Microsoft
Research

On Designing and Implementing Satisfiability Modulo Theory (SMT) Solvers Summer School 2009, Nancy Verification Technology, Systems and Applications

Leonardo de Moura
Microsoft Research

Linear Arithmetic

- Many approaches
- Graph-based for difference logic: $a-b \leq 3$
e Fourier-Motzkin elimination:

$$
t_{1} \leq a x, \quad b x \leq t_{2} \Rightarrow b t_{1} \leq a t_{2}
$$

\ominus Standard Simplex

- General Form Simplex

Difference Logic: $a-b \leq 5$

Very useful in practice!

Most arithmetical constraints in software verification/analysis are in this fragment.

$$
\begin{gathered}
\mathrm{x}:=\mathrm{x}+1 \\
\mathrm{x}_{1}=\mathrm{x}_{0}+1 \\
\mathrm{x}_{1}-\mathrm{x}_{0} \leq 1, \mathrm{x}_{0}-\mathrm{x}_{1} \leq-1
\end{gathered}
$$

Job shop scheduling

$d_{i, j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

$\max =8$

Solution

$t_{1,1}=5, t_{1,2}=7, t_{2,1}=2$,
$t_{2,2}=6, t_{3,1}=0, t_{3,2}=3$
Encoding
$\left(t_{1,1} \geq 0\right) \wedge\left(t_{1,2} \geq t_{1,1}+2\right) \wedge\left(t_{1,2}+1 \leq 8\right) \wedge$
$\left(t_{2,1} \geq 0\right) \wedge\left(t_{2,2} \geq t_{2,1}+3\right) \wedge\left(t_{2,2}+1 \leq 8\right) \wedge$
$\left(t_{3,1} \geq 0\right) \wedge\left(t_{3,2} \geq t_{3,1}+2\right) \wedge\left(t_{3,2}+3 \leq 8\right) \wedge$
$\left(\left(t_{1,1} \geq t_{2,1}+3\right) \vee\left(t_{2,1} \geq t_{1,1}+2\right)\right) \wedge$
$\left(\left(t_{1,1} \geq t_{3,1}+2\right) \vee\left(t_{3,1} \geq t_{1,1}+2\right)\right) \wedge$
$\left(\left(t_{2,1} \geq t_{3,1}+2\right) \vee\left(t_{3,1} \geq t_{2,1}+3\right)\right) \wedge$
$\left(\left(t_{1,2} \geq t_{2,2}+1\right) \vee\left(t_{2,2} \geq t_{1,2}+1\right)\right) \wedge$
$\left(\left(t_{1,2} \geq t_{3,2}+3\right) \vee\left(t_{3,2} \geq t_{1,2}+1\right)\right) \wedge$
$\left(\left(t_{2,2} \geq t_{3,2}+3\right) \vee\left(t_{3,2} \geq t_{2,2}+1\right)\right)$

Research

Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

Microsoft
Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{array}{ll}
a-d+2 e & =3 \\
b-d & =1 \\
c+d-e & =-1 \\
a, b, c, d, e \geq 0 &
\end{array}
$$

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{aligned}
& a-d+2 e=3 \\
& b-d \quad=1 \\
& c+d-e \quad=-1 \\
& a, b, c, d, e \geq 0 \\
& \left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 2 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \\
& A x=b \text { and } x \geq 0 .
\end{aligned}
$$

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}-\mathrm{d}+2 \mathrm{e} & =3 \\
\mathrm{~b}-\mathrm{d} & =1 \\
\mathrm{c}+\mathrm{d}-\mathrm{e} \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \geq 0
\end{array} & =-1
\end{array}
$$

We say a, b, c are the basic (or dependent)
variables

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}-\mathrm{d}+2 \mathrm{e} & =3 \\
\mathrm{~b}-\mathrm{d} & =1 \\
\mathrm{c}+\mathrm{d}-\mathrm{e} & =-1 \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \geq 0
\end{array} \\
\left(\begin{array}{cccc}
1 & 0 & 0 & -1
\end{array}\right) \\
0 & 1
\end{array} 0-1 \begin{array}{l}
\mathrm{a} \\
0
\end{array} 0 \begin{array}{lll}
\mathrm{a} & 1 & -1 \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{~d} \\
\mathrm{e}
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) .
$$

Standard Simplex

e Incrementality: add/remove equations

- Slow backtracking
e No theory propagation

Fast Linear Arithmetic

- Simplex General Form
- Algorithm based on the dual simplex
- Non redundant proofs
- Efficient backtracking
- Efficient theory propagation
- Support for string inequalities: t>0
e Preprocessing step
- Integer problems:

Gomory cuts, Branch \& Bound, GCD test

General Form

General Form: $A x=0$ and $l_{j} \leq x_{j} \leq u_{j}$
Example:

$$
\begin{aligned}
& x \geq 0,(x+y \leq 2 \vee x+2 y \geq 6),(x+y=2 \vee x+2 y>4) \\
& \rightsquigarrow \\
& s_{1} \equiv x+y, s_{2} \equiv x+2 y \\
& x \geq 0,\left(s_{1} \leq 2 \vee s_{2} \geq 6\right),\left(s_{1}=2 \vee s_{2}>4\right)
\end{aligned}
$$

Only bounds (e.g., $s_{1} \leq 2$) are asserted during the search.
Unconstrained variables can be eliminated before the beginning of the search.

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{aligned}
& s_{1}=x+y, \\
& s_{2}=x+2 y
\end{aligned}
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{gathered}
s_{1}=x+y \\
s_{2}=x+2 y \\
\square \\
s_{1}-x-y=0 \\
s_{2}-x-2 y=0
\end{gathered}
$$

From Definitions to a Tableau

$$
s_{1} \equiv x+y, \quad s_{2} \equiv x+2 y
$$

$$
\begin{aligned}
& s_{1}=x+y, \\
& s_{2}=x+2 y
\end{aligned}
$$

$$
s_{1}-x-y=0 \quad s_{1}, s_{2} \text { are basic (dependent) }
$$

$$
s_{2}-x-2 y=0 \quad x, y \text { are non-basic }
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{aligned}
& s_{1}-x-y=0 \\
& s_{2}-x-2 y=0
\end{aligned}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-x \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0
\end{gathered}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

It is just substituting equals by equals.

Pivoting

Definition:

An assignment (model) is a mapping from variables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{1} and y

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
- \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
\square \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

It is just substituting equals by equals.

Key Property:
If an assignment satisfies the equations before a pivoting step, then it will also satisfy them after!

Pivoting

Definition:

An assignment (model) is a mapping from variables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.
Key invariant: a basic variable occurs in only one equation.
Example: swap s_{2} and y

It is just substituting equals by equals.

Example:

$M(x)=1$
$M(y)=1$
$M\left(s_{1}\right)=2$
$\mathrm{M}\left(\mathrm{s}_{2}\right)=3$

$$
\begin{gathered}
s_{1}-x-y=0 \\
s_{2}-x-2 y=0 \\
- \\
-s_{1}+x+y=0 \\
s_{2}-x-2 y=0 \\
\square \\
-s_{1}+x+y=0 \\
s_{2}-2 s_{1}+x=0
\end{gathered}
$$

Key Property:
If an assignment satisfies the equations before a pivoting step, then it will also satisfy them after!

Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.
The assignment of non dependent variables implies the assignment of dependent variables.

Equations + Bounds can be used to derive new bounds.
Example: $x=y-z, y \leq 2, z \geq 3 \rightsquigarrow x \leq-1$.
The new bound may be inconsistent with the already known bounds.

Example: $x \leq-1, x \geq 0$.

"Repairing Models"

If the assignment of a non-basic variable does not satisfy a bound, then fix it and propagate the change to all dependent variables.

$$
\begin{array}{ll}
a=c-d \\
b=c+d \\
M(a)=0 & a=c-d \\
M(b)=0 & b=c+d \\
M(c)=0 & M(a)=1 \\
M(d)=0 & M(b)=1 \\
1 \leq c & M(c)=1 \\
M(d)=0 \\
1 \leq c
\end{array}
$$

"Repairing Models"

If the assignment of a non-basic variable does not satisfy a bound, then fix it and propagate the change to all dependent variables. Of course, we may introduce new "problems".

$$
\begin{array}{ll}
a=c-d & a=c-d \\
b=c+d & \\
M(a)=0 & b=c+d \\
M(b)=0 & M(a)=1 \\
M(c)=0 & M(b)=1 \\
M(d)=0 & M(c)=1 \\
1 \leq c & M(d)=0 \\
a \leq 0 & 1 \leq c \\
M & a \leq 0
\end{array}
$$

"Repairing Models"

If the assignment of a basic variable does not satisfy a bound, then pivot it, fix it, and propagate the change to its new dependent variables.

$$
\begin{array}{lll}
a=c-d \\
b=c+d \\
M(a)=0 \\
M(b)=0 \\
M(c)=0 \\
M(d)=0 \\
1 \leq a & b=a+2 d \\
M(a)=0 \\
M(b)=0 \\
M(c)=0 \\
M(d)=0 \\
1 \leq a & M(a)=1 \\
M(b)=1 \\
M(c)=1 \\
M(d)=0 \\
M & 1 \leq a
\end{array}
$$

"Repairing Models"

Sometimes, a model cannot be repaired. It is pointless to pivot.

