5 per A N (e S
} ; Microsoft

Nl e IL. Research
I = To N ap

On Designing and Implementing

Satisfiability Modulo Theory (SMT) Solvers

Summer School 2009, Nancy
\erification Technology, Systems and Applications

Leonardo de Moura
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning

Microsoft:
Research

Symbolic Reasoning

e Logicis “The Calculus of Computer Undecidable

Science” (Z. Manna).
© High computational complexity
W-@rder logic)
NEXPTime=complete

Microsoft

Research

Applications

Test case generation

\/ V -/ \J \J

Predicate Abstraction
Invariant Generation

Type Checking

Model Based Testing

Microso ft-

Research

Some Applications @ Microsoft

Spect - HAvOC |ForgLa

Programming System

[Terminator T-2 J

VCC foYe?
e ’\./OJ

S Vigilante |

SpecExplorer Pex E7
 SAGE | I—IS

Microso ft-

Research

Test case generation

unsigned GCD(X, V) {

requires(y > 0);

while (true) {

(=
)

-
=)

unsigned m = x % ;

if (m == 0) return y;

=)

(y, > 0) and

(my =X, % Y,) and

not (m, = 0) and
(x1 = yo) and
(y1 = mo) and

(m, =x, %y,) and

We want a trace where the loop'is
executed twice.

x0=2

Yo =
SEIVET: >

my =

X, =4

y, =2

m, =0

Microsoft

Research

Type checking

Signhature:
div:int, {x:int|x# 0} —>int

Call site: Subtype

ifa<1anda<bthen
return div(a, b)

Verification condition
a<1anda<bimpliesb#0

Microsoft

Research

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable

modulo theory T ?
-

SMT solvers have
specialized algorithms for T

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3),/c-2)) # f(c-b+1)

Arithmetic

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Array Theory

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and|f(read(write(a,b,3), c-2)) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)

Substituting c by b+2

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b+2-2)) # f(b+2-b+1)

Simplifying

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =c and f(read(write(a,b,3), b)) # f(3)

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =cand f(read(write(a,b,3), b)) # f(3)

Applying array theory axiom
forall a,i,v: read(write(a,i,v), i) = v

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b+ 2=candf(3) # f(3)

Inconsistent/Unsatisfiable

OOOOOOOO

Repository of Benchmarks
http://www.smtlib.org

Benchmarks are divided in “logics”:

e QF _UF: unquantified formulas built over a signature of
uninterpreted sort, function and predicate symbols.

e QF _UFLIA: unquantified linear integer arithmetic with
uninterpreted sort, function, and predicate symbols.

e AUFLIA: closed linear formulas over the theory of integer
arrays with free sort, function and predicate symbols.

Microsoft

Research

http://www.smtlib.org/

Ground formulas

For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking
Test-Case Generation

Microsoft

Research

Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof

Little Engines of Proof

An SMT Solver is a collection of
Little Engines of Proof

\ Examples:
SAT Solver (Daniel’s lectures) Z

Equality solver

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WO0VOWOVOOE

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

WO0VOWOVWVOOE

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

W00 o

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

0000 e

OOOOOOOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Voo

Microso ft-

Research

Deciding Equality

a=b,b=c,d=¢e,b=s,d=t,aze,a#s

VOO E

Microso ft-

Research

Deciding Equality

a=b,b=c,d=¢e,b=s,d=t,aze,a#s

e s

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

e S

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

&

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

&

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,a%e,a#s

Microso ft-

Research

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze,a#s

a,b,c,s

Unsatisfiable

Microso ft-

Research

Deciding Equality

a=b,b=cd=e,b=s,d=t, aze

Model construction

Microso ft-

Research

Deciding Equality

a=b,b=cd=e,b=s,d=t, aze

Model construction
|IM| ={e,,¢,} (universe, aka domain)

Microso ft-

Research

Deciding Equality

a=b,b=cd=e,b=s,d=t, aze

Model construction
|IM| ={e,,¢,} (universe, aka domain)
M(a) = ¢, (assighment)

Microso ft-

Research

Deciding Equality

a=b,b=cd=e,b=s,d=t, aze

Alternative notation:
aM= ¢,

Model construction
|M ¢,,¢,} (universe, aka domain)

M(a) = ¢, (assighment)

Microso ft-

Research

Deciding Equality

a=b,b=cd=e,b=s,d=t, aze

Model construction
|IM| ={e,,¢,} (universe, aka domain)
M(a) = M(b) = M(c) = M(s) = &,
M(d) = M(e) = M(t) = o,

Microso ft-

Research

DeC|d|ng Equallty

@ Termination: easy

@ Soundness

e Invariant: all constants in a “ball” are known to be equal.
e The “ball” merge operation is justified by:
e Transitivity and Symmetry rules.
e Completeness
e We can build a model if an inconsistency was not detected.
e Proof template (by contradiction):
e Build a candidate model.

e Assume a literal was not satisfied.
e Find contradiction.

