruence rule.

Occurrences of a constant: we say a occurs in v iff v  f(…,a,…)

When we “merge” two equivalence classes we can traverse these 
occurrences to find new congruences.

a

b

c

s

r



occurrences(b) = { v1  g(b), v2  f(a) }
occurrences(s) = { v3  f(r) }

Inefficient version:
for each v in occurrences(b)

for each w in occurrences(s)
if v and w are congruent

add (v,w) to todo queue

A queue of pairs that need to 
be merged.



a

b

c

s

r



occurrences[b] = { v1  g(b), v2  f(a) }
occurrences[s] = { v3  f(r) }

We also need to merge occurrences[b] with occurrences[s].
This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

v1

v2

v3 =

v1

v2

v3



Avoiding the nested loop:
for each v in occurrences[b]

for each w in occurrences[s]
…

Use a hash table to store the elements v1  f(a1, …, an).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence 
class) roots of the arguments.

hash(v1) = hash-tuple(id(f), id(root(a1)), …, id(root(an)))



Avoiding the nested loop:
for each v in occurrences(b)

for each w in occurrences(s)
…

Use a hash table to store the elements v1  f(a1, …, an).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence 
class) roots of the arguments.

hash(v1) = hash-tuple(id(f), id(root(a1)), …, id(root(an)))

hash-tuple can be the Jenkin’s
hash function for strings.
Just adding the ids produces a 
very bad hash-code!



Efficient implementation of the congruence rule.

Merging the equivalences classes with roots: a1 and a2

Assume a2 is smaller than a1

Before merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

remove v from the hash table   (its hashcode will change)

After merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table



Efficient implementation of the congruence rule.

Merging the equivalences classes with roots: a1 and a2

Assume a2 is smaller than a1

Before merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

remove v from the hash table   (its hashcode will change)

After merging the equivalence classes: a1 and a2

for each v in occurrences[a2]

if there is w congruent to v in the hash-table

add (v,w) to todo queue

else add v to hash-table

add v to occurrences(a1)

Trick:
Use dynamic arrays to 
represent the occurrences



The efficient version is not optimal (in theory).

Problem: we may have v  f(a1, …, an) with “huge” n.

Solution: currying

Use only binary functions, and represent f(a1, a2,a3,a4) as

f(a1, h(a2, h(a3, a4)))

This is not necessary in practice, since the n above is small.



Each constant has now three fields:

find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 

Naïve Solution: Convert to DNF
(x  0, y = x + 1, y > 2)  (x  0, y = x + 1, y < 1) 



Many verification/analysis problems require: 
case-analysis

x  0, y = x + 1, (y > 2  y < 1) 

Naïve Solution: Convert to DNF
(x  0, y = x + 1, y > 2)  (x  0, y = x + 1, y < 1) 

Too Inefficient!
(exponential blowup)



SAT
Theory

Solvers
SMT

Equality + UF

Arithmetic

Bit-vectors

…

Case Analysis



p  q,
p  q,

p  q,
p  q



p  q,
p  q,

p  q,
p  q

Assignment:
p = false,
q = false



p  q,
p  q,

p  q,
p  q

Assignment:
p = false,
q = true



p  q,
p  q,

p  q,
p  q

Assignment:
p = true,
q = false



p  q,
p  q,

p  q,
p  q

Assignment:
p = true,
q = true



M | F

Partial model
Set of clauses



Guessing

p, q | p  q, q  r

p  |  p  q, q  r



Deducing

p, s| p  q, p  s

p |  p  q, p  s



Backtracking

p, s| p  q, s  q, p q

p, s, q |  p  q, s  q, p q



Efficient indexing (two-watch literal)

Non-chronological backtracking (backjumping)

Lemma learning

…



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1



Basic Idea
x  0, y = x + 1, (y > 2  y < 1) 

p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

Assignment
p1,  p2, p3, p4

x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4



Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA
Theory conflict



procedure SmtSolver(F)

(Fp, M) := Abstract(F)

loop

(R, A) := SAT_solver(Fp)

if R = UNSAT then return UNSAT

S := Concretize(A, M)

(R, S’) := Theory_solver(S)

if R = SAT then return SAT

L := New_Lemma(S’, M)

Add L to Fp



Basic Idea
F: x  0, y = x + 1, (y > 2  y < 1) 

Fp : p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

M: p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

A: Assignment
p1,  p2, p3, p4

S: x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

S’: Unsatisfiable

x  0, y = x + 1, y < 1

L: New Lemma

p1p2p4



F: x  0, y = x + 1, (y > 2  y < 1) 

Fp : p1,  p2, (p3  p4)

Abstract (aka “naming” atoms)

M: p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1)

SAT 
Solver

A: Assignment
p1,  p2, p3, p4

S: x  0, y = x + 1, 

(y > 2), y < 1

Theory
Solver

S’: Unsatisfiable

x  0, y = x + 1, y < 1

L: New Lemma

p1p2p4

procedure SMT_Solver(F)

(Fp, M) := Abstract(F)

loop

(R, A) := SAT_solver(Fp)

if R = UNSAT then return UNSAT

S = Concretize(A, M)

(R, S’) := Theory_solver(S)

if R = SAT then return SAT

L := New_Lemma(S, M)

Add L to Fp

“Lazy translation” 
to 

DNF



State-of-the-art SMT solvers implement 
many improvements.



