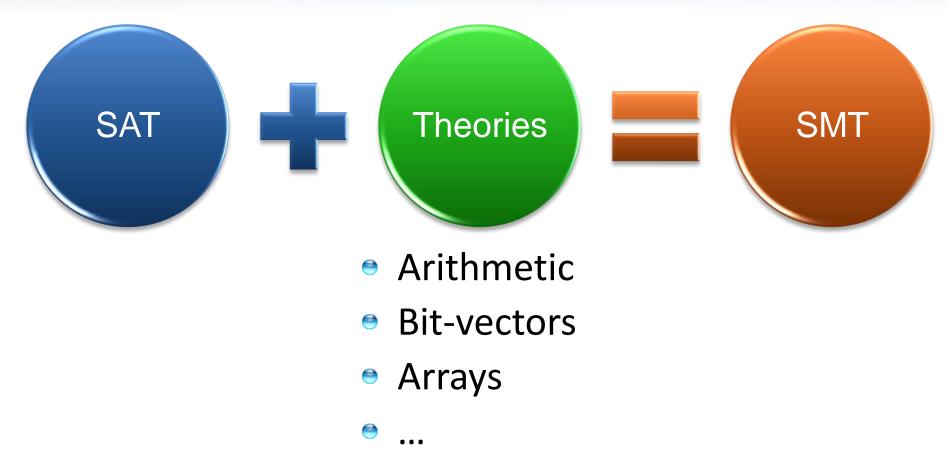


Experiments in Software Verification using SMT Solvers VS Experiments 2008–Toronto, Canada

Leonardo de Moura Microsoft Research

- What is SMT?
- Experiments:
 - Windows kernel verification.
 - Extending SMT solvers.
 - Garbage collector (Singularity) verification
 - Supporting decidable fragments.



Experiments in Software Verification using SMT Solvers

Research

$x+2=y \Rightarrow f(read(write(a, x, 3), y-2) = f(y-x+1)$

Arithmetic

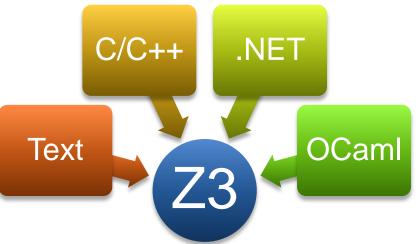
$x+2 = y \Rightarrow f(read(write(a, x, 3), y-2) = f(y-x+1)$

Array Theory

$x+2=y \Rightarrow f(read(write(a, x, 3), y-2) = f(y-x+1)$

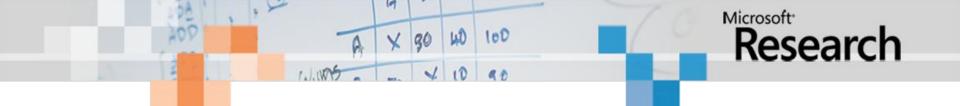
Uninterpreted Functions

- Z3 is a new solver developed at Microsoft Research.
- Development/Research driven by internal customers.
- Free for academic research.
- Interfaces:



http://research.microsoft.com/projects/z3

Research

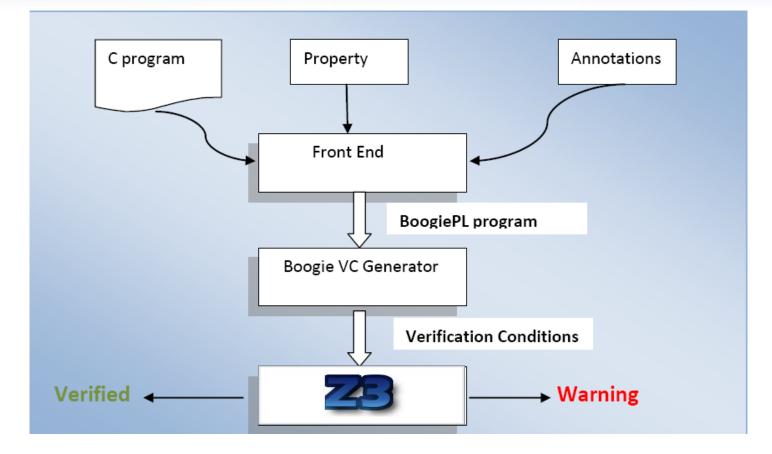


HAVOC Verifying Windows Components

Lahiri & Qadeer, POPL'08,

Also: Ball, Hackett, Lahiri, Qadeer, MSR-TR-08-82.