Microsoft

Research

DeC|d|ng Equallty

 Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c = d is not satisfied by our model.
e Thatis, M(c) # M(d).
e This is impossible, c and d must be in the same “ball”.

M(c) = M(d) =

Microsoft

Research

DeC|d|ng Equallty

 Completeness
e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c # d is not satisfied by our model.
e That is, M(c) = M(d).

e Key property: we only check the disequalities after we
processed all equalities.

e This is impossible, c and d must be in the different “balls”

M(c) =
M(d) =

Microsoft

Research

Deciding Equality +

a=b,b=c,d=¢e,b=s,d=t, f(a, g(d)) # f(b, g(e))

Congruence Rule:

Xy =VYq, - X, =Y, implies f(x,, ..., x,) = flyy, ..., ¥,))

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=¢e,b=s,d=t, f(a, g(d)) # f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v;) = f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v;) # f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v) # f(b, v,)
v, =g(d), v, =gle)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v,) # f(b, v,)
v, =g(d), v,=gle)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gle), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, vy;# f(b, v,)
v, =gl(d), v, =gle), vy =1(a, vy)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
v, =g(d), v, =gle), v;=f(a, v;), v, =f(b, v,)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)l VZEg(e)/ V3 Ef(al V1) ’ V4Ef(b, Vz)

E TSI

Congruence Rule:

Xy =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, -, V)

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)r VZEg(e)/ V3 Ef(al V1) ’ V4Ef(b, Vz)

R ICACSSI

Congruence Rule:

Xy =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, -, V)
d = e implies g(d) = g(e)

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)r VZEg(e)/ V3 Ef(al V1) ’ V4Ef(b, Vz)

OOV

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
d=eimpliesv, =V,

Microso ft-

Research

Deciding Equality + Wesm

r r _,: (& :..:r) r C# r r Vq and vV, are congruent.

a=b,b=c,d=¢e, b=5s,d=t, 4
V1 = g(d)r V2 = g(e)l V3 = f(al V1) 4 = f(bl V2)

TSI

Congruence Rule:

Xy =VYq, - X, =Y, implies f(x,, ..., x,) = f(yq, -, V)
d=eimpliesv, =V,

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)l VZEg(e)/ V3Ef(a/ V1) ’ V4Ef(b, V2)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,v, =V, implies f(a, v,) = f(b, v,)

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)l VZEg(e)/ V3Ef(a/ V1) ’ V4Ef(b, V2)

S W e

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,Vv,=V,impliesvy;=V,

Microso ft-

Research

Decndlng Equality +

a=b,b=c,d=e,b=s,d=t, v;£v,
Vlzg(d)l VZEg(e)/ V3Ef(a/ V1) ’ V4Ef(b, V2)

Congruence Rule:

=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)
a=b,Vv,=V,impliesvy;=V,

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t,v;#v,
Vlzg(d)l VZEg(e)/ V3 Ef(al V1) ’ V4Ef(b, Vz)

Unsatisfiable

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t,a%v, v,#V,
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, Vz)

Changing the problem

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#Vv;
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, Vz)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

DeC|d|ng Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,# v,
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, Vz)

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ¥,)

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, Vz)

Model construction:
|M | ={01,02,03,04}
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = ¢,
M(v,) = M(v,) = ¢,

M{vs) = Mlv,) = ¢, ‘Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, V2)

Model construction:
_ Missing:
M| =1¢,,¢,,¢.,¢
l_ | {_1 ’ _3 4}_§ Interpretation for
M(a) = M(b) =M(c) = M(s) = ¢ (=%
M(d) = M(e) = M(t) = o, '
M(v,) = M(v,) = ¢,

M{vs) = Mlv,) = ¢, ‘Research

Decndlng Equality +

e Building the interpretation for function symbols
o M(g) is a mapping from |M| to |M|
o Defined as:
M(g)(e;) = ¢, if there iS V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)

e Is M(g) well-defined?

Microso ft-

Research

DeC|d|ng Equality +

= Building the interpretation for function symbols
e M(g) is a mapping from |M| to |M|
e Defined as:
M(g)(e;) = ¢, if there is V= g(a) s.t.
M(a) =
M(v) =
= ¢,, otherwise (okls an arbitrary element)
e |s M(g) well-defined?
e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# ¢, =M(w)
So, is M(g)(®,)= ¢, or M(g)(e,) = ¢,?

