
IJCAR 2008

4th International Joint Conference on Automated Reasoning

Sydney, Australia, August 10–15, 2008

Tutorial Program

SMT Solvers in
Program Analysis and Verification

Nikolaj Bjørner and Leonardo de Moura

T 3 – August 10

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1

Leonardo de Moura and Nikolaj Bjørner
Microsoft Research

Appetizers

SMT solving

Applications

Applications at Microsoft Research

Background

Basics, DPLL(), Equality, Arithmetic,
DPLL(T), Arrays, Matching

Z3 – An Efficient SMT solver

Bits and bytes

Numbers

Arrays

Records

Heaps

Data-types

Object inheritance

* *

0 ((1) &) 00100000..00

((, ,4),) 4

(,) (,)

' (,) '

((,))

: : :

x x x

x y y x

read write a i i

mkpair x y mkpair z u x z

n n m cons a n m n

car cons x nil x

B A C B C A

)1()2),3,,(((2 xyfyxawritereadfyx

Arithmetic Arrays Free Functions

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2

SMT solvers are used in several applications:
Program Verification

Program Analysis

Program Exploration

Software Modeling

SMT solvers are

directly applicable, or

disguised beneath a transformation

Theories and quantifiers supply abstractions
Replace ad-hoc, often non-scalable, solutions

VCC BoogieHyper-V

Rustan Leino, Mike Barnet, Michal Mosƙal, Shaz Qadeer,
Shuvendu Lahiri, Herman Venter, Peter Muller,
Wolfram Schulte, Ernie Cohen

Verification
condition

Bug path

HAVOC

Execution
Path

Run Test and Monitor Path Condition

Unexplored pathSolve

seed

New input

Test
Inputs

Nikolai Tillmann, Peli de Halleux, Patrice Godefroid
Aditya Nori, Jean Philippe Martin, Miguel Castro,
Manuel Costa, Lintao Zhang

Constraint
System

Known
Paths

Vigilante

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

Z3 is part of SDV 2.0 (Windows 7)

It is used for:

Predicate abstraction (c2bp)

Counter-example refinement (newton)

Bounded model-checking of model
programs

Termination

Security protocols, F#/7

Business application modeling

Cryptography

Model Based Testing (SQL-Server)

Verified garbage collectors

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 3

Program Exploration with Pex

Nikolai Tillmann, Peli de Halleux

http://research.microsoft.com/Pex

Test input generator
Pex starts from parameterized unit tests

Generated tests are emitted as traditional unit tests

Dynamic symbolic execution framework
Analysis of .NET instructions (bytecode)

Instrumentation happens automatically at JIT
time
Using SMT-solver Z3 to check satisfiability and generate
models = test inputs

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Inputs Inputs

(0,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

http://research.microsoft.com/Pex

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 4

Inputs Observed
Constraints

(0,null) !(c<0)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

c < 0 false

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

0 == c true

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

} item == item true

This is a tautology,
i.e. a constraint that is always true,
regardless of the chosen values.

We can ignore such constraints.

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Z3
Constraint solver

Z3 has decision procedures for

- Arrays

- Linear integer arithmetic

- Bitvector arithmetic

- …

- (Everything but floating-point numbers)

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

0 == c false

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 5

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null)

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null) c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

c < 0 true

Constraints to
solve

Inputs Observed
Constraints

(0,null) !(c<0) && 0==c

!(c<0) && 0!=c (1,null) !(c<0) && 0!=c

c<0 (-1,null) c<0

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < 0) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }
...

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

var list = new ArrayList(c);
list.Add(item);
Assert(list[0] == item); }

}

Pex – Test more with less effort

• Reduce testing costs

• Automated analysis, reproducible results

• Produce more secure software

• White-box code analysis

• Produce more reliable software

• Analysis based on
contracts written as code

29

How to test this code?
(Real code from .NET base class libraries.)