The value of $M(a)$ is too big. We can reduce it by:

- reducing $\mathrm{M}(\mathrm{b})$
not possible b is at lower bound
- increasing $\mathrm{M}(\mathrm{c})$
not possible c is at upper bound

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0
\end{aligned}
$$

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0 \\
& \left\{a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c\right\} \text { is inconsistent }
\end{aligned}
$$

"Repairing Models"

Extracting proof from failed repair attempts is easy.

$$
\begin{aligned}
& s_{1} \equiv a+d, s_{2} \equiv c+d \\
& a=s_{1}-s_{2}+c \\
& a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c \\
& M(a)=1 \\
& M\left(s_{1}\right)=1 \\
& M\left(s_{2}\right)=0 \\
& M(c)=0 \\
& \left\{a \leq 0,1 \leq s_{1}, s_{2} \leq 0,0 \leq c\right\} \text { is inconsistent }
\end{aligned}
$$

$\{a \leq 0,1 \leq a+d, c+d \leq 0,0 \leq c\}$ is inconsistent

Strict Inequalities

The method described only handles non-strict inequalities (e.g., $x \leq 2$).

For integer problems, strict inequalities can be converted into non-strict inequalities. $x<1 \rightsquigarrow x \leq 0$.

For rational/real problems, strict inequalities can be converted into non-strict inequalities using a small $\delta . x<1 \rightsquigarrow x \leq 1-\delta$.

We do not compute a δ, we treat it symbolically.
δ is an infinitesimal parameter: $(c, k)=c+k \delta$

Example

- Initial state

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & s=x+y \\
M(y)=0 & u=x+2 y \\
M(s)=0 & v=x-y \\
M(u)=0 &
\end{array}
$$

Example

- Asserting $s \geq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
\text { Model } \\
M(x)=0 \\
M(y)=0 \\
M(s)=0 \\
M(u)=0 \\
M(v)=0
\end{gathered} \quad \begin{gathered}
\text { Equations } \\
M=x+y \\
M=x-y
\end{gathered}
$$

Example

- Asserting $s \geq 1$ assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
\text { Model } \\
M(x)=0 \\
M(y)=0 \\
M(s)=0 \\
M(u)=0 \\
M(v)=0
\end{gathered} \quad \begin{gathered}
\text { Equations } \\
M=x+y
\end{gathered}
$$

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & s=x+y & s \geq 1 \\
M(y)=0 & u=x+2 y & \\
M(s)=0 & v=x-y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{clc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=s-y & s \geq 1 \\
M(y)=0 & u=x+2 y & \\
M(s)=0 & v=x-y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ pivot s and x (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=0 \\
& M(s)=0 \\
& M(u)=0 \\
& M(v)=0
\end{aligned}
$$

Example

- Asserting $s \geq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=s-y & s \geq 1 \\
M(y)=0 & u=s+y & \\
M(s)=1 & v=s-2 y & \\
M(u)=0 & & \\
M(v)=0 & &
\end{array}
$$

Bounds

Example

- Asserting $s \geq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=1 & x=s-y & s \geq 1 \\
M(y)=0 & u=s+y & \\
M(s)=1 & v=s-2 y & \\
M(u)=1 & & \\
M(v)=1 & &
\end{array}
$$

Bounds

Example

- Asserting $x \geq 0$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & \\
M(y)=0 & x=s-y \\
M(s)=1 & \\
M=s+y \\
M(u)=1 &
\end{array}
$$

Example

- Asserting $x \geq 0$ assignment satisfies new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{lll}
M(x)=1 & x=s-y & s \geq 1 \\
M(y)=0 & u=s+y & x \geq 0 \\
M(s)=1 & v=s-2 y &
\end{array}
$$

Equations

Bounds

Example

- Case split $\neg y \leq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=s-y \\
M(y)=0 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=1 &
\end{array}
$$

Bounds
$s \geq 1$
$x \geq 0$
Bounds

Equations

五

Example

- Case split $\neg y \leq 1$ assignment does not satisfies new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{cl}
\text { Model } & \\
\text { Equations } \\
M(x)=1 & x=s-y \\
M(y)=0 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=1 &
\end{array}
$$

$$
s \geq 1
$$

$$
\begin{aligned}
& x \geq 0 \\
& \hline y>1
\end{aligned}
$$

Example

- Case split $\neg y \leq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
M(x) & =1 \\
M(y) & =1+\delta \\
M(s) & =1 \\
M(u) & =1 \\
M(v) & =1
\end{aligned}
$$

Equations
Bounds

$$
x=s-y
$$

$$
u=s+y
$$

$$
v=s-2 y
$$

Example

- Case split $\neg y \leq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

$$
\begin{aligned}
& x=s-y \\
& u=s+y \\
& v=s-2 y
\end{aligned}
$$

Bounds

Equations

$$
s \geq 1
$$

$$
x \geq 0
$$

$$
y>1
$$

Example

- Bound violation

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

\[

\]

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

Equations

Bounds

$$
\begin{array}{llll}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x) & =-\delta & x=s-y & s \geq 1 \\
M(y) & =1+\delta & u=s+y & \\
M(s) & =1 & v=s-2 y & \\
M(u) & =2+\delta & & \\
M(v) & =-1-2 \delta & &
\end{array}
$$

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

Bounds

$$
\begin{array}{ll}
s=x+y & s \geq 1 \\
u=s+y & x \geq 0 \\
v=s-2 y & y>1
\end{array}
$$

Equations

Example

- Bound violation pivot x and s (x is a dependent variables).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\delta \\
& M(y)=1+\delta \\
& M(s)=1 \\
& M(u)=2+\delta \\
& M(v)=-1-2 \delta
\end{aligned}
$$

Equations

$$
\begin{aligned}
& \delta \\
& +\delta
\end{aligned} \quad \begin{aligned}
& s+y \\
& u
\end{aligned}=x+2 y,
$$

Bounds

$s \geq 1$
$x \geq 0$
$y>1$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{llc}
M(x) & = & 0 \\
M(y) & = & 1+\delta \\
M(s) & = & 1 \\
M(u) & = & 2+\delta \\
M(v) & = & -1-2 \delta
\end{array}
$$

Bounds

$$
\begin{array}{rlrl}
s & =x+y & s \geq 1 \\
u & =x+2 y & x \geq 0 \\
v & =x-y & y>1
\end{array}
$$

Equations

Example

- Bound violation update dependent variables assignment.

$$
\begin{aligned}
& s \geq 1, x \geq 0 \\
& (y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1) \\
& \text { Model } \\
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta \\
& \text { Equations } \\
& s=x+y \\
& u=x+2 y \\
& v=x-y
\end{aligned}
$$

Example

- Theory propagation $x \geq 0, y>1 \rightsquigarrow u>2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

$$
s \geq 1
$$

$$
x \geq 0
$$

$$
y>1
$$

Example

- Theory propagation $u>2 \rightsquigarrow \neg u \leq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Example

- Boolean propagation $\neg y \leq 1 \rightsquigarrow v \geq 2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Example

- Theory propagation $v \geq 2 \rightsquigarrow \neg v \leq-2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds
$\begin{array}{rlrl}s & =x+y & s & \geq 1 \\ u & =x+2 y \\ v & =x-y & x \geq 0 \\ & y>1 \\ u & >2\end{array}$
\qquad

Example

- Conflict empty clause

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{aligned}
s & =x+y \\
u & =x+2 y \\
v & =x-y
\end{aligned}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & >1 \\
u & >2
\end{aligned}
$$

Example

- Backtracking

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
s & =x+y & s & \geq 1 \\
u & =x+2 y & & x \geq 0
\end{array}
$$

Bounds

$$
v=x-y
$$

$$
2
$$

Example

- Asserting $y \leq 1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

$$
\begin{array}{ll}
s=x+y & s \geq 1 \\
u=x+2 y & x \geq 0 \\
\hline
\end{array}
$$

$$
v=x-y
$$

Example

- Asserting $y \leq 1$ assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1+\delta \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations
Bounds

Example

- Asserting $y \leq 1$ update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1 \\
& M(s)=1+\delta \\
& M(u)=2+2 \delta \\
& M(v)=-1-\delta
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
s & =x+y & s \geq 1 \\
u & =x+2 y & x \geq 0 \\
v & =x-y & y \leq 1
\end{array}
$$

Bounds

Example

- Asserting $y \leq 1$ update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=0 \\
& M(y)=1 \\
& M(s)=1 \\
& M(u)=2 \\
& M(v)=-1
\end{aligned}
$$

Equations

$s=x+y$
$u=x+2 y$
$v=x-y$
$y \leq 1$

Example

- Theory propagation $s \geq 1, y \leq 1 \rightsquigarrow v \geq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations
Bounds

$$
\begin{array}{ll}
M(x)=0 & x=s-y \\
M(y)=1 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=2 &
\end{array}
$$

Example

- Theory propagation $v \geq-1 \rightsquigarrow \neg v \leq-2$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=0 & x=s-y \\
M(y)=1 & u=s+y \\
M(s)=1 & v=s-2 y \\
M(u)=2 &
\end{array}
$$

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq-1
\end{aligned}
$$

Example

- Boolean propagation $\quad \neg v \leq-2 \rightsquigarrow v \geq 0$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations

$$
\begin{aligned}
& x=s-y \\
& u=s+y \\
& v=s-2 y
\end{aligned}
$$

Bounds

$$
M(u)=2
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq-1
\end{aligned}
$$

$$
M(v)=-1
$$

Example

- Bound violation assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{lll}
M(x)=0 & x=s-y & s \geq 1 \\
M(y)=1 & u=s+y & x \geq 0 \\
M(s)=1 & v=s-2 y & y \leq 1 \\
M(u)=2 & & v \geq 0 \\
M(v)=-1 & &
\end{array}
$$