HAVOC's Architecture



Research

Heaps and Shapes

```
typedef struct _LIST_ENTRY{
   struct _LIST_ENTRY *Flink, *Blink;
} LIST_ENTRY, *PLIST_ENTRY;
```

```
typedef struct _NODEA{
    PERESOURCE Resource;
    LIST_ENTRY NodeBQueue;
```

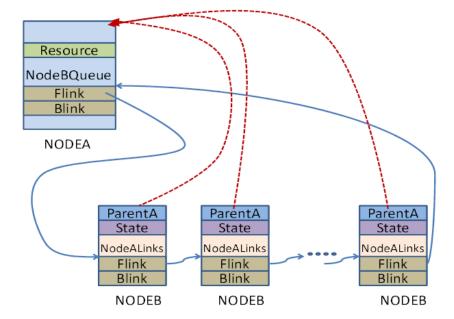
```
} NODEA, *PNODEA;
```

. . .

. . .

```
typedef struct _NODEB{
    PNODEA    ParentA;
    ULONG State;
    LIST_ENTRY NodeALinks;
```

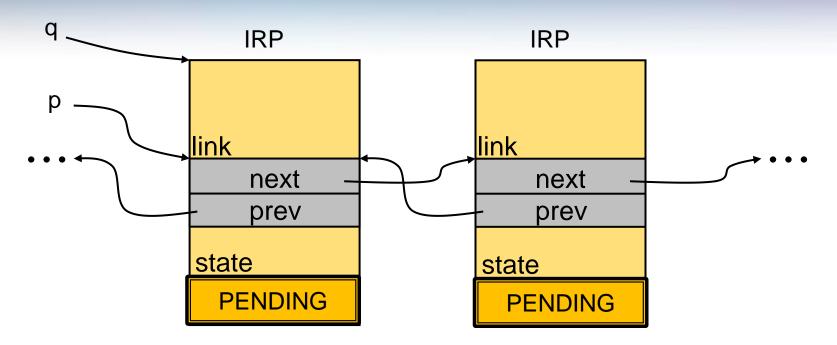
```
} NODEB, *PNODEB;
```



Representative shape graph in Windows Kernel component

Doubly linked lists in Windows Kernel code

Precise and expressive heap reasoning



• Pointer Arithmetic

q = CONTAINING_RECORD(p, IRP, link)

= (IRP *) ((char*)p – (char*)(&(((IRP *)0)→link)))

 Transitive Closure Reach(next, u) = {u, u->next, u->next->next, ...} forall (x, Reach(next,p), CONTAINING_RECORD(x, IRP, link)->state == PENDING)