30

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 6

31

Test input,
generated by Pex

32

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

a[0] = 0;

a[1] = 0;

a[2] = 0;

a[3] = 0;

…

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

Path Condition:
… magicNum !=
0x95673948

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

… magicNum != 0x95673948
… magicNum == 0x95673948

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 7

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Finds only real bugs
No false warnings

a[0] = 206;

a[1] = 202;

a[2] = 239;

a[3] = 190;

Initially, choose Arbitrary

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

Test
Inputs

Constraint
System

Execution Path

Known
Paths

Run Test and
Monitor

Record
Path Condition

Choose an
Uncovered Path

Solve

Result: small test suite,
high code coverage

Initially, choose Arbitrary

Finds only real bugs
No false warnings

Independent constraint optimization + Constraint
caching (similar to EXE)

Idea: Related execution paths give rise to "similar"
constraint systems

Example: Consider x>y ⋀ z>0 vs. x>y ⋀ z<=0

If we already have a cached solution for a "similar"
constraint system, we can reuse it

x=1, y=0, z=1 is solution for x>y ⋀ z>0

we can obtain a solution for x>y ⋀ z<=0 by

reusing old solution of x>y: x=1, y=0

combining with solution of z<=0: z=0

Rich Combination: Solvers for uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic, arrays, tuples

Formulas may be a big conjunction

Pre-processing step

Eliminate variables and simplify input format

Universal quantifiers

Used to model custom theories, e.g. .NET type system

Model generation

Models used as test inputs

Incremental solving

Given a formula F, find a model M, that minimizes the value of the
variables x0 … xn

Push / Pop of contexts for model minimization

Programmatic API

For small constraint systems, text through pipes would add huge
overhead

42

ldtoken Point::GetX
call __Monitor::EnterMethod

brfalse L0
ldarg.0

call __Monitor::NextArgument<Point>
L0: .try {

.try {
call __Monitor::LDARG_0

ldarg.0
call __Monitor::LDNULL

ldnull
call __Monitor::CEQ

ceq
call __Monitor::BRTRUE

brtrue L1
call __Monitor::BranchFallthrough

call __Monitor::LDARG_0
ldarg.0

…

ldtoken Point::X

call __Monitor::LDFLD_REFERENCE

ldfld Point::X

call __Monitor::AtDereferenceFallthrough

br L2
L1:

call __Monitor::AtBranchTarget
call __Monitor::LDC_I4_M1
ldc.i4.m1

L2:
call __Monitor::RET
stloc.0
leave L4

} catch NullReferenceException {
‘ call __Monitor::AtNullReferenceException

rethrow
}

L4: leave L5
} finally {
call __Monitor::LeaveMethod
endfinally

}
L5: ldloc.0

ret

class Point { int x; int y;

public static int GetX(Point p) {

if (p != null) return p.X;

else return -1; } }

Prologue

Epilogue

Calls will perform
symbolic computation

Calls to build
path condition

Calls to build
path condition

Record concrete values
to have all information

when this method is called
with no proper context(The real C# compiler

output is actually more
complicated.)

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 8

Spec# and Boogie
Rustan Leino & Mike Barnett

A verifying compiler uses automated reasoning to check the

correctness of a program that is compiles.

Correctness is specified by types, assertions, . . . and other

redundant annotations that accompany the program.

Tony Hoare 2004

Source Language

C# + goodies = Spec#

Specifications

method contracts,

invariants,

field and type annotations.

Program Logic:

Dijkstra’s weakest preconditions.

