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Applications and Challenges in Satisfiability Modulo Theories

Verification/Analysis tools 
need some form of 

Symbolic Reasoning



Applications and Challenges in Satisfiability Modulo Theories

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing



VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer
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unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
} We want a trace where the loop is 

executed twice.

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA
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Is formula F satisfiable
modulo theory T ? 

SMT solvers have 

specialized algorithms for T



b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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Arithmetic

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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ArithmeticArray Theory

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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ArithmeticArray Theory
Uninterpreted

Functions

b + 2 = c  and  f(read(write(a,b,3), c-2) ≠ f(c-b+1)
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A Theory is a set of sentences

Alternative definition:

A Theory is a class of structures
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Z3 is a new solver developed at Microsoft Research.

Development/Research driven by internal customers.

Free for academic research.

Interfaces:

http://research.microsoft.com/projects/z3

Z3
Text

C/C++ .NET

OCaml
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http://research.microsoft.com/projects/z3
http://research.microsoft.com/projects/z3


For some theories, SMT can be reduced to SAT

bvmul32(a,b) = bvmul32 (b,a)

Higher level of abstraction
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For most SMT solvers: F is a set of ground formulas

Many Applications

Bounded Model Checking

Test-Case Generation
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M | F

Partial model
Set of clauses
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Guessing (case-splitting)

p, q | p  q, q  r

p  |  p  q, q  r
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Deducing

p, s| p  q, p  s

p |  p  q, p  s
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Backtracking

p, s| p  q, s  q, p q

p, s, q |  p  q, s  q, p q
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Efficient indexing (two-watch literal)

Non-chronological backtracking (backjumping)

Lemma learning

…
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Efficient decision procedures for conjunctions of 
ground atoms.

a=b, a<5 | a=b  f(a)=f(b),   a < 5  a > 10

Difference Logic Belmann-Ford

Uninterpreted functions Congruence closure

Linear arithmetic Simplex

Efficient algorithms

Applications and Challenges in Satisfiability Modulo Theories



Applications and Challenges in Satisfiability Modulo Theories

a=b, a > 0, c > 0, a + c < 0 | F 

backtrack
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SMT Solver = DPLL + Decision Procedure

Standard question:

Why don’t you use CPLEX for 

handling linear arithmetic?
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Decision Procedures must be:
Incremental & Backtracking
Theory Propagation

a=b, a<5 | … a<6  f(a) = a

a=b, a<5, a<6 | … a<6  f(a) = a
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Decision Procedures must be:
Incremental & Backtracking
Theory Propagation
Precise (theory) lemma learning

a=b, a > 0, c > 0, a + c < 0 | F 
Learn clause:
(a=b)  (a > 0)  (c > 0)  (a + c < 0)
Imprecise!
Precise clause:
a > 0  c > 0  a + c < 0



Annotated 
Program

Verification 
Condition F

pre/post conditions

invariants

and other annotations



class C {

private int a, z;

invariant z > 0

public void M()

requires a != 0

{ 

z = 100/a; 

}

}



…

terminates

diverges

goes wrong



State
Cartesian product of variables

Execution trace
Nonempty finite sequence of states

Infinite sequence of states

Nonempty finite sequence of states
followed by special error state

…

(x: int, y: int, z: bool)



x := E
x := x + 1

x := 10

havoc x

assert P

assume P

P
¬P

P



…

x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

P
¬P

P

…



x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

S T

P
¬P

P

…



Hoare triple { P }  S  { Q } says that

every terminating execution trace of S that 
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q



Hoare triple { P }  S  { Q } says that

every terminating execution trace of S that 
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Given S and Q, what is the weakest P’ satisfying 
{P’} S {Q} ?

P' is called the weakest precondition of S with 
respect to Q, written wp(S, Q)

to check {P} S {Q}, check P  P’



wp( x := E,  Q ) =

wp( havoc x,  Q ) =

wp( assert P,  Q ) =

wp( assume P,  Q ) =

wp( S ; T,  Q ) =

wp( S T,  Q ) =

Q[ E / x ]

(x  Q )

P  Q

P  Q

wp( S,  wp( T, Q ))

wp( S, Q )  wp( T, Q )



if E then S else T end =

assume E;  S



assume ¬E;  T



if E  S  |  F  T  fi =

assert E  F;

(

assume E;  S



assume F;  T

)



while E
invariant J

do
S

end

= assert J;
havoc x;  assume J;
( assume E;  S;  assert J;  assume false
 assume ¬E
)

where x denotes the 

assignment targets of S

“fast forward” to an arbitrary 

iteration of the loop

check that the loop invariant holds initially

check that the loop invariant is 

maintained by the loop body



BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data 

Flow



Meta OS: small layer of software 
between hardware and OS

Mini: 60K lines of non-trivial 
concurrent systems C code

Critical: must provide functional resource abstraction

Trusted: a verification grand challenge

Hardware

Hypervisor



VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC
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Partial solutions
Automatic generation of: Loop Invariants

Houdini-style automatic annotation generation 
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Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t
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Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f)  M 
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Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)
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Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y
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Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!
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There is no sound and refutationally complete

procedure for 

linear integer arithmetic + free function symbols
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Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation
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SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b), 

b = c,

f(a)  c Trigger
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SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b), 

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come 

from the partial model M
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Integrates smoothly with DPLL.