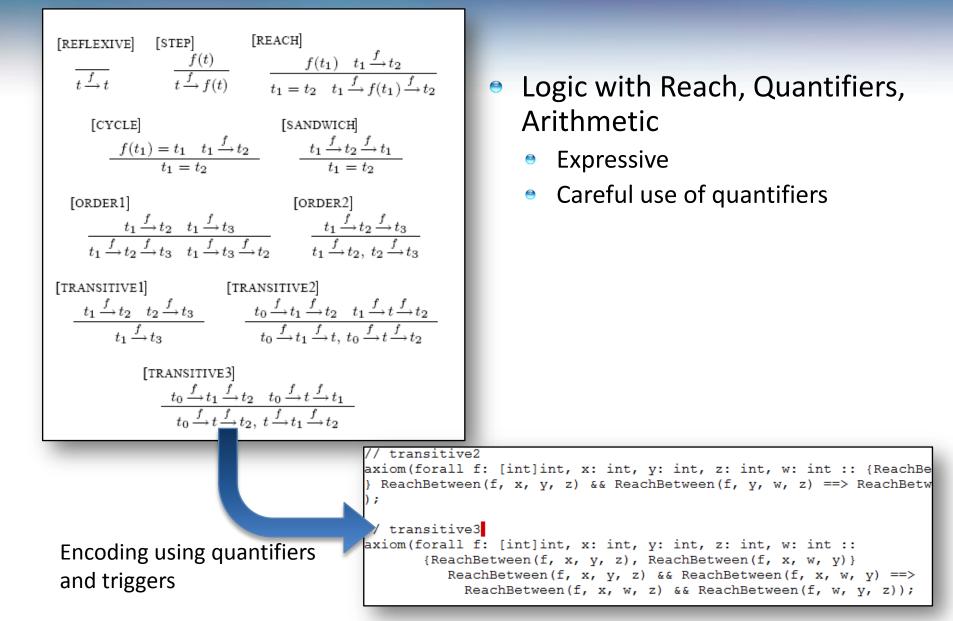
Annotation Language & Logic

- Procedure contracts
 - requires, ensures, modifies
- Arbitrary C expressions
 - program variables, resources
 - Boolean connectives
 - quantifiers
- Can express a rich set of contracts
 - API usage (e.g. lock acquire/release)
 - Synchronization protocols
 - Memory safety
 - Data structure invariants (linked list)
- Challenge:
 - Retain efficiency
 - Decidable fragments

```
__requires (NodeA != NULL)
...
__ensures ((*PNodeB)->ParentA == NodeA)
__modifies (PNodeB)
void CompCreateNodeB
  (PNODEA NodeA, PNODEB *PNodeB);
```

requires (setin(he	,list2,initializedD
<pre>void InitializeList() { LIST_ENTRY *iter;</pre>	
iter = pdata->list.Fli	nk;
$ \begin{array}{c} _loop_invariant(\\ _loop_assert(_setin(iter, _list1)) \\ _loop_assert(_forall(_H_x, _listBtwn(\begin{matrix} t_1 & t_1 \stackrel{f}{\rightarrow} t_2 \\ t_1 \stackrel{f}{\rightarrow} f(t_1) \stackrel{f}{\rightarrow} t_2 \\ \hline \\ _loop_modifies(_old(_dataPtrSet(_list)) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	$\begin{bmatrix} \text{ORDER1} \end{bmatrix} \qquad \begin{bmatrix} \text{ORDER2} \end{bmatrix} \\ \frac{t_1 \xrightarrow{f} t_2 t_1 \xrightarrow{f} t_3}{t_1 \xrightarrow{f} t_2 \xrightarrow{f} t_3 t_1 \xrightarrow{f} t_3 \xrightarrow{f} t_2} \qquad \frac{t_1 \xrightarrow{f} t_2 \xrightarrow{f} t_3}{t_1 \xrightarrow{f} t_2 \xrightarrow{f} t_3} \\ \end{bmatrix}$
	$ \begin{array}{c} [\text{TRANSITIVE1}] & [\text{TRANSITIVE2}] \\ \\ \underline{t_1 \xrightarrow{f} t_2 \ t_2 \xrightarrow{f} t_3} \\ \hline t_1 \xrightarrow{f} t_3 \end{array} & \underline{t_0 \xrightarrow{f} t_1 \xrightarrow{f} t_2 \ t_1 \xrightarrow{f} t \xrightarrow{f} t_2} \\ \hline t_0 \xrightarrow{f} t_1 \xrightarrow{f} t_1 \xrightarrow{f} t_2 \ t_2 \xrightarrow{f} t_2} \end{array} $
	$[\text{TRANSITIVE3}] \\ \frac{t_0 \xrightarrow{f} t_1 \xrightarrow{f} t_2 t_0 \xrightarrow{f} t \xrightarrow{f} t_1}{t_0 \xrightarrow{f} t \xrightarrow{f} t_2, \ t \xrightarrow{f} t_1 \xrightarrow{f} t_2}}$

Efficient logic for program verification



Success Story

- Used to check Windows Kernel code.
- Found 50 bugs, most confirmed.
 - 250 lines required to specify properties.
 - 600 lines of manual annotations.
 - 3000 lines of inferred annotations.