Bounds

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

\[

\]

Bounds

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
\hline y & \leq 1 \\
v & \geq 0
\end{aligned}
$$

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{gathered}
\text { Model } \\
M(x)=0 \\
M(y)=1 \\
M(s)=1 \\
M(u)=2 \\
M(v)=-1
\end{gathered}
$$

Equations
Bounds

$$
\begin{aligned}
x & =s-y \\
u & =s+y \\
s & =v+2 y
\end{aligned}
$$

$$
s \geq 1
$$

$$
\begin{aligned}
& x \geq 0 \\
& \hline y \leq 1
\end{aligned}
$$

$$
v \geq 0
$$

Example

- Bound violation pivot u and s (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=v+y & s \geq 1 \\
M(y)=1 & u=v+3 y & x \geq 0 \\
M(s)=1 & s=v+2 y & y \leq 1 \\
M(u)=2 & & v \geq 0 \\
M(v)=-1 & &
\end{array}
$$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{clc}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=0 & x=v+y & s \geq 1 \\
M(y)=1 & u=v+3 y & x \geq 0 \\
M(s)=1 & s=v+2 y & y \leq 1 \\
M(u)=2 & v \geq 0 \\
M(v)=0 & &
\end{array}
$$

Example

- Bound violation update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=v+y \\
M(y)=1 & u=v+3 y \\
M(s)=2 & s=v+2 y \\
M(u)=3 &
\end{array}
$$

Equations
Bounds

$$
\begin{array}{r}
s \geq 1 \\
x \geq 0 \\
\hline y \geq 1 \\
v \geq 0
\end{array}
$$

Example

- Boolean propagation $\quad \neg v \leq-2 \rightsquigarrow u \leq-1$

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=1 & x=v+y \\
M(y)=1 & u=v+3 y \\
M(s)=2 & s=v+2 y \\
M(u)=3 & \\
M(v)=0 &
\end{array}
$$

Equations

$$
\begin{array}{rlr}
x=v+y & s \geq 1 \\
u & =v+3 y & x \\
s=v+2 y & y & \leq 1 \\
& \geq 0
\end{array}
$$

Example

- Bound violation assignment does not satisfy new bound.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Equations
Bounds

$$
\begin{aligned}
& x=v+y \\
& u=v+3 y \\
& s=v+2 y
\end{aligned}
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Equations

$$
\begin{array}{rlrl}
x & =v+y & s & \geq 1 \\
u & =v+3 y & x & \geq 0 \\
s & =v+2 y & y & \leq 1 \\
& v & \geq 0 \\
u & \leq-1
\end{array}
$$

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model
Equations

$$
\begin{array}{cll}
\text { Model } & \text { Equations } & \text { Bounds } \\
M(x)=1 & x=v+y & s \geq 1 \\
M(y)=1 & y=\frac{1}{3} u-\frac{1}{3} v & x \geq 0 \\
M(s)=2 & s=v+2 y & y \leq 1 \\
M(u)=3 & & v \geq 0 \\
M(v)=0 & & u \leq-1
\end{array}
$$

Example

- Bound violation pivot u and y (u is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=3 \\
& M(v)=0
\end{aligned}
$$

Bounds

$$
y=\frac{1}{3} u-\frac{1}{3} v
$$

$$
s=\frac{2}{3} u+\frac{1}{3} v
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violation update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=1 \\
& M(y)=1 \\
& M(s)=2 \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations
$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$s=\frac{2}{3} u+\frac{1}{3} v$
$x \geq 0$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Bound violation update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations
$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$s=\frac{2}{3} u+\frac{1}{3} v$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Bound violations

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations

$$
\begin{aligned}
& x=\frac{1}{3} u+\frac{2}{3} v \\
& y=\frac{1}{3} u-\frac{1}{3} v \\
& s=\frac{2}{3} u+\frac{1}{3} v
\end{aligned}
$$

$$
y \leq 1
$$

$$
v \geq 0
$$

$$
u \leq-1
$$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Bounds

$$
s=\frac{2}{3} u+\frac{1}{3} v
$$

$$
\begin{aligned}
s & \geq 1 \\
x & \geq 0 \\
y & \leq 1 \\
v & \geq 0 \\
u & \leq-1
\end{aligned}
$$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations

$x=\frac{1}{3} u+\frac{2}{3} v$
$y=\frac{1}{3} u-\frac{1}{3} v$
$v=3 s-2 u$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Example

- Bound violations pivot s and v (s is a dependent variable).

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=-\frac{2}{3} \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Equations

$$
x=2 s-u
$$

$$
y=-s+u
$$

$$
v=3 s-2 u
$$

$$
y \leq 1
$$

$$
v \geq 0
$$

$$
u \leq-1
$$

Example

- Bound violations update assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=-\frac{1}{3} \\
& M(y)=-\frac{1}{3} \\
& M(s)=1 \\
& M(u)=-1 \\
& M(v)=0
\end{aligned}
$$

Bounds

s	≥ 1
x	≥ 0
y	≤ 1
v	≥ 0
u	≤-1

Example

- Bound violations update dependent variables assignment.

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{aligned}
& M(x)=3 \\
& M(y)=-2 \\
& M(s)=1 \\
& M(u)=-1 \\
& M(v)=5
\end{aligned}
$$

Equations

$x=2 s-u$
$y=-s+u$
$v=3 s-2 u$
$s \geq 1$

$x \geq 0$
$y \leq 1$

$v \geq 0$
$u \leq-1$

Example

- Found satisfying assignment

$$
\begin{gathered}
s \geq 1, x \geq 0 \\
(y \leq 1 \vee v \geq 2),(v \leq-2 \vee v \geq 0),(v \leq-2 \vee u \leq-1)
\end{gathered}
$$

Model

$$
\begin{array}{ll}
M(x)=3 & x=2 s-u \\
M(y)=-2 & y=-s+u \\
M(s)=1 & v=3 s-2 u \\
M(u)=-1 &
\end{array}
$$

Equations
$s \geq 1$
$x \geq 0$
$y \leq 1$
$v \geq 0$
$u \leq-1$

Correctness

Completeness: trivial
Soundness: also trivial
Termination: non trivial.
We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.
Bland's rule: select the smallest basic variable c that does not satisfy its bounds, then select the smallest non-basic in the row of c that can be used for pivoting.
Too technical.
Uses the fact that a tableau has a finite number of configurations. Then, any infinite trace will have cycles.

Data-structures

Array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)
Each variable x has a "set" (dynamic array) of occurrences:
(row_idx, pos_in_row, is_dead)
Each variable x has a "field" row[x]
$\operatorname{row}[x]$ is -1 if x is non basic
otherwise, row [x] contains the idx of the row containing x Each variable x has "fields": lower[$x]$, upper[$x]$, and value[$x]$

Data-structures

rows: array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)
occs[x]: Each variable x has a "set" (dynamic array) of occurrences:
(row_idx, pos_in_row, is_dead)
row[x]:
$\operatorname{row}[x]$ is -1 if x is non basic
otherwise, row $[x]$ contains the idx of the row containing x
Other "fields": lower[x], upper[x], and value[x]
atoms $[x]$: atoms (assigned/unassigned) that contains x

Data-structures

$\mathrm{s}_{1} \equiv \mathrm{a}+\mathrm{b}, \mathrm{s}_{2} \equiv \mathrm{c}-\mathrm{b}$
$p_{1} \equiv a \leq 0, p_{2} \equiv 1 \leq s_{1}, p_{3} \equiv 1 \leq s_{2}$
p_{1}, p_{2} were already assigned
$a-s_{1}+s_{2}+c=0$
$b-c+s_{2}=0$
$a \leq 0,1 \leq s_{1}$
$M(a)=0 \quad$ value[a] $=0$
$M(b)=-1 \quad$ value[a] $=-1$
$M(c)=0 \quad$ value $[c]=0$
$M\left(s_{1}\right)=1 \quad$ value $\left[s_{1}\right]=1$
$M\left(s_{2}\right)=1 \quad$ value $\left[s_{2}\right]=1$
rows = [

$$
\begin{aligned}
& {\left[(1, a, 0, t),\left(-1, s_{1}, 0, t\right),\left(1, s_{2}, 1, t\right),(1, c, 0, t)\right]} \\
& {\left[(1, b, 0, t),(-1, c, 1, t),\left(1, s_{2}, 2, t\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{occs}[a]=[(0,0, f)] \\
& \operatorname{occs}[b]=[(1,0, f)] \\
& \operatorname{occs}[c]=[(0,3, f),(1,1, f)] \\
& \operatorname{occs}\left[s_{1}\right]=[(0,1, f)] \\
& \operatorname{occs}\left[s_{2}\right]=[(0,0, t),(0,2, f),(1,2, f)] \\
& \operatorname{row}[a]=0, \operatorname{row}[b]=1, \operatorname{row}[c]=-1, \ldots \\
& \operatorname{upper}[a]=0, \operatorname{lower}\left[s_{1}\right]=1 \\
& \text { atoms }[a]=\left\{p_{1}\right\}, \text { atoms }\left[s_{1}\right]=\left\{p_{2}\right\}, \ldots
\end{aligned}
$$

Combining Theories

In practice, we need a combination of theories.
$b+2=c$ and $f(r e a d($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories T1 \cup T2 consistent?
Given a solvers for T1 and T2, how can we build a solver for T1 \cup T2?