Incrementality
Send the literals to the Theory solver as they are 

assigned by the SAT solver

p1,  p2,  p4 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

Partial assignment is already 
Theory inconsistent.



Efficient Backtracking
We don’t want to restart from scratch after each 

backtracking operation.



Efficient Lemma Generation (computing a small S’)

(R, S’) := Theory_solver(S)

When R = UNSAT (i.e., S is unsatisfiable), 

S’  S is also unsatisfiable

We say S’ is redundant

iff

Exists S’’  S’ which is also unsatisfiable.



Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1,  p2, p3, p4 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1p2 p3 p4 Imprecise Lemma



Theory Propagation
It is the SMT equivalent of unit propagation.

p1,  p2 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1, p2 imply p4 by theory propagation

p1,  p2 , p4 |  p1,  p2, (p3  p4), (p5  p4)



Theory Propagation
It is the SMT equivalent of unit propagation.

p1,  p2 |  p1,  p2, (p3  p4), (p5  p4)

p1  (x  0), p2  (y = x + 1), 

p3  (y > 2), p4  (y < 1), p5  (x < 2), 

p1, p2 imply p4 by theory propagation

p1,  p2 , p4 |  p1,  p2, (p3  p4), (p5  p4)

Tradeoff between precision  performance.



Problem: our procedure for Equality + UF does not support:

Incrementality

Efficient Backtracking

Theory Propagation

Lemma Learning



Incrementality (main problem): 

We were processing the disequalities after we processed all
equalities.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

p1, p4, p2 |  p1, p3  p4, p2  p4

a = b, a ≠ c, b = c, 



Incrementality (main problem): 

We were processing the disequalities after we processed all
equalities.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

p1, p4, p2 |  p1, p3  p4, p2  p4

a = b, a ≠ c, b = c, 



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs*b+ = , a ≠ c -

diseqs[c] = { a ≠ c -



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs*b+ = , a ≠ c -

diseqs[c] = { a ≠ c -

When we merge two equivalence 
classes, we must merge the sets 
diseqs. (circular lists again!)



Incrementality

Store the disequalities of a constant.

Very similar to the structure occurrences.

a = b, a ≠ c

a

b c

diseqs(b) = , a ≠ c -

diseqs(c) = { a ≠ c -

When we merge two equivalence 
classes, we must merge the sets 
diseqs. (circular lists again!)

Before merging two equivalence 
classes, traverse one (the smallest) set 
of diseqs. (track the size of diseqs!)



Backtracking

Option 1: functional data-structures (too slow).

Option 2: trail stack (aka undo stack, fine grain backtracking)

Associate an undo operation to each update operation.

“Log” all update operations in a stack.

During backtracking execute the associated undo operations.



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

a

b

c

s

r

Before:

a b c

s

r

After:

next element

Fields: find, size Fields: root, next, size



Backtracking

We can do better: coarse grain backtracking.

Minimize the size of the undo stack.

Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

a

b

c

s

r

Before:

a b c

s

r

After:

next element

Fields: find, size Fields: root, next, size

New design possibility:
We do not need to merge occurrences and diseqs.
We can access all occurrences and diseqs by 
traversing the next fields.



New union-find:

a

b

c

s

r



a

b

c s r

=



New union-find:

a

b

c

s

r



a

b

c s r

=

What was updated?
root[s], root[r],
next[b], next[s],
size[b]



New union-find:

a

b

c

s

r



a

b

c s r

=

What was updated?
root[c], root[r],
next[b], next[s],
size[b]

We only need to store 
s in the undo stack!



What about the congruence table?

hash table used to implement the congruence rule.

Let us use an additional field cg.

It is only relevant for subterms: v3  f(a, v1)

Invariant: a constant (e.g., v3) is in the table iff cg[v3] = v3

Otherwise, cg[v3] contains the subterm congruent to v3

Example:

v3  f(a, v1) , v4  f(b, v2)

Assume v3 and v4 are congruent (i.e., a = b and v1 = v2)

Moreover, v3 is in the congruence table.

Then: cg[v4] = v3 and cg[v3] = v3



procedure Merge(a, b)

ar := root[a]; br := root[b]

if ar = br then return

if not CheckDiseqs(ar, br) then return

if size[a] < size[b] then swap a, b; swap ar, br

AddToTrailStack(MERGE, br)

RemoveParentsFromHashTable(br)

c := br

do

root[c] := ar

c := next[c]

while c ≠ br

ReinsertParentsToHashTable(br)

swap next[ar], next[br]

size[ar] := size[ar] + size[br]



procedure UndoMerge(br)

ar := root[br]

size[ar] := size[ar] – size[br]

swap next[ar], next[br]

RemoveParentsFromHashTable(br)

c := br

do

root[c] := br

c := next[c]

while c ≠ br

for each parent p of br

if p = cg[p] or not congruent(p, cg[p])

add p to hash table

cg[p] := p



procedure UndoMerge(br)

ar := root[br]

size[ar] := size[ar] – size[br]

swap next[ar], next[br]

RemoveParentsFromHashTable(br)

c := br

do

root[c] := br

c := next[c]

while c ≠ br

for each parent p of br

if p = cg[p] or not congruent(p, cg[p])

add p to hash table

cg[p] := p

p was in the hash table 
before and after the merge

p was in the hash table 
before but not after the 
merge.