Houdini-like algorithm (Flanagan, Leino)

- Axioms
- Inference rules (not supported yet)
- Very lazy loop
- New Z3 theory (too complicated for users)

- Easy if theory can be encoded in first-order logic.
- Example: partial orders.
 - ∀ x: p(x,x)
 - $\forall x,y,z: p(x,y), p(y,z) \Longrightarrow p(x,z)$
 - $\forall x,y: p(x,y), p(y,x) \Longrightarrow x = y$
- Problems:
 - Is E-matching or SP a decision procedure for this theory?
 - Model extraction
 - Efficiency

Inference rules

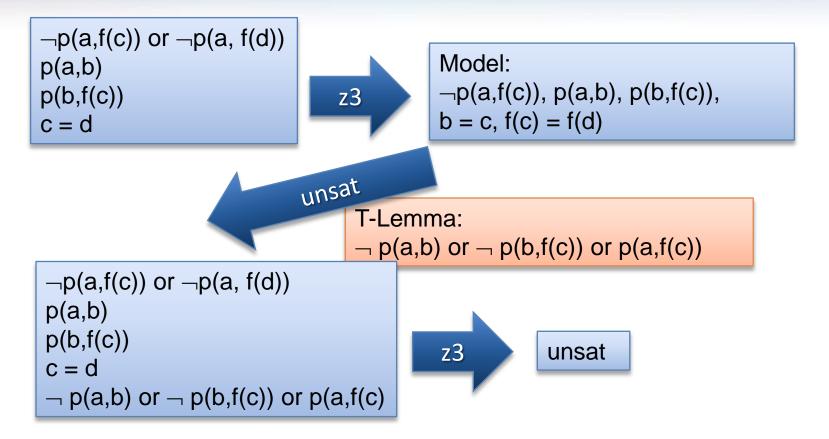
- Some users (e.g., HAVOC) want to provide inference rules to Z3.
- More flexibility (e.g., side conditions)
- High level language for implementing custom decision procedures.

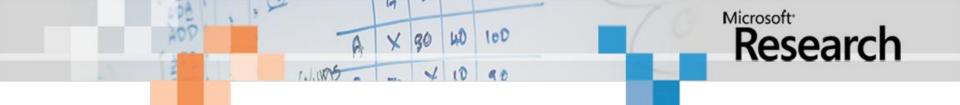
Very lazy loop

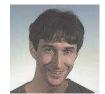
Adding a theory T:

- 1. Replace T symbols with uninterpreted symbols.
- 2. Invoke Z3.
- 3. If unsatisfiable, then return UNSAT.
- 4. Inspect the model + implied equalities (i.e., assigned literals and equalities).
- 5. Check if the assigned theory literals + equalities are satisfiable.
- 6. If they are, then return SAT.
- 7. Otherwise, add a new lemma and/or implied equalities go back to step 2.
- Model Based Theory Combination [SMT'08]

Very lazy loop (example)







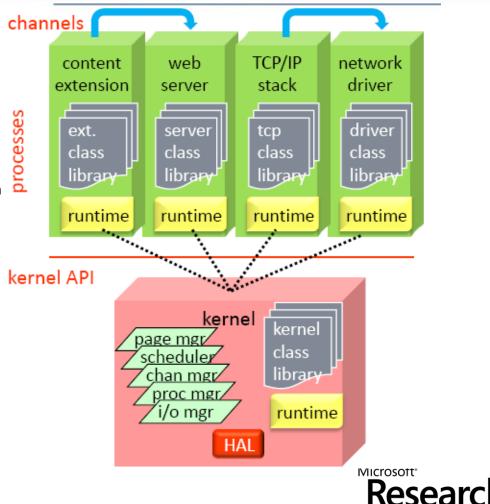
Verifying Garbage Collectors - Automatically and fast

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?Source Path=%24%2fsingularity%2fbase%2fKernel%2fBartok%2fVerifiedGCs&change SetId=14518