Disjoint Theories

Two theories are disjoint if they do not share function/constant and predicate symbols.
$=$ is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: $\{0,-1,1,-2,2, \ldots,+,-, *,>,<, \geq, \leq\}$ Array symbols: \{ read, write \}

Purification

It is a different name for our "naming" subterms procedure.

$$
b+2=c, f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

$$
b+2=c, v_{6} \neq v_{7}
$$

$$
v_{1} \equiv 3, v_{2} \equiv \operatorname{write}\left(a, b, v_{1}\right), v_{3} \equiv c-2, v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right),
$$

$$
v_{5} \equiv c-b+1, v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right)
$$

Purification

It is a different name for our "naming" subterms procedure.

$$
b+2=c, f(\operatorname{read}(\text { write }(a, b, 3), c-2)) \neq f(c-b+1)
$$

$$
\begin{aligned}
& b+2=c, v_{6} \neq v_{7} \\
& v_{1} \equiv 3, v_{2} \equiv \text { write }\left(a, b, v_{1}\right), v_{3} \equiv c-2, v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right), \\
& v_{5} \equiv c-b+1, v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right)
\end{aligned}
$$

$$
b+2=c, v_{1} \equiv 3, v_{3} \equiv c-2, v_{5} \equiv c-b+1,
$$

$$
v_{2} \equiv \text { write }\left(a, b, v_{1}\right), v_{4} \equiv \operatorname{read}\left(v_{2}, v_{3}\right)
$$

$$
v_{6} \equiv f\left(v_{4}\right), v_{7} \equiv f\left(v_{5}\right), v_{6} \neq v_{7}
$$

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Important Result

The union of two consistent, disjoint, stably infinite theories is consistent.

Convexity

A theory T is convex iff
for all finite sets S of literals and

$$
\begin{aligned}
& \text { for all } a_{1}=b_{1} \vee \ldots \vee a_{n}=b_{n} \\
& \qquad \text { Simplies } a_{1}=b_{1} \vee \ldots \vee a_{n}=b_{n}
\end{aligned}
$$

iff
Simplies $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}$ for some $1 \leq \mathrm{i} \leq \mathrm{n}$

Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex. formulas of the form $\mathrm{s}_{1} \neq \mathrm{r}_{1} \vee \ldots \vee \mathrm{~s}_{\mathrm{n}} \neq \mathrm{r}_{\mathrm{n}} \vee \mathrm{t}=\mathrm{t}^{\prime}$

Linear rational arithmetic is convex.

Convexity: Negative Results

Linear integer arithmetic is not convex

$$
1 \leq a \leq 2, b=1, c=2 \text { implies } a=b \vee a=c
$$

Nonlinear arithmetic

$$
a^{2}=1, b=1, c=-1 \text { implies } a=b \vee a=c
$$

Theory of bit-vectors

Theory of arrays

$$
\begin{aligned}
& c_{1}=\operatorname{read}\left(\operatorname{write}\left(a, i, c_{2}\right), j\right), c_{3}=\operatorname{read}(a, j) \\
& \text { implies } c_{1}=c_{2} \vee c_{1}=c_{3}
\end{aligned}
$$

Combination of non-convex theories

EUF is convex $(O(n \log n))$
IDL is non-convex ($O(n m)$)

EUF $\cup I D L$ is NP-Complete
Reduce 3CNF to EUF \cup IDL
For each boolean variable p_{i} add $0 \leq a_{i} \leq 1$
For each clause $p_{1} \vee \neg p_{2} \vee p_{3}$ add

$$
f\left(a_{1}, a_{2}, a_{3}\right) \neq f(0,1,0)
$$

Combination of non-convex theories

EUF is convex $(O(n \log n))$
IDL is non-convex ($\mathrm{O}(\mathrm{nm})$)

EUF $\cup I D L$ is NP-Complete
Reduce 3CNF to EUF \cup IDL
For each boolean variable p_{i} add $0 \leq a_{i} \leq 1$
For each clause $p_{1} \vee \neg p_{2} \vee p_{3}$ add

$$
f\left(a_{1}, a_{2}, a_{3}\right) \neq f(0,1,0)
$$

implies

$$
a_{1} \neq 0 \vee a_{2} \neq 1 \vee a_{3} \neq 0
$$

Nelson-Oppen Combination

Let \mathcal{T}_{1} and \mathcal{T}_{2} be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O\left(T_{1}(n)\right)$ and $O\left(T_{2}(n)\right)$ time respectively. Then,

1. The combined theory \mathcal{T} is consistent and stably infinite.
2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O\left(2^{n^{2}} \times\left(T_{1}(n)+T_{2}(n)\right)\right.$.
3. If \mathcal{T}_{1} and \mathcal{T}_{2} are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O\left(n^{3} \times\left(T_{1}(n)+T_{2}(n)\right)\right)$.

Nelson-Oppen Combination

The combination procedure:
Initial State: ϕ is a conjunction of literals over $\Sigma_{1} \cup \Sigma_{2}$.
Purification: Preserving satisfiability transform ϕ into $\phi_{1} \wedge \phi_{2}$, such that, $\phi_{i} \in \Sigma_{i}$.

Interaction: Guess a partition of $\mathcal{V}\left(\phi_{1}\right) \cap \mathcal{V}\left(\phi_{2}\right)$ into disjoint subsets. Express it as conjunction of literals ψ.
Example. The partition $\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{4}\right\}$ is represented as $x_{1} \neq x_{2}, x_{1} \neq x_{4}, x_{2} \neq x_{4}, x_{2}=x_{3}$.

Component Procedures : Use individual procedures to decide whether $\phi_{i} \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Soundness

Each step is satisfiability preserving.
Say ϕ is satisfiable (in the combination).

- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.
- Iteration: for some partition $\psi, \phi_{1} \wedge \phi_{2} \wedge \psi$ is satisfiable.
- Component procedures: $\phi_{1} \wedge \psi$ and $\phi_{2} \wedge \psi$ are both satisfiable in component theories.
- Therefore, if the procedure return unsatisfiable, then ϕ is unsatisfiable.

Completeness

Suppose the procedure returns satisfiable.

- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
- Let h be a bijection between $|A|$ and $|B|$ such that $h(A(x))=B(x)$ for each shared variable.
- Extend B to \bar{B} by interpretations of symbols in Σ_{1} :

$$
\bar{B}(f)\left(b_{1}, \ldots, b_{n}\right)=h\left(A(f)\left(h^{-1}\left(b_{1}\right), \ldots, h^{-1}\left(b_{n}\right)\right)\right)
$$

- \bar{B} is a model of:

$$
\mathcal{T}_{1} \wedge \phi_{1} \wedge \mathcal{T}_{2} \wedge \phi_{2} \wedge \psi
$$

NO deterministic procedure (for convex theories)

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.
Interaction: Deduce an equality $x=y$:

$$
\mathcal{T}_{1} \vdash\left(\phi_{1} \Rightarrow x=y\right)
$$

Update $\phi_{2}:=\phi_{2} \wedge x=y$. And vice-versa. Repeat until no further changes.

Component Procedures : Use individual procedures to decide whether ϕ_{i} is satisfiable.

Remark: $\mathcal{T}_{i} \vdash\left(\phi_{i} \Rightarrow x=y\right)$ iff $\phi_{i} \wedge x \neq y$ is not satisfiable in \mathcal{T}_{i}.

NO deterministic procedure Completeness

Assume the theories are convex.

- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}$.
- By convexity, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow \bigvee_{E} x_{j}=x_{k}$.
- $\phi_{i} \wedge \bigwedge_{E} x_{j} \neq x_{k}$ is satisfiable.
- The proof now is identical to the nondeterministic case.
- Sharing equalities is sufficient, because a theory \mathcal{T}_{1} can assume that $x^{B} \neq y^{B}$ whenever $x=y$ is not implied by \mathcal{T}_{2} and vice versa.