Microso ft-

Research

Decudlng Equahty -

< Building the interpretation for function symbols

o M(g) is a mapping from |M| to |**
= Defined as: This is impossible because of
M(g)(e;) = ¢, if there iS vV = g the congruence rule!
I\/I(a) = ¢ |a and b are in the same “ball”,
M(v) = , then so are vand w

= ¢,, otherwise (0k|
e Is M(g) well-defined? W

e Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢, % ¢, = M(w)
So,is M(g)(®,)= ¢, or M(g)(e,) = ¢,?

Microsoft

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
Vlzg(d)l VZEg(e)/ V3Ef(a1 V1) ’ V4Ef(b, Vz)

Model construction:
|M | ={01,02,03,04}
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = ¢,
M(v,) = M(v,) = ¢,

M{vs) = Mlv,) = ¢, ‘Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
V1 = g(d)l V2 = g(e)/ V3 = f(al V1) ’ V4 = f(bl Vz)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
V1 = g(d)r V2 = g(e)/ V3 = f(al V1) ’ V4 = f(bl Vz)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
V1 = g(d)l V2 = g(e)l V3 = f(al V1) ’ V4 = f(bl Vz)
Model construction:

|M| = {‘11‘2 , 3 ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={e,> ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
V1 = g(d)l V2 = g(e)/ V3 = f(al V1) ’ V4 = f(bl Vz)
Model construction:

|M| = {‘11‘2 L ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}

Microso ft-

Research

Deciding Equality +

a=b,b=c,d=e,b=s,d=t,a#v, v,#V,
V1 = g(d)l V2 = g(e)/ V3 = f(a/ V1) ’ V4 = f(bl V2)
Model construction:

|M| = {‘11‘2 L ;‘4}

M(a) — M(b) — M(C) _ M(S) _ ‘1 M(g)(Oi) = Qj if thereisv= g(a) S.t.

M(a) = ¢,
M(d) = M(e) = M(t) = ¢, M(v) = o,
M(v,) = M(v,) = &, = 4, otherwise

M(v;) = M(v,) = ¢,
M(g)={¢,> ¢, else > ¢}
M(f)={(®,,¢;)> ¢, else >e}

Microso ft-

Research

Deciding Equality +

What about predicates?

p(a, b), —plc, b)

Microso ft-

Research

Deciding Equality +

What about predicates?

p(a, b), —plc, b)

U

fa,b)=T, f(c,b)=T

Microso ft-

Research

Ackermannization

It is possible to eliminate function symbols using a
method called Ackermannization.

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v;=1(a, vy), v, =f(b, v,)

Y

a=b,b=c,d=e,b=s,d=t,azv, v,ZVv;
dzevv,=v,,
azVv,Vvb#v,vv;=v,

Microso ft-

Research

Ackermannization

It is possible to eliminate function symbols using a
method called Ackermannization.

a=b,b=c,d=e,b=s,d=t,a#v, v,#V;
v, =g(d), v, =g(e), v;=1(a, vy), v, =f(b, v,)

Y

a=b,b=c,d=e,b=s,d=t,azv, v,ZVv;
dzevv,=v,,
a#xV,Vb#v,Vvv;=v,

7

E . : Microso ft
Main Problem: quadratic blowup Research

Deciding Equality +

It is possible to implement our procedure in
O(n log n)

Microso ft-

Research

Deciding Equality +

Sets (equivalence classes)

a%x S Membership

Microso ft-

Research

DeC|d|ng Equality +

a 0
Sets (equivale Key observation:
The sets are disjoint!

. /
a# S Membership

Microso ft-

Research

Union-Find data-structure

Every set (equivalence class) has a root element

(representative).

root

S

b/ r

/N
d N We say: find[c] is b

Microsoft

Research

Deciding Equality +

Union-Find data-structure

R
~\ /N

b
a/ \c .

a/ bY\C

Microso ft-

Research

Deudmg Equallty -

Tracking the equivalence classes size is important!

dq > d, > dg—> .. > dpq \J d, =
alH az — a3 —> ... an_l — an

Microsoft

Research

Deudmg Equallty -

Tracking the equivalence classes size is important!

C
d; a d,1 a a
3 : 1 dj n-1

Microsoft

Research

Decndlng Equallty -

Tracking the equivalence classes size is important!