Automatic Verification

type checking,

verification condition generation (VCG),

automatic theorem proving Z3

Spec# (annotated C#)

Boogie PL

Spec# Compiler

VC Generator

Formulas

Z3

Verification condition
(logical formula)

Source language

Intermediate verification language

S
ta

ti
c

p
ro

g
ra

m
 v

e
ri

fi
e
r

(B
o

o
g

ie
)

MSIL

Z3

V.C. generator

Inference engine

Verification condition

“correct” or list of errors

Spec# compiler

Spec#

Boogie

C

Bytecode
translator

vcc

C

HAVOC
Dafny
verifier

Dafny

…

terminates

diverges

goes wrong

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 9

State
Cartesian product of variables

Execution trace
Nonempty finite sequence of states

Infinite sequence of states

Nonempty finite sequence of states
followed by special error state

…

(x: int, y: int, z: bool)

x := E
x := x + 1

x := 10

havoc x

assert P

assume P

P
¬P

P

…

x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

P
¬P

P

…

x := E
x := x + 1

x := 10

havoc x

S ; T

assert P

assume P

S T

P
¬P

P

…

Hoare triple { P } S { Q } says that

every terminating execution trace of S that
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Given P and Q, what is the largest S’ satisfying
{P} S’ {Q} ?

to check {P} S {Q}, check S S’

Hoare triple { P } S { Q } says that

every terminating execution trace of S that
starts in a state satisfying P

does not go wrong, and

terminates in a state satisfying Q

Given S and Q, what is the weakest P’ satisfying
{P’} S {Q} ?

P' is called the weakest precondition of S with
respect to Q, written wp(S, Q)

to check {P} S {Q}, check P P’

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 10

wp(x := E, Q) =

wp(havoc x, Q) =

wp(assert P, Q) =

wp(assume P, Q) =

wp(S ; T, Q) =

wp(S T, Q) =

Q[E / x]

(x Q)

P Q

P Q

wp(S, wp(T, Q))

wp(S, Q) wp(T, Q)

if E then S else T end =

assume E; S

assume ¬E; T

if E S | F T fi =

assert E F;

(

assume E; S

assume F; T

)

assign x such that P =

havoc x; assume P

assign x such that x*x = y

P

¬P

; =

A procedure is a user-defined command

procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q

procedure Inc(n) returns (b)
requires 0 ≤ n
modifies g
ensures g = old(g) + n

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 11

A procedure is a user-defined command

procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q

call a, b, c := M(E, F, G)
= x’ := E; y’ := F; z’ := G;

assert P’;
g0 := g; h0 := h;
havoc g, h, r’, s’, t’;
assume Q’;
a := r’; b := s’; c := t’

where
• x’, y’, z’, r’, s’, t’, g0, h0 are fresh names
• P’ is P with x’,y’,z’ for x,y,z
• Q’ is Q with x’,y’,z’,r’,s’,t’,g0,h0 for

x,y,z,r,s,t, old(g), old(h)

procedure M(x, y, z) returns (r, s, t)
requires P
modifies g, h
ensures Q

implementation M(x, y, z) returns (r, s, t) is S

= assume P;
g0 := g; h0 := h;

S;
assert Q’

where
• g0, h0 are fresh names
• Q’ is Q with g0,h0 for old(g), old(h)

syntactically check that S
assigns only to g,h

while E
invariant J

do
S

end

= assert J;
havoc x; assume J;
(assume E; S; assert J; assume false
assume ¬E
)

where x denotes the
assignment targets of S

“fast forward” to an arbitrary
iteration of the loop

check that the loop invariant holds initially

check that the loop invariant is
maintained by the loop body

introduce:

axiom (h: HeapType, o: Ref, f: Field Ref
o ≠ null h[o, alloc]

h[o, f] = null h[h[o,f], alloc]);

introduce:

function IsHeap(HeapType) returns (bool);

introduce:

axiom (h: HeapType, o: Ref, f: Field Ref
IsHeap(h) o ≠ null h[o, alloc]

h[o, f] = null h[h[o,f], alloc]);

introduce: assume IsHeap(Heap)
after each Heap update; for example:
Tr[[E.x := F]] =

assert …; Heap*…+ := …;
assume IsHeap(Heap)

method M(x: X) returns (y: Y)
requires P; modifies S; ensures Q;