Context

Singularity

- Safe micro-kernel
 - 95% written in C#
 - all services and drivers in processes
- Software isolated processes (SIPs)
 - all user code is verifiably safe
 - some unsafe code in trusted runtime
 - processes and kernel sealed at execution
 - static verification replaces hardware protection
 - all SIPs run in ring 0
- Communication via channels
 - channel behavior is specified and checked
 - fast and efficient communication
- Working research prototype
 - not Windows replacement
 - shared source download



Bartok

• MSIL \rightarrow X86 Compiler

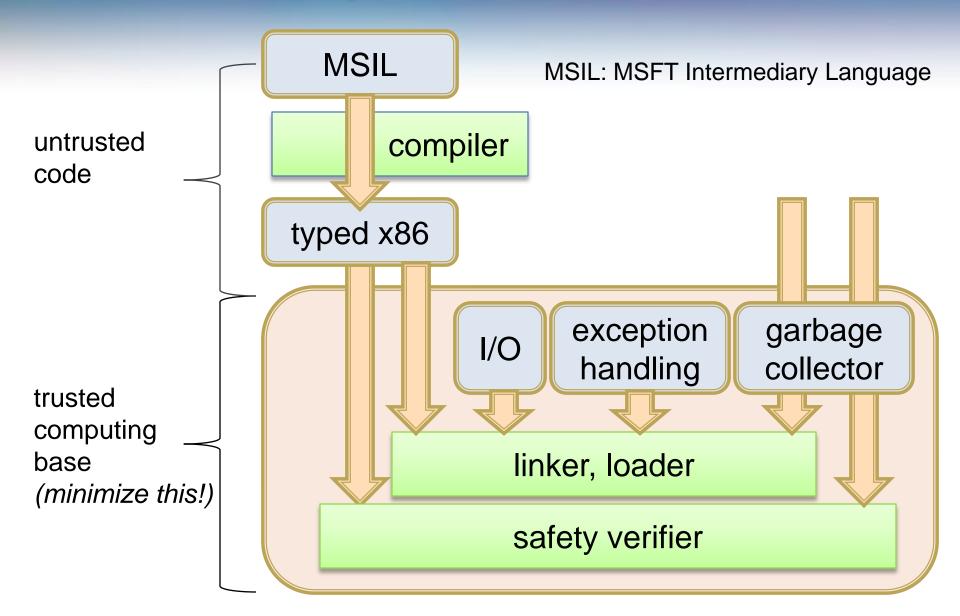
BoogiePL

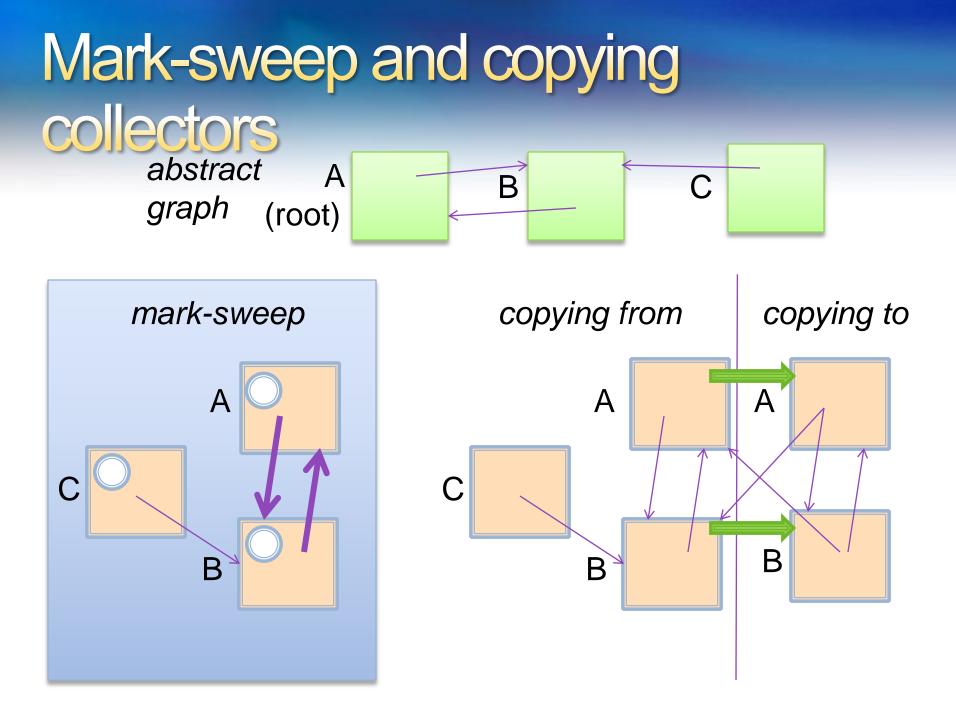
- Procedural low-level language
- Contracts
- Verification condition generator