Ve o\
We can do n merges in
g~ ~-a U a = a7 as a3 O(n log n)
_ Y,
d,
d a a..
Each constant has two fields: find and size. Microsoft

Research

Deudmg Equallty -

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iffv="1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

NN

occurrences[b] ={v, =g(b), v, =f(a) }
occurrences[s] = { v, =f(r) }

r

Microsoft

Research

DeC|d|ng Equallty -

Implementing the congruence rule.
Occurrences of a constant: we say a occurs inv iffv="1(...,a,...)

When we “merge” two equivalence classes we can traverse these
occurrences to find new congruences.

b S Inefficient version:
/ \ J \ for each v in occurrences(b)
] : r for each w in occurrences(s)
if vand w are congruent

occurrences(b) = {v, =g(b), v,=f(a) } add (v,w) to todo queue

occurrences(s) = { v, =f(r) }

A queue of pairs that need to
be merged.

arch

Deudmg Equallty -

occurrences[b] = {v, =g(b), v,=f(a) }
occurrences[s] = {v; =f(r) }

We also need to merge occurrences[b] with occurrences|s].
This can be done in constant time:
Use circular lists to represent the occurrences. (More later)

/> Vi
N\ V3
Microsoft

Research

DeC|d|ng Equallty -

Avoiding the nested loop:
for each v in occurrences[b]
for each w in occurrences|s]

Use a hash table to store the elements v, =f(a,, ..., a,).
Each constant has an identifier (e.g., natural number).
Compute hash code using the identifier of the (equivalence

class) roots of the arguments.

hash(v,) = hash-tuple(id(f), id(root(a,)), ..., id(root(a,)))

Microsoft

Research

DeC|d|ng Equallty -

Avoiding the nested loop:
for each v in occurrences(b)
for each w in occurrences(s)

Use a hash table to hash-tuple can be the Jenkin’s s an)_
hash function for strings.
mber).

Each constant has ¢ . .
Just adding the ids produces a _
Compute hash code very bad hash-code! equivalence

class) roots of the a

hash(v,) = hash-tuple(id(f), id(root(a,)), ..., id(root(a,)))

Microsoft

Research

DeC|d|ng Equallty -

Efficient implementation of the congruence rule.
Merging the equivalences classes with roots: a, and a,
Assume a, is smaller than a,

Before merging the equivalence classes: a, and a,

for each v in occurrences|a,]
remove v from the hash table (its hashcode will change)

After merging the equivalence classes: a; and a,
for each v in occurrences|a,]
if there is w congruent to v in the hash-table
add (v,w) to todo queue
else add v to hash-table

Microsoft

Research

Efficient implementation of the congrt

Merging the equivalences classes with aa,
Assume a, is smaller than a,

Trick:
Use dynamic arrays to

represent the occurrences

Before merging the equivalence classes: a, and a,

for each v in occurrences|a,]

remove v from the hash table (its hashcode will change)

After merging the equivalence classes:

for each v in occurrences|a,]

a, and a,

if there is w congruent to v in the hash-table

add (v,w) to todo queue
else add v to hash-table
add v to occurrences(a,)

Microsoft

Research

Decndlng Equallty -

The efficient version is not optimal (in theory).
Problem: we may have v=f(a,, ..., a,) with “huge” n.

Solution: currying
Use only binary functions, and represent f(a,, a,,a5,a,) as

f(ay, h(a,, h(as, a,)))

This is not necessary in practice, since the n above is small.

Microsoft

Research

Deadmg Equallty -

Each constant has now three fields:
find, size, and occurrences.

We also has use a hash-table for implementing the congruence rule.

We will need many more improvements!

Microsoft

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Microso ft-

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)

Microso ft-

Research

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>20,y=x+1,y<1)

Too Inefficient!
(exponential blowup)

Microsoft

Research

SMT : Basic Architecture

Theory -

\Solvers

o Equality + UF
e Arithmetic
® Bit-vectors

e L L

Case Analysis

Microso ft-

Research

SAT (propositional checkers):

/= IO

PV Qq,
PV —q,
—pVv q
el Sl

OOOOOOOO

SAT (propositional checkers):

/= IO

pY 4 Assighment:
PV —q, _
p = false,
—pVv q, _
g = false
—pP VvV Qg

Microso ft-

Research

SAT (propositional checkers):

/= IO

vV q, :
P b Assignment:
PV —q, _
p = false,
—pVv q, _
g = true
—pP VvV Qg

Microso ft-

Research

SAT (propositional checkers):