{ Stmt }

procedure M(this: Ref, x: Ref) returns (y: Ref);

free requires IsHeap(Heap);
free requires this ≠ null Heap[this, alloc];
free requires x = null Heap[x, alloc];

requires Df[[P]] Tr[[P]];

requires Df[[S]];

modifies Heap;

ensures Df[[Q]] Tr[[Q]];

ensures (o: Ref, f: Field
o ≠ null old(Heap)[o,alloc]

Heap[o,f] = old(Heap)[o,f]
(o,f) old(Tr[[S]]));

free ensures IsHeap(Heap);
free ensures y = null Heap[y, alloc];
free ensures (o: Ref old(Heap)[o,alloc] Heap[o,alloc]);

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 12

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));
// in-parameter: target object
free requires $Heap[this, $allocated];
requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[this, $ownerRef], $inv] <: $Heap[this, $ownerFrame]) ||

$Heap[$Heap[this, $ownerRef], $localinv] == $BaseClass($Heap[this, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc, $allocated]
&& $Heap[$pc, $ownerRef] == $Heap[this, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[this, $ownerFrame] ==> $Heap[$pc, $inv] ==
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// out-parameter: return value
free ensures $Heap[$result, $allocated];
ensures ($Heap[$result, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, $ownerRef], $inv] <: $Heap[$result, $ownerFrame]) ||

$Heap[$Heap[$result, $ownerRef], $localinv] == $BaseClass($Heap[$result, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc,
$allocated] && $Heap[$pc, $ownerRef] == $Heap[$result, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[$result, $ownerFrame] ==>
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// user-declared postconditions
ensures $StringLength($result) <= $Heap[this, Chunker.ChunkSize];
// frame condition
modifies $Heap;
free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f != $inv && $f != $localinv && $f != $FirstConsistentOwner && (!IsStaticField($f) ||

!IsDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder ||
!(old($Heap)[old($Heap)[$o, $ownerRef], $inv] <: old($Heap)[$o, $ownerFrame]) || old($Heap)[old($Heap)[$o, $ownerRef], $localinv] ==
$BaseClass(old($Heap)[$o, $ownerFrame])) && old($o != this || !(Chunker <: DeclType($f)) || !$IncludedInModifiesStar($f)) && old($o != this || $f
!= $exposeVersion) ==> old($Heap)[$o, $f] == $Heap[$o, $f]);

// boilerplate
free requires $BeingConstructed == null;
free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && !old($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==>

$Heap[$o, $inv] == $typeof($o) && $Heap[$o, $localinv] == $typeof($o));
free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==

$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o,
$FirstConsistentOwner]);

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } old($Heap)[$o, $allocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] &&
old($Heap)[$o, $localinv] == $Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot,
$ownerFrame] } { $Heap[$ot, $ownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, $ownerFrame] != $PeerGroupPlaceholder ==>
old($Heap)[$ot, $ownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, $ownerFrame] == $Heap[$ot, $ownerFrame]) &&
old($Heap)[$BeingConstructed, $NonNullFieldsAreInitialized] == $Heap[$BeingConstructed, $NonNullFieldsAreInitialized];

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms (“what didn’t change”)

Users provided assertions (e.g., the array is sorted)

Prototyping decision procedures (e.g., reachability,
heaps, …)

Solver must be fast in satisfiable instances.

Trade-off between precision and performance.

Candidate (Potential) Models

The Static Driver Verifier
SLAM

Ella Bounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture:

c2bp C program → boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to
check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are
relatively small.

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Do this code
obey the looking

rule?
do {

KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}

} while (*);

KeReleaseSpinLock();

Model checking
Boolean program

U

L

L

L

L

U

L

U

U

U

E

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 13

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Is error path
feasible?