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$v_{1} \equiv 3$,
$v_{3} \equiv c-2$,
$v_{5} \equiv c-b+1$

Arrays
$\mathrm{v}_{2} \equiv$ write $\left(\mathrm{a}, \mathrm{b}, \mathrm{v}_{1}\right)$,
$\mathrm{v}_{4} \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)$
-

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=\mathbf{c}$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv c-2$,
$v_{5} \equiv c-b+1$

Arrays
$\mathrm{v}_{2} \equiv$ write $\left(\mathrm{a}, \mathrm{b}, \mathrm{v}_{1}\right)$,
$\mathrm{v}_{4} \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)$
EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

Substituting c

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$\mathbf{v}_{\mathbf{3}} \equiv \mathrm{b}$,
$\mathrm{v}_{5} \equiv 3$

Propagating $v_{3}=b$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$

Deducing $\mathrm{v}_{4}=\mathrm{v}_{1}$

Arrays

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{2}} \equiv \operatorname{write}\left(\mathrm{a}, \mathbf{b}, \mathrm{v}_{1}\right), \\
& \mathbf{v}_{4} \equiv \operatorname{read}\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right), \\
& \mathbf{v}_{3}=\mathrm{b}
\end{aligned}
$$

EUF

$$
\begin{aligned}
\mathrm{v}_{6} & \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
\mathrm{v}_{7} & \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
\mathrm{v}_{6} & \neq \mathrm{v}_{7}, \\
\mathrm{v}_{3} & =\mathrm{b}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$

EUF

$$
\begin{aligned}
\mathrm{v}_{6} & \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
\mathrm{v}_{7} & \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
\mathrm{v}_{6} & \neq \mathrm{v}_{7}, \\
\mathrm{v}_{3} & =\mathrm{b}
\end{aligned}
$$

Propagating $\mathrm{v}_{4}=\mathrm{v}_{1}$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathbf{v}_{1} \equiv \mathbf{3}$,
$\mathrm{v}_{3} \equiv \mathrm{~b}$,
$\mathbf{v}_{5} \equiv 3$,
$\mathrm{v}_{4}=\mathrm{v}_{1}$
Propagating $\mathrm{v}_{5}=\mathrm{v}_{1}$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$v_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$,
$\mathrm{v}_{4}=\mathrm{v}_{1}$
Congruence: $\mathrm{v}_{6}=\mathrm{v}_{7}$

Arrays

$$
\begin{aligned}
\mathrm{v}_{2} & \equiv \operatorname{write}\left(\mathrm{a}, \mathrm{~b}, \mathrm{v}_{1}\right), \\
\mathrm{v}_{4} & \equiv \operatorname{read}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \\
\mathrm{v}_{3} & =\mathrm{b} \\
\mathrm{v}_{4} & =\mathrm{v}_{1}
\end{aligned}
$$

R

EUF

$$
\begin{aligned}
& \mathbf{v}_{6} \equiv \mathrm{f}\left(\mathbf{v}_{\mathbf{4}}\right), \\
& \mathrm{v}_{7} \equiv \mathrm{f}\left(\mathbf{v}_{\mathbf{5}}\right), \\
& \mathrm{v}_{6} \neq \mathrm{v}_{7}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathbf{v}_{\mathbf{4}}=\mathbf{v}_{\mathbf{1}}, \\
& \mathbf{v}_{\mathbf{5}}=\mathbf{v}_{\mathbf{1}}
\end{aligned}
$$

NO procedure: Example

$b+2=c, f(\operatorname{read}($ write $(a, b, 3), c-2)) \neq f(c-b+1)$

Arithmetic
$b+2=c$,
$\mathrm{v}_{1} \equiv 3$,
$v_{3} \equiv b$,
$\mathrm{v}_{5} \equiv 3$,

$$
v_{4}=v_{1}
$$

$\mathrm{v}_{4}=\mathrm{v}_{1}$
Unsatisfiable

Arrays

$$
\begin{aligned}
v_{2} & \equiv \operatorname{write}\left(a, b, v_{1}\right), \\
v_{4} & \equiv \operatorname{read}\left(v_{2}, v_{3}\right), \\
v_{3} & =b, \\
v_{4} & =v_{1}
\end{aligned}
$$

EUF

$$
\begin{aligned}
& \mathrm{v}_{6} \equiv \mathrm{f}\left(\mathrm{v}_{4}\right), \\
& \mathrm{v}_{\mathbf{7}} \equiv \mathrm{f}\left(\mathrm{v}_{5}\right), \\
& \mathbf{v}_{\mathbf{6}} \neq \mathbf{v}_{\mathbf{7}}, \\
& \mathrm{v}_{3}=\mathrm{b}, \\
& \mathrm{v}_{4}=\mathrm{v}_{1}, \\
& \mathrm{v}_{5}=\mathrm{v}_{1}, \\
& \mathbf{v}_{\mathbf{6}}=\mathbf{v}_{\mathbf{7}}
\end{aligned}
$$

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.
$0 \leq a \leq 1,0 \leq b \leq 1,0 \leq c \leq 1$,
$f(a) \neq f(b)$,
$f(a) \neq f(c)$,
$f(b) \neq f(c)$

Combining Procedures in Practice

Propagate all implied equalities.

- Deterministic Nelson-Oppen.
- Complete only for convex theories.
- It may be expensive for some theories.

Delayed Theory Combination.

- Nondeterministic Nelson-Oppen.
- Create set of interface equalities $(x=y)$ between shared variables.
- Use SAT solver to guess the partition.
- Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which equalities are propagated.

Model-based Theory Combination

- Optimistic approach.
- Use a candidate model M_{i} for one of the theories \mathcal{T}_{i} and propagate all equalities implied by the candidate model, hedging that other theories will agree.

$$
\text { if } M_{i} \models \mathcal{T}_{i} \cup \Gamma_{i} \cup\{u=v\} \text { then propagate } u=v
$$

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

Example

$$
x=f(y-1), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1
$$

Purifying

Example

$$
x=f(z), f(x) \neq f(y), 0 \leq x \leq 1,0 \leq y \leq 1, z=y-1
$$

Microsoft
Research

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$\begin{aligned} & x=f(z) \\ & f(x) \neq f(y) \end{aligned}$	$\begin{aligned} & \{x, f(z)\} \\ & \{y\} \\ & \{z\} \\ & \{f(x)\} \\ & \{f(y)\} \end{aligned}$	$\begin{aligned} E(x)= & *_{1} \\ E(y)= & *_{2} \\ E(z)= & *_{3} \\ E(f)= & \left\{*_{1} \mapsto *_{4},\right. \\ & *_{2} \mapsto *_{5}, \\ & *_{3} \mapsto *_{1}, \\ & \text { else } \left.\mapsto *_{6}\right\} \end{aligned}$	$\begin{aligned} & 0 \leq x \leq 1 \\ & 0 \leq y \leq 1 \\ & z=y-1 \end{aligned}$	$\begin{aligned} & A(x)=0 \\ & A(y)=0 \\ & A(z)=-1 \end{aligned}$

Assume $\mathrm{x}=\mathrm{y}$

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$\begin{aligned} & x=f(z) \\ & f(x) \neq f(y) \\ & x=y \end{aligned}$	$\begin{aligned} & \{x, y, f(z)\} \\ & \{z\} \\ & \{f(x), f(y)\} \end{aligned}$	$\begin{aligned} E(x) & =*_{1} \\ E(y) & =*_{1} \\ E(z) & =*_{2} \\ E(f) & =\left\{*_{1} \mapsto *_{3},\right. \\ & *_{2} \mapsto *_{1}, \\ & \left.\quad \text { else } \mapsto *_{4}\right\} \end{aligned}$	$\begin{aligned} & 0 \leq x \leq 1 \\ & 0 \leq y \leq 1 \\ & z=y-1 \\ & x=y \end{aligned}$	$\begin{aligned} & A(x)=0 \\ & A(y)=0 \\ & A(z)=-1 \end{aligned}$

Unsatisfiable

Example

\mathcal{T}_{E}			\mathcal{I}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, f(z)\}$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$\{y\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=0$
$x \neq y$	$\{z\}$	$E(z)=*_{3}$	$z=y-1$	$A(z)=-1$
	$\{f(x)\}$	$E(f)=\left\{*_{1} \mapsto *_{4}\right.$,	$x \neq y$	
	$\{f(y)\}$	$*_{2} \mapsto *_{5}$,		
		$*_{3} \mapsto *_{1}$,		
		else $\left.\mapsto *_{6}\right\}$		

Backtrack, and assert $x \neq y$.
\mathcal{T}_{A} model need to be fixed.

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$\begin{aligned} & x=f(z) \\ & f(x) \neq f(y) \\ & x \neq y \end{aligned}$	$\begin{aligned} & \{x, f(z)\} \\ & \{y\} \\ & \{z\} \\ & \{f(x)\} \\ & \{f(y)\} \end{aligned}$	$\begin{aligned} E(x)= & *_{1} \\ E(y)= & *_{2} \\ E(z)= & *_{3} \\ E(f)= & \left\{*_{1} \mapsto *_{4},\right. \\ & *_{2} \mapsto *_{5}, \\ & *_{3} \mapsto *_{1}, \\ & \left.\quad \text { else } \mapsto *_{6}\right\} \end{aligned}$	$\begin{aligned} & 0 \leq x \leq 1 \\ & 0 \leq y \leq 1 \\ & z=y-1 \\ & x \neq y \end{aligned}$	$\begin{aligned} & A(x)=0 \\ & A(y)=1 \\ & A(z)=0 \end{aligned}$

Assume $x=z$

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		e/se $\left.\mapsto *_{4}\right\}$		

Satisfiable

Example

\mathcal{T}_{E}			\mathcal{T}_{A}	
Literals	Eq. Classes	Model	Literals	Model
$x=f(z)$	$\{x, z$,	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$\{y\}$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$\{f(y)\}$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	
		$*_{2} \mapsto *_{3}$,	$x=z$	
		else $\left.\mapsto *_{4}\right\}$		

Let h be the bijection between $|E|$ and $|A|$.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Example

\mathcal{T}_{E}		\mathcal{T}_{A}	
Literals	Model	Literals	Model
$x=f(z)$	$E(x)=*_{1}$	$0 \leq x \leq 1$	$A(x)=0$
$f(x) \neq f(y)$	$E(y)=*_{2}$	$0 \leq y \leq 1$	$A(y)=1$
$x \neq y$	$E(z)=*_{1}$	$z=y-1$	$A(z)=0$
$x=z$	$E(f)=\left\{*_{1} \mapsto *_{1}\right.$,	$x \neq y$	$A(f)=\{0 \mapsto 0$
	$*_{2} \mapsto *_{3}$,	$x=z$	$1 \mapsto-1$
	else $\left.\mapsto *_{4}\right\}$		
			else $\mapsto 2\}$

Extending A using h.

$$
h=\left\{*_{1} \mapsto 0, *_{2} \mapsto 1, *_{3} \mapsto-1, *_{4} \mapsto 2, \ldots\right\}
$$

Model Mutation

Sometimes $M(x)=M(y)$ by accident.

$$
\bigwedge_{i=1}^{N} f\left(x_{i}\right) \geq 0 \wedge x_{i} \geq 0
$$

Model mutation: diversify the current model.