/= IO

vV q, :
P b Assignment:
PV —q, _
p =true,
—pVv q, _
g = false
—pP VvV Qg

Microso ft-

Research

SAT (propositional checkers):

/= IO

v q, .
P b Assignment:
PV —q, _
p = true,
—PpV q, _
g = true
—p VvV Qg

Microso ft-

Research

DPLL
M | F
[Partial nﬁ [&f clauses J

Microso ft-

Research

DPLL

Guessing

pl pva —qvr

@

p,—q|pvag —qvr

Microso ft-

Research

DPLL

Deducing
p |l pva —pvs

@

p,s|pva, —pvs

Microso ft-

Research

DPLL

Backtracking
P, =S, (| pvq(q,Ssvqg,—pVv—(q

@

p,slpvag,sva, —pv—q

Microso ft-

Research

Modern DPLL

o Efficient indexing (two-watch literal)
e Non-chronological backtracking (backjumping)
e Lemma learning

e [N

Microso ft-

Research

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

Py, Py (P3Vv P, P1=(x=0), p,=(y=x+1),
ps=(y>2),p,=(y<1)

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

Py, Py (P3Vv P P1=(x20), p,=(y=x+1),

@ ps=(y>2), py=(y<1)

SAT
Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

Py, Py (P3Vv P P1=(x20), p,=(y=x+1),

Y? ps=(y>2), py=(y<1)

Assignment
SAT
[J j‘> p11 pz: _'p31 p4

Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

p]_l p2/ (p3\/p4) plz(XZO), pZE(y=X+ 1)1

@ ps=(y>2), p,=(y<1)
U

Assignment
SAT x>0,y=x+1,
[Solver J j‘> P ParPa P j‘> —(y>2),y<1

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

Py, Py (P3Vv P, P1=(x=0), p,=(y=x+1),

@ ps=(y>2), p,=(y<1)
T P vy SR)
Solver vore Ty —(y>2),y<1

v

Unsatisfiable <,i Theory
x>0,y=x+1,y<1 Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

Py, Py (P3Vv P, P1=(x=0), p,=(y=x+1),

@ ps=(y>2),p,=(y<1)
SAT j>§ss'§miep”tp N X>0,y=x+1,
Solver vore Ty —(y>2),y<1

New Lemma <:j Unsatisfiable <’t Theory
=P VP v—p, ¥ x20,y=x+1,y<1 Solver

SAT + Theory solvers

New Lemma @ Unsatisfiable <’t Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict

SAT + Theory solvers: Main loop

procedure SmtSolver(F)

(F,, M) := Abstract(F)

loop
(R, A) := SAT_solver(F)
if R = UNSAT then return UNSAT
S := Concretize(A, M)
(R, S’) := Theory_solver(S)
if R = SAT then return SAT
L := New_Lemma(S’, M)
Add Lto F,

SAT + Theory solvers

FoiPy Py (P3V Py)

Basic Idea

F-x>0,y=x+1,(y>2vy<l1l)
@ Abstract (aka “naming” atoms)

M:p,;=(x=0), p,=(y=x+1),

ps=(y>2), p,=(y<1)

SAT
Solver

A: Assighnment
p]_l p2) _'p3) p4

L: New Lemma

—|p1V—|p2V—|p4

-

S’: Unsatisfiable <,i
x=>0,y=x+1y<1

v

S:x=20,y=x+1,
—(y>2),y<1

v

|

Theory
Solver

SAT + Theory solvers

@ Abstract (aka “naming” atoms)

Foi P Py (P3V P,) M:p,=(x=0), p,=(y=x+1),

@ ps=(y>2), p,=(y<1)
U
[Solver J

AASSIEMENt 20,y =x+1,
Vo T —(y>2),y<1

L: New Lemma S’: Unsatisfiable <: Theory

—P, VP, VP, x>0,y=x+1y<1 Solver

procedure SMT_Solver(F)
(F,, M) := Abstract(F)
loop
(R, A) := SAT_solver(F)

if R = UNSAT then return UNSAT
S = Concretize(A, M) “Lazy translation”
(R, S’) := Theory_solver(S) to

if R = SAT then return SAT __ DNF

L := New_Lemma(S, M)
Add LtoF,

SAT + Theory solvers

State-of-the-art SMT solvers implement
many improvements.

SAT + Theory solvers

Incrementality
Send the literals to the Theory solver as they are
assigned by the SAT solver

plE(XZO), sz(y=X+ 1),
P;=(y>2), p,=(y<1), ps=(x<2),
Py, Py Pa | Py Py (P3V P4, (PsV —p,)

AN

Partial assignment is already
Theory inconsistent.