U

L

L

L

L

U

L

U

U

U

E

do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){

request = request->Next;

KeReleaseSpinLock();

nPackets++;

}

} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Add new predicate to
Boolean program

b: (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b = true;

b = b ? false : *;

!b

do {

KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

Model Checking
Refined Program

b: (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

b

b

b

b

!b

do {

KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();

b = b ? false : *;

}

} while (!b);

KeReleaseSpinLock();

Model Checking
Refined Program

b: (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

b

b

b

b

b

b

!b

Automatic discovery of invariants
driven by property and a finite set of (false) execution paths
predicates are not invariants, but observations
abstraction + model checking computes inductive invariants
(boolean combinations of observations)

A hybrid dynamic/static analysis
newton executes path through C code symbolically
c2bp+bebop explore all paths through abstraction

A new form of program slicing
program code and data not relevant to property are dropped
non-determinism allows slices to have more behaviors

if (e) {

S1;

} else {

S2;

}

S3;

goto L1, L2;

L1: assume(e);

S1;

goto L3;

L2: assume(!e);

S2;

goto L3;

L3: S3;

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 14

Given a C program P and F = {p1, … , pn}.

Produce a Boolean program B(P, F)

Same control flow structure as P.

Boolean variables {b1, … , bn} to match {p1, … , pn}.

Properties true in B(P, F) are true in P.

Each pi is a pure Boolean expression.

Each pi represents set of states for which pi is true.

Performs modular abstraction.

Statement y=y+1 and F={ y<4, y<5 }
{y<4}, {y<5} = ((!{y<5} || !{y<4}) ? false : *), {y<4})

WP(x=e,Q) = Q[x -> e]
WP(y=y+1, y<5) =

(y<5) [y -> y+1] =

(y+1<5) =

(y<4)

WP(s, pi) is not always expressible via {p1, …,
pn}

Example:
F = { x==0, x==1, x < 5}

WP(x = x+1, x < 5) = x < 4

ImpliesF (e)
Best Boolean function over F that implies e.

ImpliedByF (e)
Best Boolean function over F that is implied by e.

ImpliedByF (e) = not ImpliesF (not e)

ImpliedByF(e)

e

ImpliesF(e)

minterm m = l1 ∧ ... ∧ ln, where li = pi, or li = not pi.

ImpliesF (e): disjunction of all minterms that imply e.

Naive approach

Generate all 2n possible minterms.

For each minterm m, use SMT solver to check
validity of m⇒ e.

Many possible optimizations

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 15

F = { x < y, x = 2}

e : y > 1

Minterms over F
!x<y, !x=2 implies y>1

x<y, !x=2 implies y>1

!x<y, x=2 implies y>1

x<y, x=2 implies y>1

ImpliesF(y>1) = x<y, x=2

if ImpliesF(WP(s, pi)) is true before s then
pi is true after s

if ImpliesF(WP(s, !pi)) is true before s then
pi is false after s

{pi} = ImpliesF(WP(s, pi)) ? true :

ImpliesF(WP(s, !pi)) ? false

: *;

Statement: y = y + 1 Predicates: {x == y}

Weakest Precondition:

WP(y = y + 1, x==y) = x == y + 1

ImpliesF(x==y+1) = false

ImpliesF(x!=y+1) = x==y

Abstraction of y = y +1

{x == y} = {x == y} ? false : *;

WP(assume(e), Q) = e implies Q

assume(e) is abstracted to:

assume(ImpliedByF(e))

Example:

F = {x==2, x<5}

assume(x < 2) is abstracted to:

assume({x<5} && !{x==2})

Given an error path p in the Boolean program B.

Is p a feasible path of the corresponding C program?

Yes: found a bug.

No: find predicates that explain the infeasibility.

Execute path symbolically.

