
Leonardo de Moura
Microsoft Research

Applications and Challenges in Satisfiability Modulo Theories

Verification/Analysis tools
need some form of

Symbolic Reasoning

Applications and Challenges in Satisfiability Modulo Theories

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer

Applications and Challenges in Satisfiability Modulo Theories

unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA

Applications and Challenges in Satisfiability Modulo Theories

Applications and Challenges in Satisfiability Modulo Theories

Is formula F satisfiable
modulo theory T ?

SMT solvers have

specialized algorithms for T

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Applications and Challenges in Satisfiability Modulo Theories

Arithmetic

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Applications and Challenges in Satisfiability Modulo Theories

ArithmeticArray Theory

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Applications and Challenges in Satisfiability Modulo Theories

ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c and f(read(write(a,b,3), c-2) ≠ f(c-b+1)

Applications and Challenges in Satisfiability Modulo Theories

A Theory is a set of sentences

Alternative definition:

A Theory is a class of structures

Applications and Challenges in Satisfiability Modulo Theories

Z3 is a new solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for academic research.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml

Applications and Challenges in Satisfiability Modulo Theories

http://research.microsoft.com/projects/z3
http://research.microsoft.com/projects/z3

For some theories, SMT can be reduced to SAT

bvmul32(a,b) = bvmul32 (b,a)

Higher level of abstraction

Applications and Challenges in Satisfiability Modulo Theories

For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking

Test-Case Generation

Applications and Challenges in Satisfiability Modulo Theories

M | F

Partial model
Set of clauses

Applications and Challenges in Satisfiability Modulo Theories

Guessing (case-splitting)

p, q | p q, q r

p | p q, q r

Applications and Challenges in Satisfiability Modulo Theories

Deducing

p, s| p q, p s

p | p q, p s

Applications and Challenges in Satisfiability Modulo Theories

Backtracking

p, s| p q, s q, p q

p, s, q | p q, s q, p q

Applications and Challenges in Satisfiability Modulo Theories

Efficient indexing (two-watch literal)

Non-chronological backtracking (backjumping)

Lemma learning

…

Applications and Challenges in Satisfiability Modulo Theories

Efficient decision procedures for conjunctions of
ground atoms.

a=b, a<5 | a=b f(a)=f(b), a < 5 a > 10

Difference Logic Belmann-Ford

Uninterpreted functions Congruence closure

Linear arithmetic Simplex

Efficient algorithms

Applications and Challenges in Satisfiability Modulo Theories

Applications and Challenges in Satisfiability Modulo Theories

a=b, a > 0, c > 0, a + c < 0 | F

backtrack

Applications and Challenges in Satisfiability Modulo Theories

SMT Solver = DPLL + Decision Procedure

Standard question:

Why don’t you use CPLEX for

handling linear arithmetic?

Applications and Challenges in Satisfiability Modulo Theories

Decision Procedures must be:
Incremental & Backtracking
Theory Propagation

a=b, a<5 | … a<6 f(a) = a

a=b, a<5, a<6 | … a<6 f(a) = a

Applications and Challenges in Satisfiability Modulo Theories

Decision Procedures must be:
Incremental & Backtracking
Theory Propagation
Precise (theory) lemma learning

a=b, a > 0, c > 0, a + c < 0 | F
Learn clause:
(a=b) (a > 0) (c > 0) (a + c < 0)
Imprecise!
Precise clause:
a > 0 c > 0 a + c < 0

Annotated
Program

Verification
Condition F

pre/post conditions

invariants

and other annotations

class C {

private int a, z;

invariant z > 0

public void M()

requires a != 0

{

z = 100/a;

}

}

…

terminates

diverges

goes wrong

State
Cartesian product of variables

Execution trace
Nonempty finite sequence of states

Infinite sequence of states

Nonempty finite sequence of states
followed by special error state

…

(x: int, y: int, z: bool)

x := E
x := x + 1

x := 10

havoc x

assert P

assume P

P
¬P

P

…

x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

P
¬P

P

…

x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

S T

P
¬P

P

…

Hoare triple { P } S { Q } says that

every terminating execution trace of S that
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Hoare triple { P } S { Q } says that

every terminating execution trace of S that
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Given S and Q, what is the weakest P’ satisfying
{P’} S {Q} ?