SAT + Theory solvers

Efficient Backtracking
We don’t want to restart from scratch after each
backtracking operation.

Deudmg Equallty -

Efficient Lemma Generation (computing a small S’)

(R, S’) := Theory_solver(S)

When R = UNSAT (i.e., S is unsatisfiable),
S’ < Sis also unsatisfiable

We say S’ is redundant
iff
Exists S < S’ which is also unsatisfiable.

Microsoft

Research

SAT + Theory solvers

Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1E(XZO)r sz(y=X+ 1),
P;=(y>2), p,=(y<1), ps=(x<2),
Py, P2 P3Py | P Po (P53 V P4, (Ps Vv —Py)

J—

—P1VTP,; VTIP3 VTP, Imprecise Lemma

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0), p,=(y=x+1),
P;=(y>2),p,=(y<1), ps=(x<2),
Py, P> | Py P (P35 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, =P Py Py (P3V P, (Ps Vv —p,)

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0), p,=(y=x+1),
P;=(y>2),p,=(y<1), ps=(x<2),
Py, P> | Py P (P35 VP, (Ps Vv —Py)

@ P, P, imply —p, by theory propagation

Py, Py, =P Py Py (P3V P, (Ps Vv —p,)

Tradeoff between precision x performance.

Deudmg Equallty -

Problem: our procedure for Equality + UF does not support:
Incrementality
Efficient Backtracking
Theory Propagation
Lemma Learning

Microsoft

Research

Deadmg Equality +

Incrementality (main problem):
We were processing the disequalities after we processed all

equalities.
plEa=b1p2= =)
p;=d=e,p,=a-=

P, —PL P, | Py PV =Py P,V P,

U

a=b,a#c, b=c,

Microsoft

Research

Deadmg Equality +

Incrementality (main problem):
We were processing the disequalities after we processed all

equalities.
plEa=b1p2= =)
p;=d=e,p,=a-=

P, —PL P, | Py PV =Py P,V P,

U

a=b,a#c, b=c,

Microsoft

Research

Deadmg Equallty -

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

a=b,a#c

b C

/

d

disegs[b]={a#c}
disegs[c]={a#c}

Microsoft

Research

DeC|d|ng Equallty -

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence
classes, we must merge the sets
C disegs. (circular lists again!)

a=b,a#c
b
/
a

disegs[b]={a#c}
disegs[c]={a#c}

Microsoft

Research

DeC|d|ng Equahty -

Incrementality
Store the disequalities of a constant.
Very similar to the structure occurrences.

When we merge two equivalence
classes, we must merge the sets
C diseqs. (circular lists again!)

,ad#*C

/

disegs(b) ={a #c}
disegs(c)={a #c } Before merging two equivalence
classes, traverse one (the smallest) set

of disegs. (track the size of disegs!)

DeC|d|ng Equallty -

Backtracking
Option 1: functional data-structures (too slow).
Option 2: trail stack (aka undo stack, fine grain backtracking)
Associate an undo operation to each update operation.
“Log” all update operations in a stack.
During backtracking execute the associated undo operations.

Microsoft

Research

Deudmg Equallty -

Backtracking
We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Microsoft

Research

DeC|d|ng Equallty -

Backtracking
We can do better: coarse grain backtracking.
Minimize the size of the undo stack.
Do not track each small update, but a big operation (merge).

Let us change the union-find data-structure a little bit.

Before: After:

/ S \ next element
b r T\
A 7

Fields: find, size Fields: root, next, size Research

Deciding Equahty -

pllp olfair=le AGHIENAS
_ New design possibility:
Backtracking :
We do not need to merge occurrences and disegs.
We can c.:Io.b We can access all occurrences and diseqs by
Minimiz traversing the next fields.

Do not t
Let us change the unithure a little bit.
Before: After:

b/s\ next element
A // T\

Fields: find, size Fields: root, next, size Research

Microsoft

Deciding Equality +

Microso ft-

Research

Deciding Equality +

What was updated?

root[s], root[r],
next[b], next[s],
size[b]

Microso ft-

Research

DeC|d|ng Equallty -

What was updated?
We only need to store root|c], root]r],
s in the undo stack! next[b], next[s],
size[b]

Microsoft

Research

DeC|d|ng Equallty -

What about the congruence table?
hash table used to implement the congruence rule.