Check conditions for inconsistency using SMT solver.
A Verifying C Compiler

Ernie Cohen, Michal Moskal, Herman Venter, Wolfram Schulte
+ Microsoft Aachen + Verisoft Saarbrücken

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 16

Meta OS: small layer of software
between hardware and OS

Mini: 60K lines of non-trivial
concurrent systems C code

Critical: must provide functional
resource abstraction

Trusted: a grand verification challenge

Hardware

Hypervisor

92

Am

Address Manager

Vp

Virtual Processor

Manager

Mm

Memory Manager

Hc

Hypercall Manager

Val

Virtualization

Abstraction Layer

Bm

Boot Manager

Dm

Dispatch Manager

Synic

Synthetic Interrupt

Controller

Rtl

Runtime Library

Dbg

Debugger

Ke

Physical Processor

Manager

Sch

Scheduler

Th

Thread/Process

Manager

Ti

Timer Manager

Hal

Hardware

Abstraction Layer

Boot

Interface

Pt

Partition Manager

Ic

Instruction

Completion

Virtual

Processor

Virtual

Interrupt

Virtualization

Base

Scheduler

Hy
pe

rvi
so

r

Ke
rne

l

Str
atu

m

Vir
ua

liz
ati

on

Ma
na

ge
me

nt

Str
atu

m

Resource

Management

Kernel

Hardware

Abstraction

Runtime

Tr

Trace

Layer

Virtualization

Abstraction

Dispatch

Im

Intercept ManagerPartition

Address

Space

St

Stats

Hk

Hypervisor Kernel

Kernel

Base

Vm

Virtualization Manager

Cpu

Current Processor

Ob

Object Manager

Hypervisor
Architecture

is well layered!

Source code

C + x64 assembly

Sample verifiable slices:
Safety: Basic memory safety

Functionality: Hypervisor simulates a
number of virtual x64 machines.

Utility: Hypervisor services guest OS with
available resources.

HAVOC
Verifying Windows Components

Lahiri & Qadeer, POPL’08,
Also: Ball, Hackett, Lahiri, Qadeer, MSR-TR-08-82.

Doubly linked lists in Windows Kernel code

Representative shape graph
in Windows Kernel component

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 17

Pointer Arithmetic
q = CONTAINING_RECORD(p, IRP, link)

= (IRP *) ((char*)p – (char*)(&(((IRP *)0)link)))

Transitive Closure
Reach(next, u) {u, u->next, u->next->next, …}
forall (x, Reach(next,p), CONTAINING_RECORD(x, IRP, link)->state == PENDING)

next
prev

IRP

link

next
prev

IRP

link

p

q

PENDING

state

PENDING

state

Procedure contracts
requires, ensures, modifies

Arbitrary C expressions

program variables, resources

Boolean connectives

quantifiers

Can express a rich set of contracts
API usage (e.g. lock acquire/release)

Synchronization protocols

Memory safety

Data structure invariants (linked list)

Challenge:
Retain efficiency

Decidable fragments

Logic with Reach,
Quantifiers, Arithmetic

Expressive

Careful use of quantifiers

Efficient logic
Only NP-complete

Encoding using quantifiers
and triggers

Combining Random Testing
with Model Checking

Aditya Nori, Sriram Rajamani,
ISSTA08: Proofs from Tests. Nels E. Beckman, Nori, Rajamani, Rob Simmons

• Main workhorse: test case
generation

• Use counterexamples from
current abstraction to
“extend frontier” and
generate tests

• When test case generation
fails, use this information to
“refine” abstraction at the
frontier
• Use only aliases that happen

on the tests!

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

Example

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 18

Example

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

τ=(0,1,2,3,4,7,8,9)

y = 1

Symbolic execution +
Theorem proving

frontier

0

1

2

3

4

5

6

7

8

9

×

× ×

× ×

× ×

× ×

×

×

× ×

×

10
×

Example

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

Symbolic execution + Theorem Proving

τ=(0,1,2,3,4,7,8,9)

y y0

lock.state L

x y0

symbolic memory

constraints

Example

Symbolic execution +
Theorem proving

frontier

0

1

2

3

4

5

6

7

8

9

×

× ×

× ×

× ×

× ×

×

×

× ×

×

10
×

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

Template-based refinement
0

1

2

3

4

5

6

7

8

9

×

× ×

× ×

× ×

× ×

×

×

× ×

×

10
×

8:¬ρ 8:ρ

9

8

9

ρ= (lock.state != L)