Garbage Collectors

- Mark&Sweep
- Copying GC
- Verify small garbage collectors
 - more automated than interactive provers
 - borrow ideas from type systems for regions

Goal: safely run untrusted code



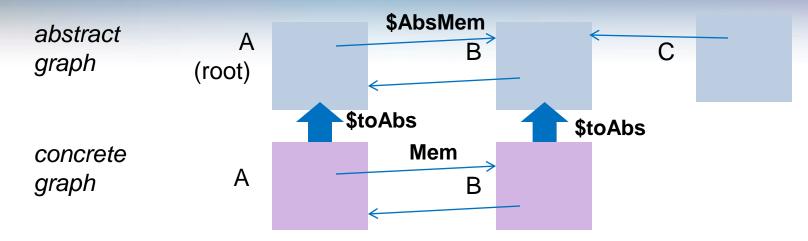


Garbage collector properties

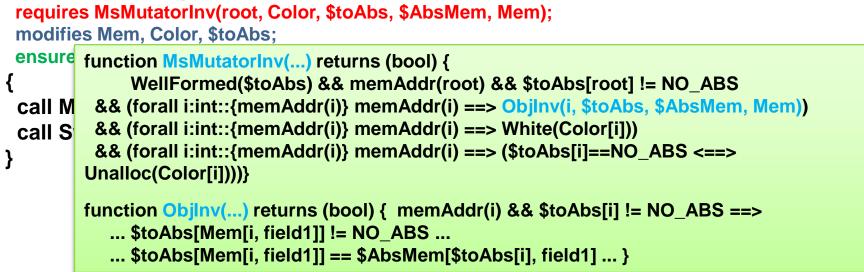
- safety: gc does no harm
 - type safety
 - gc turns well-typed heap into well-typed heap
 - graph isomorphism
 - concrete graph represents abstract graph
- effectiveness
 - after gc, unreachable objects reclaimed
- termination
- efficiency

-verified

Proving safety



procedure GarbageCollectMs()



Controlling quantifier instantiation

Idea: use marker

function{:expand false} T(i:int) returns (bool) { true }

Relativize quantifiers using marker

```
function GcInv(Color:[int]int, $toAbs:[int]int, $AbsMem:[int,int]int,
Mem:[int,int]int) returns (bool) {
    WellFormed($toAbs)
    && (forall i:int::{T(i)} T(i) ==> memAddr(i) ==>
        ObjInv(i, $toAbs, $AbsMem, Mem)
        && 0 <= Color[i] && Color[i] < 4
        && (Black(Color[i]) ==> !White(Color[Mem[i,0]]) && !White(Color[Mem[i,1]]))
        && ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))
```

Controlling quantifier instantiation

Insert markers to enable triggers

```
procedure Mark(ptr:int)
requires GcInv(Color, $toAbs, $AbsMem, Mem);
requires memAddr(ptr) && T(ptr);
requires $toAbs[ptr] != NO_ABS;
modifies Color;
ensures GcInv(Color, $toAbs, $AbsMem, Mem);
ensures (forall i:int::{T(i)}T(i) ==> !Black(Color[i]) ==> Color[i] == old(Color)[i]);
ensures !White(Color[ptr]);
```

```
if (White(Color[ptr])) {
  Color[ptr] := 2; // make gray
  call Mark(Mem[ptr,0]);
  call Mark(Mem[ptr,1]);
  Color[ptr] := 3; // make black
```

Can we do better?