Freedom Intervals

Model mutation without pivoting

For each non basic variable x_{j} compute $\left[\mathrm{L}_{\mathrm{j}}, \mathrm{U}_{\mathrm{j}}\right.$]

Each row containing x_{j} enforces a limit on how much it can be increase and/or decreased without violating the bounds of the basic variable in the row.

Opportunistic Equality Propagation

We say a variable is fixed if the lower and upper bound are the same.

$$
1 \leq x \leq 1
$$

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma $2 x_{1}+x_{2}$, we use $M(P)$ to denote $2 M\left(x_{1}\right)+M\left(x_{2}\right)$

Opportunistic Equality Propagation

FixedEq

$$
l_{i} \leq x_{i} \leq u_{i}, \quad l_{j} \leq x_{j} \leq u_{j} \Longrightarrow x_{i}=x_{j} \text { if } \quad l_{i}=u_{i}=l_{j}=u_{j}
$$

EqRow

$$
x_{i}=x_{j}+P \quad \Longrightarrow x_{i}=x_{j} \text { if } P \text { is fixed, and } \mathrm{M}(P)=0
$$

EqOffsetRows

$$
\begin{aligned}
& x_{i}=x_{k}+P_{1} \\
& x_{j}=x_{k}+P_{2}
\end{aligned} \quad \Longrightarrow x_{i}=x_{j} \text { if }\left\{\begin{array}{l}
P_{1} \text { and } P_{2} \text { are fixed, and } \\
\mathrm{M}\left(P_{1}\right)=\mathrm{M}\left(P_{2}\right)
\end{array}\right.
$$

EqRows

$$
\begin{aligned}
& x_{i}=P+P_{1} \\
& x_{j}=P+P_{2}
\end{aligned} \quad \Longrightarrow x_{i}=x_{j} \text { if }\left\{\begin{array}{l}
P_{1} \text { and } P_{2} \text { are fixed, and } \\
\mathrm{M}\left(P_{1}\right)=\mathrm{M}\left(P_{2}\right)
\end{array}\right.
$$

Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?
Solution: add a predicate is-bv (x) to the bit-vector theory (intuition:
is-bv (x) is true iff x is a bitvector).
The result of the bit-vector operation $o p(x, y)$ is not specified if
$\neg i s-b v(x)$ or $\neg i s-b v(y)$.
The new bit-vector theory is stably-infinite.

Reduction Functions

A reduction function reduces the satifiability problem for a complex theory into the satisfiability problem of a simpler theory.

Ackermannization is a reduction function.

Reduction Functions

Theory of commutative functions.

- $\forall x, y \cdot f(x, y)=f(y, x)$
- Reduction to EUF
- For every $f(a, b)$ in ϕ, do $\phi:=\phi \wedge f(a, b)=f(b, a)$.

Verifying Compilers

Verification conditions: Structure

\forall Axioms
(non-ground)

Control \& Data Flow

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
$\forall \mathrm{h}, \mathrm{o}, \mathrm{f}$:
IsHeap(h) $\wedge 0 \neq$ null \wedge read(h, o, alloc) $=t$
$\overrightarrow{\operatorname{read}(h, o, f)}=\operatorname{null} \vee \operatorname{read}(h, \operatorname{read}(h, o, f)$, alloc $)=t$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
$\forall \mathrm{o}$, f:
$\mathrm{o} \neq$ null \wedge read $\left(\mathrm{h}_{0}, \mathrm{o}\right.$, alloc $)=\mathrm{t} \Rightarrow$
$\operatorname{read}\left(\mathrm{h}_{1}, \mathrm{o}, \mathrm{f}\right)=\operatorname{read}\left(\mathrm{h}_{0}, \mathrm{o}, \mathrm{f}\right) \vee(\mathrm{o}, \mathrm{f}) \in \mathrm{M}$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
e Frame axioms
e User provided assertions
$\forall \mathrm{i}, \mathrm{j}: \mathrm{i} \leq \mathrm{j} \Rightarrow \operatorname{read}(\mathrm{a}, \mathrm{i}) \leq \operatorname{read}(\mathrm{b}, \mathrm{j})$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
e User provided assertions
- Theories
$\forall \mathrm{x}: \mathrm{p}(\mathrm{x}, \mathrm{x})$
$\forall \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{p}(\mathrm{x}, \mathrm{y}), \mathrm{p}(\mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{p}(\mathrm{x}, \mathrm{z})$
$\forall x, y: p(x, y), p(y, x) \Rightarrow x=y$

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

- Modeling the runtime
- Frame axioms
e User provided assertions
- Theories
e Solver must be fast in satisfiable instances.

We want to find bugs!

Some statistics

e Grand challenge: Microsoft Hypervisor

- 70k lines of dense C code
- VCs have several Mb
e Thousands of non ground clauses
- Developers are willing to wait at most 5 min per VC

Many Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

E-matching \& Quantifier instantiation

© SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).
e Example:

Microsoft
Research

E-matching \& Quantifier instantiation

e SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).
e Example:
$\forall x: f(g(x))=x\{f(g(x))\}$
$a=g(b)$,
$b=c$,
$f(a) \neq c$
Equalities and ground terms come from the partial model M

E-matching: why do we use it?

e Integrates smoothly with DPLL.

- Software verification problems are big \& shallow.
e Decides useful theories:
- Arrays
- Partial orders
© ...

Efficient E-matching

e E-matching is NP-Hard.

- In practice

Problem
Indexing Technique
Fast retrieval
E-matching code trees
Incremental E-Matching Inverted path index

E-matching code trees

Trigger:
 $f(x 1, g(x 1, a), h(x 2), b)$

Similar triggers share several instructions.

Combine code sequences in a code tree

Instructions:

1. init(f, 2$)$
2. $\operatorname{check}(r 4, b, 3)$
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check($\mathrm{r} 6, \mathrm{a}, 6$)
6. $\operatorname{bind}(r 3, h, r 7,7)$
7. yield(r1, r7)

E-matching:

e E-matching needs ground seeds.
$\forall \mathrm{x}$: $\mathrm{p}(\mathrm{x})$,
$\forall x: \operatorname{not} p(x)$

E-matching:

e E-matching needs ground seeds.

- Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{f(g(x))\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b
\end{aligned}
$$

Trigger is too restrictive

E-matching:

e E-matching needs ground seeds.
e Bad user provided triggers:

$$
\begin{aligned}
& \forall x: f(g(x))=x\{g(x)\} \\
& g(a)=c, \\
& g(b)=c, \\
& a \neq b
\end{aligned}
$$

More "liberal" trigger

E-matching:

e E-matching needs ground seeds.
e Bad user provided triggers:
$\forall \mathrm{x}: \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}\{\mathrm{g}(\mathrm{x})\}$
$g(a)=c$,
$g(b)=c$,
$a \neq b$,
$f(g(a))=a$,
$f(g(b))=b$

$$
a=b
$$

E-matching:

e E-matching needs ground seeds.

- Bad user provided triggers.
e It is not refutationally complete.

False positives

DPLL(Г)

e Tight integration: DPLL + Saturation solver.

Microsoft
Research

DPLL(I)

e Inference rule:

$$
\frac{C_{1} \ldots C_{n}}{C}
$$

e $\operatorname{DPLL}(\Gamma)$ is parametric.
e Examples:

- Resolution
e Superposition calculus
© ...

DPLL(Г)

Partial model

Set of clauses

DPLL(Г): Deduce I

$p(a) \mid p(a) v q(a), \forall x: \neg p(x) \vee r(x), \forall x: p(x) \vee s(x)$

DPLL(Г): Deduce I

$p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x)$

DPLL(Г): Deduce I

$$
p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x)
$$

Resolution

$p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x), p(x) \vee s(x), r(x) \vee s(x)$

DPLL(Г): Deduce II

e Using ground atoms from M :

$$
M \mid F
$$

e Main issue: backtracking.
e Hypothetical clauses:
(hypothesis) Ground literals

Track literals from M used to derive C

(regular) Clause

Micosort
Research

DPLL(Г): Deduce II

$$
p(a) \mid p(a) \vee q(a), \neg p(x) \vee r(x)
$$

DPLL(Г): Backtracking

$$
p(a), r(a) \mid p(a) v q(a), \neg p(a) \vee \neg r(a), p(a) \triangleright r(a), \ldots
$$

DPLL(Г): Backtracking

$$
p(a), r(a) \mid p(a) \vee q(a), \neg p(a) \vee \neg r(a), p(d)(a), \ldots
$$

$\mathrm{p}(\mathrm{a})$ is removed from M

$$
\neg p(a) \mid p(a) \vee q(a), \neg p(a) \vee \neg r(a), \ldots
$$

DPLL(Г): Improvement

e Saturation solver ignores non-unit ground clauses.

$$
p(a) \mid p\left(p^{\prime}\right)(a), \neg p(x) \vee r(x)
$$

DPLL(Г): Improvement

e Saturation solver ignores non-unit ground clauses.
e It is still refutanionally complete if:
e Γ has the reduction property.