× ×

Template-based refinement

8:¬ρ 8:ρ

9

8

9

ρ= (lock.state != L)

× ×

0

1

2

3

4

5

6

7

8 :¬ρ

9

×

× ×

× ×

× ×

× ×

×

×

× ×

×

10
×

8:ρ

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 19

Example

τ=(0,1,2,3,4,7,<8,p>,9)

0

1

2

3

4

5

6

7

8 :¬ρ

9

×

× ×

× ×

× ×

× ×

×

×

× ×

×

10
×

8:ρ

frontier

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

Proof!
0

1

2

3

4⋀¬s

5⋀¬s

6⋀¬r

9

×

× ×

× ×

× ×

××

×

×

7⋀¬q
×

8⋀¬p
×

4⋀s

5⋀s

6⋀r

7⋀q

8⋀p

×

10

Can extend
test beyond
frontier?

Refine abstraction

Construct initial
abstraction

Construct random tests

Test
succeeded?

Bug!

Abstraction
succeeded?

τ = error path in abstraction
f = frontier of error path

yes

no

yes

no

Proof!
yes

no

Input:
Program P

Property ψ

Correct, the
program is

Representation

L
program locations.

R L L
Control flow graph

State: L Formula –set
Symbolic state: each
location has set of disjoint
formulas

Theorem proving needs

Facts about pointers:
*&x = x

Subsumption checks:
 WP(l,)

 WP(l,)

Structure sharing
Similar formulas in
different states

Simplification
Collapse/Reduce formulas

Better Bug Reporting with
Better Privacy

See also: Vigilante – Internet Worm
Containment

Miguel Castro, Manuel Costa, Jean-Philippe Martin
ASPLOS 08

Miguel Castro, Manuel Costa, Lintao Zhang

Replay Execution

Extract Path Condition

Solve Path
Condition
(with Z3)

Compute Bits
Revealed

teddybear

00102220344011100

R A N D O M \n \n \n

G E T ‘ ‘ O M \n \n \n

G E T ‘ ‘ O M . . .

:assumption (= b0 bv71[8])
:assumption (= b1 bv69[8])
:assumption (= b2 bv84[8])
:assumption (= b3 bv32[8]))

:assumption (distinct b6 bv10[8] bv32[8])

Privacy: measure distance between original crash input and new input

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 20

Program Termination
Byron Cook

http://www.foment.net/byron/fsharp.shtml

A complete method for the synthesis of
linear ranking functions. Podelski &
Rybalchenkoy; VMCAI 04

0 0

' 1 '

x y

x x y y

Can we find f, b,
such that the
inclusion holds?

That is:

Search over linear templates: Search over linear templates:

1 2 3 4, , ,c c c cFind

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 21

Search over linear templates:

1 2 3 4, , , , , , ', 'c c c c x y x y

Search over linear templates:

1 2 3 4, , , , , , ', 'c c c c x y x y

1 2 3 4, , , , , , ', 'c c c c x y x y
Instead solve: 1 2 3 4 1 2 3 4 5, , , , , , , ,c c c c

Instead solve: 1 2 3 4 1 2 3 4 5, , , , , , , ,c c c c

Solver: Dual Simplex for Th(LRA).

See Byron Cook’s blog for an F#
program that produces input to Z3

Program Analysis as
Constraint Solving

Sumit Gulwani, Saurabh Srivastava, Ramarathnam Venkatesan,
PLDI 2008

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 22

while (c) {

S

}

Post 1 (,)

() ()

() () (, ') (')

() () ()

I x

I

I I I

I Po

x x

x x c x S x x x

c x xtx s

How to find loop invariant I ?