Efficient for most VCs

Decides useful theories: 

Arrays

Partial orders

…
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E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval E-matching code trees

Incremental E-Matching Inverted path index
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Trigger:  

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several 
instructions.

Combine code sequences 
in a code tree
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Is the axiomatization of  the runtime consistent?

False implies everything

E-matching doesn’t work

No ground terms to instantiate clauses

Partial solution: SMT + Saturation Provers

Found many bugs using this approach
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Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)
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

Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…
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DPLL 

+

Theories

Saturation

Solver

Ground literals

Ground clauses
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Standard complain

“I made a small modification in my Spec, and 
Z3 is timingout”

This also happens with SAT solvers (NP-complete)

In our case, the problems are undecidable

Partial solution: parallelization
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Joint work with Y. Hamadi (MSRC) and C. Wintersteiger

Multi-core & Multi-node (HPC)

Different strategies in parallel

Collaborate exchanging lemmas
Strategy 

1

Strategy 
2

Strategy 
3

Strategy 
4

Strategy 
5
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Non-linear arithmetic is necessary for verifying 
embedded and hybrid systems

Non-linear integer arithmetic is undecidable

Many approaches for non linear real arithmetic

Cylindrical Algebraic Decomposition 

Doubly exponential procedure

Grobner Basis + “extensions”

Heuristics
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http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture:

c2bp  C program → boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to 
check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are 
relatively small.
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Given a C program P and F = {p1, … , pn}.

Produce a Boolean program B(P, F)

Same control flow structure as P.

Boolean variables {b1, … , bn} to match {p1, … , pn}.

Properties true in B(P, F) are true in P.

Each pi is a pure Boolean expression.

Each pi represents set of states for which pi is true.

Performs modular abstraction.
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ImpliesF (e)
Best Boolean function over F that implies e.

ImpliedByF (e)
Best Boolean function over F that is implied by e.

ImpliedByF (e) = not ImpliesF (not e)

Applications and Challenges in Satisfiability Modulo Theories



ImpliedByF(e)

e

ImpliesF(e)



minterm m = l1 ∧ ... ∧ ln, where li = pi, or li = not pi.

ImpliesF (e): disjunction of all minterms that imply e.

Naive approach
Generate all 2n possible minterms.

For each minterm m, use SMT solver to check validity of 
m ⇒ e.

Many possible optimizations
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F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2  implies y>1

!x<y, x=2   implies y>1

x<y,  x=2   implies y>1

ImpliesF(y>1) = x<y  x=2ImpliesF(y>1) = b1  b2
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All-SAT

Better (more precise) Predicate Abstraction

Unsatisfiable cores

Why the abstract path is not feasible?

Fast Predicate Abstraction
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Let S be an unsatisfiable set of formulas.

S’  S is an unsatisfiable core of S if:
S’ is also unsatisfiable, and

There is not S’’  S’ that is also unsatisfiable.

Computing ImpliesF(e) with F = {p1, p2, p3, p4}
Assume p1, p2, p3, p4  e is valid

That is p1, p2, p3, p4, e is unsat

Now assume p1, p3, e is the unsatisfiable core

Then it is unnecessary to check:

p1,  p2, p3, p4  e

p1,  p2, p3,  p4  e

p1, p2, p3,  p4  e




while (c) { 

S

}

Post 1 ( , )

( ) ( )

( ) ( ) ( , ') ( ')

( ) ( ) ( )

I x

I

I I I
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 
     
 




   

How to find loop invariant I ?



I is a Boolean combination of F = {p1, … , pn}

Unknown invariant on the LHS constraints how weak I
can be

I(x)  c(x)  Post(x)          I(x) c(x)  Post(x)

Unknown invariant on the RHS constraints how strong I
can be

(x)  I(x)

More details: Constraint-based Invariant Inference over 
Predicate Abstraction, S. Gulwani et al, VMCAI 2009
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unsigned GCD(x, y) {
requires(y > 0);
while (true) {

unsigned m = x % y;
if (m == 0) return y;
x = y;
y = m;

}
}

(y0 > 0) and

(m0 = x0 % y0) and

not (m0 = 0) and

(x1 = y0) and

(y1 = m0) and

(m1 = x1 % y1) and

(m1 = 0)

Solver

x0 = 2

y0 = 4

m0 = 2

x1 = 4

y1 = 2

m1 = 0

SSA
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Most solvers use bit-blasting

bvmul32(a,b) is converted into a multiplier circuit

Solvers may run out of memory

“Smart” algorithms are usually less efficient than 
bit-blasting
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I’m unaware of any SMT solver for floating point 
arithmetic

Approximate using Reals

Unsound!

Incomplete!
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Logic as a platform

Most verification/analysis tools need symbolic 
reasoning

SMT is a hot area

Many applications & challenges

http://research.microsoft.com/projects/z3

Thank You!
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