Microsoft
Research

DPLL(Г): Improvement

e Saturation solver ignores non-unit ground clauses.
e It is still refutanionally complete if:
e Γ has the reduction property.

DPLL(Г):

- Interpreted symtbols
$\neg(f(a)>2), \quad f(x)>5$
e It is refutationally complete if
e Interpreted symbols only occur in ground clauses
e Non ground clauses are variable inactive
e "Good" ordering is used

Notation Remainder

$$
\begin{aligned}
& \forall x_{1}, x_{2}: \neg p\left(x_{1}, x_{2}\right) \vee f\left(x_{1}\right)=f\left(x_{2}\right)+1, \\
& p(a, b), a<b+1
\end{aligned}
$$

Notation Remainder

$$
\begin{aligned}
& \neg p\left(x_{1}, x_{2}\right) \vee f\left(x_{1}\right)=f\left(x_{2}\right)+1, \\
& p(a, b), a<b+1
\end{aligned}
$$

Essentially uninterpreted fragment

© Variables appear only as arguments of uninterpreted symbols.

$$
\begin{gathered}
f\left(g\left(x_{1}\right)+a\right)<g\left(x_{1}\right) \vee h\left(f\left(x_{1}\right), x_{2}\right)=0 \\
f\left(x_{1}+x_{2}\right) \leq f\left(x_{1}\right)+f\left(x_{2}\right)
\end{gathered}
$$

Basic Idea

Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F^{*}
"Domain" of f is the set of ground terms A_{f} $t \in A_{f}$ if there is a ground term $f(t)$

Suppose

1. We have a clause $C[f(x)]$ containing $f(x)$.
2. We have $f(t)$.
\rightarrow
Instantiate x with t : $\mathrm{C}[\mathrm{f}(\mathrm{t})]$.

Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right), \\
& h(c)=1, \\
& f(a)=0
\end{aligned}
$$

$$
F^{*}
$$

Example

\[

\]

Copy quantifier-free formulas

"Domains":
$A_{f}:\{a\}$
$A_{g}:\{ \}$
$A_{h}:\{c\}$

Example

$$
\begin{array}{ll}
\quad \text { F } & \text { F } \\
g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0, & h(c)=1, \\
g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right), \\
h(c)=1, \\
f(a)=0
\end{array} \quad \begin{aligned}
& f(a)=0,
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{ \} \\
& A_{h}:\{c\}
\end{aligned}
$$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a)
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{[f(a), b]\} \\
& A_{h}:\{c\}
\end{aligned}
$$

Example

$$
\quad \square \begin{aligned}
& \text { h(c) }=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a),
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{[f(a), b]\} \\
& A_{h}:\{c\}
\end{aligned}
$$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{[f(a), b]\} \\
& A_{h}:\{c, b\}
\end{aligned}
$$

Example

$$
\quad \begin{aligned}
& h(c)=1, \\
& f(a)=0, \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0
\end{aligned}
$$

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{[f(a), b]\} \\
& A_{h}:\{c, b\}
\end{aligned}
$$

Example

\[

\]

"Domains":

$$
\begin{aligned}
& A_{f}:\{a\} \\
& A_{g}:\{[f(a), b],[f(a), c]\} \\
& A_{h}:\{c, b\}
\end{aligned}
$$

Example

F

$$
F^{*}
$$

$$
h(c)=1,
$$

$$
f(a)=0,
$$

$$
g(f(a), b)+1 \leq f(a)
$$

$$
g(f(a), b)=0 \vee h(b)=0
$$

$$
g(f(a), c)=0 \vee h(c)=0
$$

M

$$
\begin{aligned}
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow\{2 \rightarrow 0, \ldots\} \\
& \mathrm{h} \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\}
\end{aligned}
$$

Basic Idea (cont.)

Given a model M for F*, Build a model M^{π} for F

Define a projection function π_{f} s.t. range of π_{f} is $M\left(A_{f}\right)$, and
$\pi_{f}(v)=v$ if $v \in M\left(A_{f}\right)$
Then,
$M^{\pi}(f)(v)=M(f)\left(\pi_{f}(v)\right)$

Basic Idea (cont.)

Microsoft
Research

Basic Idea (cont.)

Given a model M for F^{*}, Build a model M^{π} for F

In our example, we have: $h(b)$ and $h(c)$
$\rightarrow A_{h}=\{b, c\}$, and $M\left(A_{h}\right)=\{2,3\}$

$$
\pi_{\mathrm{h}}=\{2 \rightarrow 2,3 \rightarrow 3, \text { else } \rightarrow 3\}
$$

$$
\begin{gathered}
\begin{array}{c}
\mathrm{M}(\mathrm{~h}) \\
\{2 \rightarrow 0,3 \rightarrow 1, \ldots\}
\end{array} \begin{array}{c}
\square \\
\left.\mathrm{M}^{\pi}(\mathrm{h})=\lambda \mathrm{h}\right) \\
\{2 \rightarrow 0,3 \rightarrow 1 \text { if } \mathrm{if}(\mathrm{x}=2,0,1)
\end{array}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { F } \\
& g\left(x_{1}, x_{2}\right)=0 \vee h\left(x_{2}\right)=0 \text {, } \\
& g\left(f\left(x_{1}\right), b\right)+1 \leq f\left(x_{1}\right) \text {, } \\
& h(c)=1 \text {, } \\
& f(a)=0 \\
& h(c)=1 \text {, } \\
& f(a)=0 \text {, } \\
& g(f(a), b)+1 \leq f(a), \\
& g(f(a), b)=0 \vee h(b)=0, \\
& g(f(a), c)=0 \vee h(c)=0 \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 3 \\
& \mathrm{f} \rightarrow \text { \{ } 2 \rightarrow 0, \ldots\} \\
& h \rightarrow\{2 \rightarrow 0,3 \rightarrow 1, \ldots\} \\
& \mathrm{g} \rightarrow\{[0,2] \rightarrow-1,[0,3] \rightarrow 0, \ldots\} \\
& \text { Microoftrearch }
\end{aligned}
$$

Example: Model Checking

\mathbf{M}^{π}

$$
\begin{aligned}
& a \rightarrow 2, b \rightarrow 2, c \rightarrow 3 \\
& f \rightarrow \lambda x .2 \\
& h \rightarrow \lambda x . \text { if }(x=2,0,1) \\
& g \rightarrow \lambda x, y . \text { if }(x=0 \wedge y=2,-1,0)
\end{aligned}
$$

Does M^{π} satisfies?

$\forall \mathrm{x}_{1}, \mathrm{x}_{2}: \mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0 \vee \mathrm{~h}\left(\mathrm{x}_{2}\right)=0$

$$
\forall x_{1}, x_{2}: \text { if }\left(x_{1}=0 \wedge x_{2}=2,-1,0\right)=0 \vee \operatorname{if}\left(x_{2}=2,0,1\right)=0 \text { is valid }
$$

$$
\exists x_{1}, x_{2}: i f\left(x_{1}=0 \wedge x_{2}=2,-1,0\right) \neq 0 \wedge \mathrm{if}\left(x_{2}=2,0,1\right) \neq 0 \text { is unsat }
$$

$$
\operatorname{if}\left(s_{1}=0 \wedge s_{2}=2,-1,0\right) \neq 0 \wedge \operatorname{if}\left(s_{2}=2,0,1\right) \neq 0 \quad \text { is unsat }
$$

Why does it work?

Suppose M^{π} does not satisfy $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
Then for some value v, $\mathrm{M}^{\pi}\{\mathrm{x} \rightarrow \mathrm{v}\}$ falsifies $\mathrm{C}[f(\mathrm{x})]$.
$\mathrm{M}^{\pi}\left\{\mathrm{x} \rightarrow \pi_{\mathrm{f}}(\mathrm{v})\right\}$ also falsifies $\mathrm{C}[\mathrm{f}(\mathrm{x})]$.
But, there is a term $t \in A_{f}$ s.t. $M(t)=\pi_{f}(v)$ Moreover, we instantiated $\mathrm{C}[\mathrm{f}(\mathrm{x})]$ with t .

So, M must not satisfy $\mathrm{C}[f(\mathrm{t})]$.
Contradiction: M is a model for F^{*}.

Refinement 1: Lazy construction

- F^{*} may be very big (or infinite).
e Lazy-construction
e Build F^{*} incrementally, F^{*} is the limit of the sequence

$$
\mathrm{F}^{0} \subset \mathrm{~F}^{1} \subset \ldots \subset \mathrm{~F}^{\mathrm{k}} \subset \ldots
$$

e If F^{k} is unsat then F is unsat.
e If F^{k} is sat, then build (candidate) M^{π}
e If M^{π} satisfies all quantifiers in F then return sat.

Refinement 2: Model-based instantiation

Suppose M^{π} does not satisfy a clause $\mathrm{C}[\mathrm{f}(\mathrm{x})]$ in F .
Add an instance C[f(t)] which "blocks" this spurious model. Issue: how to find t ?