P' is called the weakest precondition of S with
respect to Q, written wp(S, Q)

to check {P} S {Q}, check P P’

wp(x := E, Q) =

wp(havoc x, Q) =

wp(assert P, Q) =

wp(assume P, Q) =

wp(S ; T, Q) =

wp(S T, Q) =

Q[E / x]

(x Q)

P Q

P Q

wp(S, wp(T, Q))

wp(S, Q) wp(T, Q)

if E then S else T end =

assume E; S

assume ¬E; T

if E S | F T fi =

assert E F;

(

assume E; S

assume F; T

)

while E
invariant J

do
S

end

= assert J;
havoc x; assume J;
(assume E; S; assert J; assume false
 assume ¬E
)

where x denotes the

assignment targets of S

“fast forward” to an arbitrary

iteration of the loop

check that the loop invariant holds initially

check that the loop invariant is

maintained by the loop body

BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data

Flow

Meta OS: small layer of software
between hardware and OS

Mini: 60K lines of non-trivial
concurrent systems C code

Critical: must provide functional resource abstraction

Trusted: a verification grand challenge

Hardware

Hypervisor

VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Applications and Challenges in Satisfiability Modulo Theories

Partial solutions
Automatic generation of: Loop Invariants

Houdini-style automatic annotation generation

Applications and Challenges in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h) o ≠ null read(h, o, alloc) = t

read(h,o, f) = null read(h, read(h,o,f),alloc) = t

Applications and Challenges in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null read(h0, o, alloc) = t

read(h1,o,f) = read(h0,o,f) (o,f) M

Applications and Challenges in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i j read(a,i) read(b,j)

Applications and Challenges in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z) p(x,z)

 x,y: p(x,y), p(y,x) x = y

Applications and Challenges in Satisfiability Modulo Theories

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!

Applications and Challenges in Satisfiability Modulo Theories

There is no sound and refutationally complete

procedure for

linear integer arithmetic + free function symbols

Applications and Challenges in Satisfiability Modulo Theories

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Applications and Challenges in Satisfiability Modulo Theories

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a) c Trigger

Applications and Challenges in Satisfiability Modulo Theories

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a) c

x=b f(g(b)) = b

Equalities and ground terms come

from the partial model M

Applications and Challenges in Satisfiability Modulo Theories

Integrates smoothly with DPLL.

Efficient for most VCs

Decides useful theories:

Arrays

Partial orders

…

Applications and Challenges in Satisfiability Modulo Theories

E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval E-matching code trees

Incremental E-Matching Inverted path index

Applications and Challenges in Satisfiability Modulo Theories

Trigger:

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several
instructions.

Combine code sequences
in a code tree

Applications and Challenges in Satisfiability Modulo Theories

Is the axiomatization of the runtime consistent?

False implies everything

E-matching doesn’t work

No ground terms to instantiate clauses

Partial solution: SMT + Saturation Provers

Found many bugs using this approach

Applications and Challenges in Satisfiability Modulo Theories

Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)

Applications and Challenges in Satisfiability Modulo Theories

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…

Applications and Challenges in Satisfiability Modulo Theories

DPLL

+

Theories

Saturation

Solver

Ground literals

Ground clauses

Applications and Challenges in Satisfiability Modulo Theories

Standard complain

“I made a small modification in my Spec, and
Z3 is timingout”

This also happens with SAT solvers (NP-complete)

In our case, the problems are undecidable

Partial solution: parallelization

Applications and Challenges in Satisfiability Modulo Theories

Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

Multi-core & Multi-node (HPC)

Different strategies in parallel

Collaborate exchanging lemmas
Strategy

1

Strategy
2

Strategy
3

Strategy
4

Strategy
5

Applications and Challenges in Satisfiability Modulo Theories

Non-linear arithmetic is necessary for verifying
embedded and hybrid systems

Non-linear integer arithmetic is undecidable

Many approaches for non linear real arithmetic

Cylindrical Algebraic Decomposition

Doubly exponential procedure

Grobner Basis + “extensions”

Heuristics

Applications and Challenges in Satisfiability Modulo Theories

http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture:

c2bp C program → boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to
check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are
relatively small.