Decidable Fragments

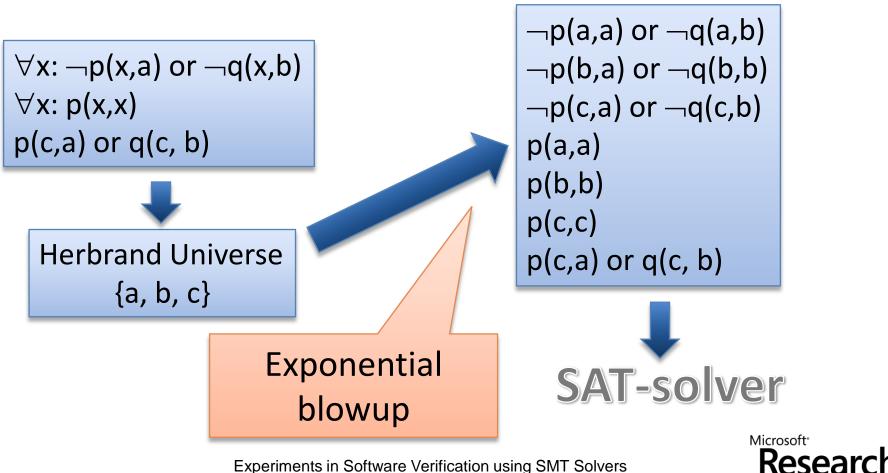
- EPR (Effectively Propositional)
 - Aka: Bernays–Schönfinkel class
- Stratified EPR
- Array Property Fragment
- Stratified Array Property Fragment

It can be used to verify the GC properties!

- Prefix $\exists * \forall * + no$ function symbols.
- Examples:
 - $\forall x,y,z: \neg p(x,y) \text{ or } \neg p(y,z) \text{ or } p(x,z)$
 - $\forall x: \neg p(x,a) \text{ or } \neg q(x,b)$
- Why is it useful?
 - Model checking problems
 - QBF
 - Finite model finding
 - Useful theories: partial orders.

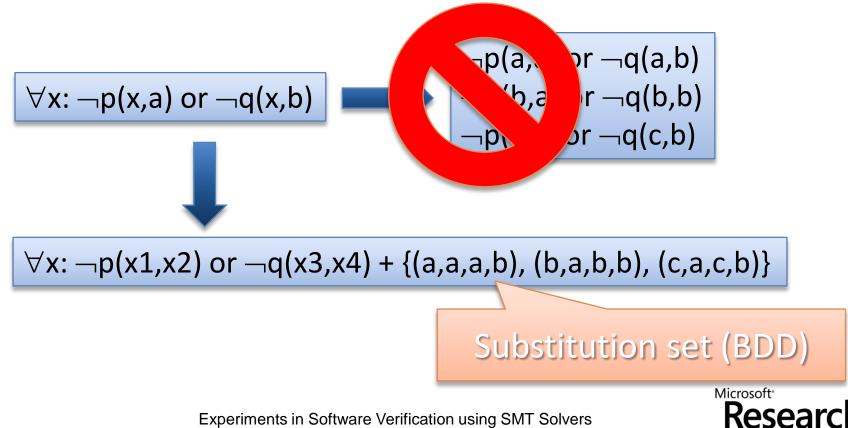
EPR: decidability

Finite Herbrand Universe.