Let us use an additional field cg.
It is only relevant for subterms: v, =f(a, v,)
Invariant: a constant (e.g., v5) is in the table iff cg[v;] = v,

Otherwise, cg[v,] contains the subterm congruent to v,

Example:
vy=f(a, vy), v, =1f(b, v,)
Assume v, and v, are congruent (i.e., a = b and vl = v2)

Moreover, v, is in the congruence table. Vicrosoft
Then: cg[v,] = v;and cg[v;] = v, Research

DeC|d|ng Equallty -

procedure Merge(a, b)
a, := root[a]; b, := root[b]
if a, = b, then return
if not CheckDiseqs(a,, b,) then return
if size[a] < size[b] then swap a, b; swap a, b,
AddToTrailStack(MERGE, b,)
RemoveParentsFromHashTable(b,)

c:=b,
do
root[c] := a,
c := next|[c]
whilecz b,

ReinsertParentsToHashTable(b,)
swap next[a,], next[b,]
Microsoft:

size[a,] := size[a,] + size[b] Research

Deudmg Equallty -

procedure UndoMerge(b,)
a,:=root[b,]
size[a,] := size[a,] — size[b,]
swap next[a], next[b]
RemoveParentsFromHashTable(b,)

c:=b,
do
root[c] := b,
Cc := next[c]
whilecz b,

for each parent p of b,
if p = cg[p] or not congruent(p, cglp])
add p to hash table

cglp] :=p

Microsoft

Research

Decndlng Equallty -

procedure UndoMerge(b,)
a,:=root[b,]
size[a,] := size[a,] — size[b,]
swap next[a], next[b]
B °~— """ nHashTi p was in the hash table
before but not after the

merge.

p was in the hash table
before and after the merge

while
for each’}. /ent p of b,
if p = cg[p] or not congruent(p, cglp])
add p to hash table

cglp] :=p

Microsoft

Research

DeC|d|ng Equallty -

Propagating equalities (and disequalities)
Store the atom occurrences of a constant.

p;=d=e,p,=a=c When merging or
adding new

disequalities traverse
atom_occs[al ={py, Py } 4 these sets.

atom_occs[b] ={ p,, p, }
atom_occs[c] ={ p,, p, }
atom_occs[d] = { p; }

atom_occs[e] ={p, } Microsoft
Research

Deudmg Equallty -

Propagating disequalities (hard case)
v, =f(a, b), v, =f(c, d)
Assume we know that
Vi #V,
a=c
Then, b#d

More about that later.

Microsoft

Research

Decndlng Equallty -

Efficient Lemma Generation (computing a small S’)

In EUF (equality + UF) a minimal unsatisfiable set is composed on:
n equalities
1 disequality

It is easy to find the disequality a # b.

So, our problem consists in finding the minimal set of equalities
that implies a = b.

Microsoft

Research

DeC|d|ng Equallty -

Efficient Lemma Generation (computing a small S’)

First idea:

If a = b isimplied by a set of equalities, then a and b are in the
same equivalence class.

Store all equalities used to “create” the equivalence class.

Too imprecise for
p,=(a=c),p,=(b=c), xS~ justifyinga=b.
Ps=(s=r), ps=(c=r) // T\V We need only p,, p,.
P, Py Py Pgy o | o a<-b<-c<-r V

The equivalence class was “created”
using Py, Py, P3, Py

Microsoft

Research

Deadmg Equallty -

Efficient Lemma Generation (computing a small S’)

Second idea: Store a “proof tree”.
Each constant c has a non-redundant “proof” for ¢ = root|c].

The proof is a path from c to root|c]

p.=(a=c),p,=(b=c),
ps=(s=r), p,=(c=r)

4 \\pz b
b .
> N -
\\\ > S
\ —
/
a <o C- I

A

P
Microsoft

Research

Py

Deudmg Equallty -

procedure Merge(a, b, p,)
a, := root[a]; b, := root[b]
if a, = b, then return
if not CheckDiseqgs(a,, b,) then return
if size[a] < size[b] then swap a, b; swap a, b,
InvertPathFrom(b, b,); AddProofEdge(b, a, p;)
AddToTrailStack(MERGE, b, b)

Microsoft

Research

Deadmg Equallty -

Common ancestor in
the proof tree.