Propagating equalities (and disequalities)

Store the atom occurrences of a constant.

p1  a = b, p2  b = c, 
p3  d = e, p4  a = c

atom_occs[a] = { p1, p4 }
atom_occs[b] = { p1, p2 }
atom_occs[c] = { p2, p4 }
atom_occs[d] = { p3 }
atom_occs[e] = { p4 }

When merging or 
adding new 
disequalities traverse 
these sets.



Propagating disequalities (hard case)

v1  f(a, b), v2  f(c, d)

Assume we know that 

v1 ≠ v2

a = c

Then, b ≠ d

More about that later.



Efficient Lemma Generation (computing a small S’)

In EUF (equality + UF) a minimal unsatisfiable set is composed on:

n equalities

1 disequality

It is easy to find the disequality a ≠ b.

So, our problem consists in finding the minimal set of equalities 
that implies a = b.



Efficient Lemma Generation (computing a small S’)

First idea:

If a = b is implied by a set of equalities, then a and b are in the 
same equivalence class.

Store all equalities used to “create” the equivalence class.

a b c

s

r

p1  (a = c), p2  (b = c), 

p3  (s = r), p4  (c = r)

p1, p2, p3, p4, … | …

The equivalence class was “created” 
using p1, p2, p3, p4

Too imprecise for 
justifying a = b.
We need only p1, p2.



Efficient Lemma Generation (computing a small S’)

Second idea: Store a “proof tree”.

Each constant c has a non-redundant  “proof” for c = root*c+.

The proof is a path from c to root[c]

a

b

c

s

r



a

b

c s r

=

p1  (a = c), p2  (b = c), 

p3  (s = r), p4  (c = r)

p1

p2 p3

p1

p2

p3

p4



procedure Merge(a, b, pi)

ar := root[a]; br := root[b]

if ar = br then return

if not CheckDiseqs(ar, br) then return

if size[a] < size[b] then swap a, b; swap ar, br

InvertPathFrom(b, br); AddProofEdge(b, a, pi)

AddToTrailStack(MERGE, br , b)

…



a

c

b

r

… …

…

pn

p1 q1

qm

Non redundant proof for a = b

p1, …, pn, q1, …, qm

Common ancestor in 
the proof tree.



a

b

c s r

p1

p2

p3

p4

Extract a non redundant proof for a = r, a = b and a = s.



a

v2

v1

p1

cg

What about congruence?

New form of justification for an edge in the “proof tree”.

c

b

p2

v1  f(b), v2  f(c)



a

v2

v1

p1

cg

What about congruence?

New form of justification for an edge in the “proof tree”.

c

b

p2

v1  f(b), v2  f(c)

When computing the “proof” for a = v2

Recursive call for computing the proof for v1 = v2

Result: {p1, p2}



The new algorithm may compute redundant proofs for EUF.

Using notation a = b for p  a = b, and p assigned by SAT solver 

f1(a1) = a1 = a2 = f1(a5)

f2(a1) = a2 = a3 = f2(a5)

f3(a1) = a3 = a4 = f3(a5)

f4(a1) = a4 = a5 = f4(a5)
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Two non redundant proofs f2(a1) = f2(a5):

{p2, q2, s2} using transitivity

{q1, q2, q3, q4} using congruence a1 = a5

Similar for f1, f3, f4.
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Two non redundant proofs f2(a1) = f2(a5):

{p2, q2, s2} using transitivity

{q1, q2, q3, q4} using congruence a1 = a5

Similar for f1, f3, f4.

So there are 16 proofs for 

g(f1(a1), f2(a1), f3(a1), f4(a1)) = g(f1(a5), f2(a5), f3(a5), f4(a5))

The only non redundant is {q1, q2, q3, q4}



Some benchmarks are very hard for our procedure.

p1 a1 = c0, p1 a1 = c1,    p1 b1 = c0, p1 b1 = c1,

p2 a2 = c0, p2 a2 = c1,    p2 b2 = c0, p2 b2 = c1,

…,

pn an = c0, pn an = c1,    pn bn = c0, pn bn = c1,

f(an, …, f(a2, a1)…) ≠ f(bn, …, f(b2, b1)…)
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Solution: congruence rule suggests which new atoms must 
be created.

Whenever, the congruence rules

ai = bi, aj = bj implies f(ai, aj) = f(bi, bj)

is used to (immediately) deduce a conflict. Add the clause:
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“Dynamic Ackermannization”

It allows the solver to perform the missing disequality
propagation.
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We can solve the QF_UF SMT-Lib benchmarks!