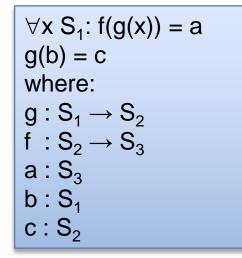
EPR: efficient implementation

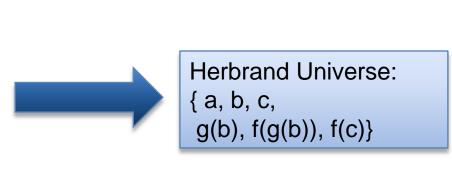
DPLL(SX) calculus: DPLL + substitution sets (BDDs) [IJCAR'08]



Stratified EPR

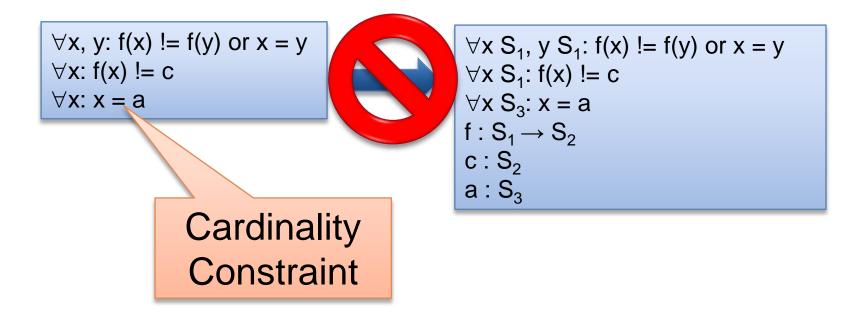
- Many sorted first order logic.
- $S_1 < S_2$ if there is a function $f : ... S_1 ... \rightarrow S_2$
- A formula is stratified if there is no sort S s.t. S < S</p>
- A stratified formula has a finite Herbrand Universe.
- Example:





Stratified EPR and Unsorted Logic

- Sort inference + restrictions
- Problematic example:



Almost there...

```
(forall i:int::{T(i)} T(i) ==> memAddr(i) ==>
    ObjInv(i, $toAbs, $AbsMem, Mem)
    && 0 <= Color[i] && Color[i] < 4
    && (Black(Color[i]) ==> !White(Color[Mem[i,0]]) && !White(Color[Mem[i,1]]))
    && ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))
```


(forall i: Addr ObjInv(i, \$toAbs, \$AbsMem, Mem) && (color[i] = black or color[i] = white or color[i] = gray) && (Black(color[i]) ==> !White(color[Mem[i,f0]]) && !White(Color[Mem[i,f1]])) && (\$toAbs[i] == NO_ABS <==> Unalloc(Color[i])))

Array Property Fragment (APF)

- $\forall i_1, ..., i_n$: $F[i_1, ..., i_n]$,
- F is in NNF, then the following atoms can contain universal variables:
 - $i_k > t$ (t is ground)
 - $i_k > i_{k'}$
 - $i_k != t$ (t is ground)
 - $i_k != i_{k'}$
 - $L[a[i_k]]$ (i_k only appears in $a[i_k]$)

Examples

- Array is sorted:
 - $\forall i,j: i \le j$ implies $a[i] \le a[j]$, or equivalently:
 - $\forall i,j: i > j \text{ or } a[i] \le a[j]$
- Array update b = write(a, j,v)
 - *b*[*j*] = *v*
 - $\forall x: x > j-1 \text{ or } b[x] = a[x]$
 - $\forall x: x < j+1 \text{ or } b[x] = a[x]$

Equivalent to: $\forall x: x = j \text{ or } b[x] = a[x]$

Stratified APF

- Yeting Ge (Intern 2008)
- Nested (stratified) arrays in APF.
- Stratified EPR + some arithmetic.
- Example:
 - $\forall i,j: i \le j \text{ implies } a[a'[i]] \le a[a'[j]]$
- It supports other extensions for pointer arithmetic.

Conclusion

- Users frequently need new theories.
 - Quantifiers.
 - Inference rules.
 - Very lazy loop.
- Decidable fragments are useful in practice.
- <u>http://research.microsoft.com/projects/z3</u>

Thank You!

Research

Is Z3 available for commercial use?

- Not yet...
- However,
 - PEX (comes with Z3) and Chess will be available for commercial use for VS users.
 - http://research.microsoft.com/Pex/
 - http://research.microsoft.com/projects/chess/
 - SLAM/SDV 2.0 (comes with Z3) is part of DDK and will ship with the next version of Windows.
 - <u>http://research.microsoft.com/slam/</u>