Use model checking, and the "inverse" mapping π_{f}^{-1} from values to terms (in A_{f}). $\pi_{f}^{-1}(\mathrm{v})=\mathrm{t} \quad$ if $\quad \mathrm{M}^{\pi}(\mathrm{t})=\pi_{\mathrm{f}}(\mathrm{v})$

Model-based instantiation: Example

$$
F
$$

F^{0}

$$
f(a)=1, \quad a \rightarrow 2, b \rightarrow 3
$$

$$
f(b)=-1
$$

$$
f \rightarrow \lambda x . \operatorname{if}(x=2,1,-1)
$$

Model Checking $\forall X_{1}: f\left(x_{1}\right)<0$ not if($\left.s_{1}=2,1,-1\right)<0$
F^{1}

$$
\text { unsat } \downarrow \begin{aligned}
f(a) & =1, \\
f(b) & =-1 \\
f(a) & <0
\end{aligned}
$$

Infinite F*

e Is our procedure refutationally complete?

- FOL Compactness

A set of sentences is unsatisfiable iff
it contains an unsatisfiable finite subset.

- A theory T is a set of sentences, then apply compactness to $\mathrm{F}^{*} \cup \top$

Infinite F*: Example

F

$\forall \mathrm{x}_{1}: \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}_{1}\right)\right)$,
$\forall x_{1}: f\left(x_{1}\right)<a$,
$1<f(0)$.

Unsatisfiable

F*
$f(0)<f(f(0)), f(f(0))<f(f(f(0))), \ldots$
$\mathrm{f}(0)<\mathrm{a}, \mathrm{f}(\mathrm{f}(0))<\mathrm{a}, \ldots$
$1<f(0)$

Every finite subset of F^{*} is satisfiable.

Infinite F*: What is wrong?

e Theory of linear arithmetic T_{Z} is the set of all first-order sentences that are true in the standard structure Z.

- T_{z} has non-standard models.
θ F and F* are satisfiable in a non-standard model.
e Alternative: a theory is a class of structures.
- Compactness does not hold.
e F and F* are still equisatisfiable.

Δ_{F} and Set Constraints

Given a clause $C_{k}\left[x_{1}, \ldots, x_{n}\right]$
Let
$S_{k, i}$ be the set of ground terms used to instantiate x_{i} in
clause $C_{k}\left[x_{1}, \ldots, x_{n}\right]$
How to characterize $S_{k, i}$?

Research

Δ_{F} : Example

$$
\quad \begin{aligned}
& S_{1,1}=A_{g, 1}, S_{1,2}=A_{g, 2}, S_{1,2}=A_{h, 1} \\
& S_{2,1}=A_{f, 1}, f\left(S_{2,1}\right) \subseteq A_{g, 1}, b \in A_{g, 2} \\
& c \in A_{h, 1} \\
& a \in A_{f, 1}
\end{aligned}
$$

Δ_{F} : least solution

$$
\begin{aligned}
& S_{1,1}=\{f(a)\}, S_{1,2}=\{b, c\} \\
& S_{2,1}=\{a\}
\end{aligned}
$$

Complexity

e Δ_{F} is stratified then the least solution (and F^{*}) is finite

$$
\begin{array}{cl}
\mathrm{t}\left[\mathrm{~S}_{\mathrm{k}, 1}, \ldots, \mathrm{~S}_{\mathrm{k}, \mathrm{n}}\right] \subseteq \mathrm{A}_{\mathrm{f}, \mathrm{j}} & \operatorname{level}\left(\mathrm{~S}_{\mathrm{k}, \mathrm{i}}\right)<\operatorname{level}\left(\mathrm{A}_{\mathrm{f}, \mathrm{j}}\right) \\
\mathrm{S}_{\mathrm{k}, \mathrm{i}}=\mathrm{A}_{\mathrm{f}, \mathrm{j}} & \operatorname{level}\left(\mathrm{~S}_{\mathrm{k}, \mathrm{i}}\right)=\operatorname{level}\left(\mathrm{A}_{\mathrm{f}, \mathrm{j}}\right)
\end{array}
$$

e New decidable fragment: NEXPTIME-Hard.
e The least solution of Δ_{F} is exponential in the worst case.

$$
a \in S_{1}, b \in S_{1}, f_{1}\left(S_{1}, S_{1}\right) \subseteq S_{2}, \ldots, f_{n}\left(S_{n}, S_{n}\right) \subseteq S_{n+1}
$$

e F^{*} can be doubly exponential in the size of F.

Extensions

θ Arithmetical literals: π_{f} must be monotonic.

Literal of C_{k}	Δ_{F}
$\neg\left(x_{i} \leq x_{j}\right)$	$S_{k, i}=S_{k, j}$
$\neg \neg\left(x_{i} \leq t\right), \neg\left(t \leq x_{i}\right)$	$t \in S_{k, i}$
$x_{i}=t$	$\{t+1, t-1\} \subseteq S_{k, i}$

© Offsets:

> | j-th argument of f in C_{k} | Δ_{F} |
| :---: | :---: |
| $\mathrm{x}_{\mathrm{i}}+\mathrm{r}$ | $\mathrm{S}_{\mathrm{k}, \mathrm{i}}+\mathrm{r} \subseteq \mathrm{A}_{\mathrm{f}, \mathrm{j}}$ |
| $\mathrm{A}_{\mathrm{f}, \mathrm{j}}+(-r) \subseteq \mathrm{S}_{\mathrm{k}, \mathrm{i}}$ | |

Extensions: Example

Shifting

$$
\neg\left(0 \leq x_{1}\right) \vee \neg\left(x_{1} \leq n\right) \vee f\left(x_{1}\right)=g\left(x_{1}+2\right)
$$

More Extensions

- Many-sorted logic
- Pseudo-Macros

$$
\begin{aligned}
& 0 \leq g\left(x_{1}\right) \vee f\left(g\left(x_{1}\right)\right)=x_{1}, \\
& 0 \leq g\left(x_{1}\right) \vee h\left(g\left(x_{1}\right)\right)=2 x_{1}, \\
& g(a)<0
\end{aligned}
$$

Conclusion

Powerful, mature, and versatile tools like SMT solvers can now be exploited in very useful ways.

The construction and application of satisfiability procedures is an active research area with exciting challenges.

SMT is hot at Microsoft.
Z3 is a new SMT solver.
Main applications:

- Test-case generation.
- Verifying compiler.
- Model Checking \& Predicate Abstraction.

Books

e Bradley \& Manna: The Calculus of Computation
e Kroening \& Strichman: Decision Procedures, An Algorithmic Point of View

- Chapter in the Handbook of Satisfiability

Web Links

Z3:
http://research.microsoft.com/projects/z3
http://research.microsoft.com/~leonardo

- Slides \& Papers
http://www.smtlib.org
http://www.smtcomp.org

Microsoft
Research

References

[Ack54] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation of Mathematics, 1954
[ABC ${ }^{+}$02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In Proc. of CADE'02, 2002
[BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 79-97. Springer-Verlag, 2000
[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In Int. Conference on Computer Aided Verification (CAV'05), pages 20-23. Springer, 2005
[BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the $14^{\text {th }}$ International Conference on Computer Aided Verification (CAV '02), volume 2404 of Lecture Notes in Computer Science, pages 236-249. Springer-Verlag, July 2002. Copenhagen, Denmark
[BBC ${ }^{+}$05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In Int. Conf. on Computer-Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005
[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, 1983

References

[CG96] B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In European Symposium on Algorithms, pages 349-363, 1996
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5(7):394-397, July 1962
[DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs, 2003
[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem. Journal of the Association for Computing Machinery, 27(4):758-771, 1980
[dMR02] L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002). Cincinnati, Ohio, 2002
[DdM06] B. Dutertre and L. de Moura. Integrating simplex with $\operatorname{DPLL}(T)$. Technical report, CSL, SRI International, 2006
[dMB07b] L. de Moura and N. Bjørner. Efficient E-Matching for SMT solvers. In CADE-21, pages 183-198, 2007

References

[dMB07c] L. de Moura and N. Bjørner. Model Based Theory Combination. In SMT'07, 2007
[dMB07a] L. de Moura and N. Bjørner. Relevancy Propagation. Technical Report MSR-TR-2007-140, Microsoft Research, 2007
[dMB08a] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS 08, 2008
[dMB08c] L. de Moura and N. Bjørner. Engineering DPLL(T) + Saturation. In IJCAR'08, 2008
[dMB08b] L. de Moura and N. Bjørner. Deciding Effectively Propositional Logic using DPLL and substitution sets. In IJCAR'08, 2008
[GHN ${ }^{+}$04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, Int. Conference on Computer Aided Verification (CAV 04), volume 3114 of LNCS, pages 175-188. Springer, 2004
[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In Proc. of ICCAD'96, 1996
[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979
[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to difference logic. In Int. Conference on Computer Aided Verification (CAV'05), pages 321-334.

Springer, 2005

References

[Opp80] D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403-411, 1980
[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small domains instantiations. Lecture Notes in Computer Science, 1633:455-469, 1999
[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In Communications of the ACM, volume 8, pages 102-114, August 1992
[RT03] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR'03), Miami, Florida, pages 94-111, 2003
[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium on Logic in Computer Science, pages 19-28, June 2001
[SLB03] S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In Proc. 40th Design Automation Conference, pages 425-430. ACM Press, 2003
[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769-779, October 1981

References

[dMB09] L. de Moura and N. Biørner. Generalized and Efficient Array Decision Procedures. FMCAD, 2009.
[GdM09] Y. Ge and L. de Moura. Complete Quantifier Instantiation for quantified SMT formulas, CAV, 2009.