Non redundant proof fora=b
P1) - Py Qs --or Apr

Microsoft

Research

Deudmg Equallty -

P4

Microsoft

Research

Deudmg Equallty -

What about congruence?
New form of justification for an edge in the “proof tree”.

v, = f(b), v, =f(c)

e . C8
\
> V \ ¥
2 . 35)
/ ’l > C ~.
1 \\
1 \
)/ v
d < Vi b /
/4 _____ ’/
Py

Microsoft

Research

Deudmg Equallty -

What about congruence?
New form of justification for an edge in the “proof tree”.

v, = f(b), v, =f(c)

V/’ \\?g
> \ ¥
Vv, . 0,
/ \ ! > C ~~.
Q <o Vi \“ ;
At T b -
P

When computing the “proof” fora = v,
Recursive call for computing the proof for v, = v,

Result: {py, o} ‘Research

Deadmg Equallty -

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

f,(a,) 2'a, 2 a, 2 f,(ac)
f,(a,) Jazq_z a35-2 f,(ag)
fy(a,) Pa,2a, 2 f,(a.)

P g S
f(a;) ¥a,=as=f,(as)

Microsoft

Research

Deudmg Equality +

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

fi(ay) = alilaz-lfl(aS) Two non redundant proofs f,(a;) = f,(ac):
f,(a,) =2a2q—2 ag,,s-2 f(as) {p, O, S,} using transitivity
fi(ay) 2333 = aﬁf (as) {ay, a,, 9, q,} Using congruence a, = ac

f,(a,) = a4q—4a5-"‘f4(a5) Similar for f, f;, f,.

Microsoft

Research

DeC|d|ng Equallty -

The new algorithm may compute redundant proofs for EUF.

p
Using notation a = b for p=a = b, and p assigned by SAT solver

fi(ay) = alilaz-lfl(aS) Two non redundant proofs f,(a;) = f,(ac):
f,(a,) -Zazq—l ag,,s-2 f(as) {p, O, S,} using transitivity
fi(ay) 2333 = aﬁf (as) {ay, a,, 9, q,} Using congruence a, = ac

f,(a;) Ig“a4q—4 a2 f,(a;) Similarforf, f,, f,.

So there are 16 proofs for

g(fi(a1), f2(a;), f5(ay), f4la,)) = g(f(as), fo(as), f5(as), f4(as))
The only non redundant is {q,, 9,, a5, A4}

Microsoft

Research

Deudmg Equallty -

Some benchmarks are very hard for our procedure.

P,V a; =Cy —pvVa; =¢, pPyVvby=cy —pv by =cy,
P,V a, =Cy —pP,vVa,=Cy, P,vb,=cy —p,vDb,=cy,
.

p,va,=cCy,—p,va,=¢c, p,Vvb, =c,—p,vb, =c,
f(a,, ..., f(a,, ay)...) 2 f(b,, ..., f(b,, by)...)

Microsoft

Research

Deadmg Equallty -

Some benchmarks are very hard for our procedure.

p,Vva,=c, —pva,=c, pvb, =c,—pvb;=cy
P,V a, =Cy —pP,V a,=c, p,vb,=cy, —p,vhb,=c,
.

p,va,=c,—p,va,=¢, Pp,vb, =c,—=p,vb, =c,,
f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Microsoft

Research

Deudmg Equallty -

Some benchmarks are very hard for our procedure.

P,V a,=c, —pva; =¢, PpPyvb, =c, —pvb=cy,
P,V a, =Cy P,V a,=c, pP,vb,=cy —p,vh,=c,
.

p,va,=c,—p,va,=¢, p,vb, =c,—p,vb, =c,,
f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Lemmas learned during the search are not useful.
They only use atoms that are already in the problem!

Solution: congruence rule suggests which new atoms must
be created.

Microsoft

Research

Deudmg Equality +

Some benchmarks are very hard for our procedure.

P,V a,=c, —pva; =¢, PpPyvb, =c, —pvb=cy,

P,V a, =Cy P,V a,=c, pP,vb,=cy —p,vh,=c,
p,va,=c,—p,va,=¢, p,vb, =c,—p,vb, =c,,

f(a,, ..., f(a,, a,)...) # f(b,, ..., f(b,, b,)...)

Solution: congruence rule suggests which new atoms must
be created.

Whenever, the congruence rules

3, = b;, a; = b, implies f(a;, a;) = f(b,, b;)

is used to (immediately) deduce a conflict. Add the clause:

Microsoft

a #b;va#b vi(a,a)="1(b, b) Research

Deudmg Equality +

Solution: congruence rule suggests which new atoms must
be created.

Whenever, the congruence rules

3, = b;, a; = b, implies f(a;, a;) = f(b,, b;)

is used to (immediately) deduce a conflict. Add the clause:
a,#b;va zb vi(a, a)="1(b, b)

“Dynamic Ackermannization”

It allows the solver to perform the missing disequality
propagation.

Microsoft

Research

Equality
Uninterpreted
Functions

v

SAT Solver

We can solve the QF _UF SMT-Lib benchmarks!