Applications and Challenges in Satisfiability Modulo Theories

Given a C program P and F = {p1, … , pn}.

Produce a Boolean program B(P, F)

Same control flow structure as P.

Boolean variables {b1, … , bn} to match {p1, … , pn}.

Properties true in B(P, F) are true in P.

Each pi is a pure Boolean expression.

Each pi represents set of states for which pi is true.

Performs modular abstraction.

Applications and Challenges in Satisfiability Modulo Theories

ImpliesF (e)
Best Boolean function over F that implies e.

ImpliedByF (e)
Best Boolean function over F that is implied by e.

ImpliedByF (e) = not ImpliesF (not e)

Applications and Challenges in Satisfiability Modulo Theories

ImpliedByF(e)

e

ImpliesF(e)

minterm m = l1 ∧ ... ∧ ln, where li = pi, or li = not pi.

ImpliesF (e): disjunction of all minterms that imply e.

Naive approach
Generate all 2n possible minterms.

For each minterm m, use SMT solver to check validity of
m ⇒ e.

Many possible optimizations

Applications and Challenges in Satisfiability Modulo Theories

F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2 implies y>1

!x<y, x=2 implies y>1

x<y, x=2 implies y>1

ImpliesF(y>1) = x<y x=2ImpliesF(y>1) = b1 b2

Applications and Challenges in Satisfiability Modulo Theories

All-SAT

Better (more precise) Predicate Abstraction

Unsatisfiable cores

Why the abstract path is not feasible?

Fast Predicate Abstraction

Applications and Challenges in Satisfiability Modulo Theories

Let S be an unsatisfiable set of formulas.

S’ S is an unsatisfiable core of S if:
S’ is also unsatisfiable, and

There is not S’’ S’ that is also unsatisfiable.

Computing ImpliesF(e) with F = {p1, p2, p3, p4}
Assume p1, p2, p3, p4 e is valid

That is p1, p2, p3, p4, e is unsat

Now assume p1, p3, e is the unsatisfiable core

Then it is unnecessary to check:

p1, p2, p3, p4 e

p1, p2, p3, p4 e

p1, p2, p3, p4 e

while (c) {

S

}

Post 1 (,)

() ()

() () (, ') (')

() () ()

I x

I

I I I

I Po

x x

x x c x S x x x

c x xtx s

How to find loop invariant I ?

I is a Boolean combination of F = {p1, … , pn}

Unknown invariant on the LHS constraints how weak I
can be

I(x) c(x) Post(x) I(x) c(x) Post(x)

Unknown invariant on the RHS constraints how strong I
can be

(x) I(x)

More details: Constraint-based Invariant Inference over
Predicate Abstraction, S. Gulwani et al, VMCAI 2009

Applications and Challenges in Satisfiability Modulo Theories

unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
}

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA

Applications and Challenges in Satisfiability Modulo Theories

Most solvers use bit-blasting

bvmul32(a,b) is converted into a multiplier circuit

Solvers may run out of memory

“Smart” algorithms are usually less efficient than
bit-blasting

Applications and Challenges in Satisfiability Modulo Theories

I’m unaware of any SMT solver for floating point
arithmetic

Approximate using Reals

Unsound!

Incomplete!

Applications and Challenges in Satisfiability Modulo Theories

Logic as a platform

Most verification/analysis tools need symbolic
reasoning

SMT is a hot area

Many applications & challenges

http://research.microsoft.com/projects/z3

Thank You!

Applications and Challenges in Satisfiability Modulo Theories

http://research.microsoft.com/projects/z3

