Slides: http://tinyurl.com/ksb32xw

How to use SMT

http://rise4fun.com/z3py/tutorial

http://stackoverflow.com/users/2327608/juan-ospina?tab=questions\&sort=activity

Pencil and paper

1) Find the conditions on a, b s.t. $a x^{4}+a x^{3}+b x^{2}+(a+b)<0$
2) Prove Sturm's Theorem. Hint: break interval (a, b) into fundamental intervals:

$$
\left(a=a_{0}, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{m-1}, a_{m}=b\right)
$$

Each interval contains at most one root of $h_{0}, h_{1}, \ldots, h_{n}$ If h_{n} is not a constant polynomial, consider the sequence $\widehat{h_{i}}=\frac{h_{i}}{h_{n}}$

Programming

1) Implement the basic operations $(+, \times, \ldots)$ for univariate polynomials. Suggestion: represent polynomials using list (or vector) of coefficients.
2) Implement the Polynomial division algorithm for univariate polynomials.
3) Use to implement Sturm's sequences, and find the number of roots.