Assume I is of the form j ajxj b

Simplified problem:

1 (,)

() ()

() () (, ') (')

() () ()

I x

I

I I I

I Po

x x

x x c x S x x x

c x xtx s

1, (. ,)A b x x Ax b x

Original:

Relaxed:

Farkas’:

Existential:
Problem: contains multiplication

1, (. ,)A b x x Ax b x

1

(0 0)

, ,.., ()m k k

x Ax bx

b a

2, , (, ,)A b A b

1(,)I x I x
Original:

Existential:

Bounded:

Or: Bit-vectors:

2, (, ,)A b A b

1(,)I x I x

1

1 2 3 2 2

3

(,4,0)

, , , , (, , (,2,0))

(,1,0)

ite p

A b p p p A b ite p

ite p

2, , : [8]. (, ,)A b BitVec A b

x := 0; y := 0;

while (x < 100)

x := x+n;

y := y+m;

a0 + a1x + a2y + a3n + a4m 0
b0 + b1x + b2y + b3n + b4m 0

y x
m 1
n 1

a2=b0=c4=1, a1=b3=c0=-1
a0 + a1x + a2y + a3n + a4m 0
b0 + b1x + b2y + b3n + b4m 0
c0 + c1x + c2y + c3n + c4m 0

y x
m n

a2=b2=1, a1=b1=-1

a0 + a1x + a2y + a3n + a4m 0
Invalid triple or
Imprecise Template

UNSAT

Invariant Template Satisfying Solution Loop Invariant

{n=1 m=1} {y 100}

Bit-vector multiplication

For each sub-term A*B
Replace by fresh vector OUT

Create circuit for:
OUT = A*B

Convert circuit into clauses:
For each internal gate

Create fresh
propositional variable

Represent gate as
clause

{Out[0], ~A[0],~B[0]}, {A[0],~Out[0]}, {B[0],~Out[0]}, …..

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 23

Tableau + DPLL =
Relevancy Propagation

Tableau goes outside in, DPLL inside out

Relevancy propagation: If DPLL sets : to true, is marked
as relevant, then first of , to be set to true gets marked as
relevant.

Used for circuit gates and for quantifier matching

Abstract Interpretation
and modular arithmetic

Material based on:
King & Søndergård, CAV 08
Seidl & Olm, ESOP 2005

Transition system:

L locations,
V variables,
S = [V Val] states,
R L S S L transitions,
 S initial states

ℓinit L initial location

Concrete reachable states: CR: L (S)

Abstract reachable states: AR: L A

Connections:

⊔ : A A A

 : A (S)
 : S A
 : (S) A where (S) = ⊔ {(s) | s S }

Concrete reachable states:

CR ℓ x x ℓ = ℓinit

CR ℓ x CR ℓ0 x0 R ℓ0 x0 x ℓ

Abstract reachable states:

AR ℓ x ((x)) ℓ = ℓinit

AR ℓ x ((AR ℓ0 x0) R ℓ0 x0 x ℓ)

Why? fewer (finite) abstract states

Abstract reachable states:

AR ℓinit ()

Find interpretation M:

M ⊨ (AR ℓ0 x0) R ℓ0 x0 x ℓ (AR ℓ x)

Then:

AR ℓ AR ℓ ⊔ (xM)

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 24

States are linear congruences:

A V = b mod 2m

V is set of program variables.

A matrix, b vector of coefficients [0.. 2m-1]

When at ℓ2 :
y is 0.

c contains number of bits in x.

ℓ0: y x; c 0;
ℓ1: while y != 0 do [y y&(y-1); c c+1]
ℓ2:

States are linear congruences:

As Bit-vector constraints (SMTish syntax):

(and
(= (bvadd (bvmul 010 x0) (bvmul 011 x1)) 001)
(= (bvadd x0 x1) 011)
)

0 3

1

2 3 1
mod2

1 1 3

x

x

3 3

0 1 0 12 3 1mod2 3mod2x x x x
(A V = b mod 2m) ⊔ (A’ V = b’ mod 2m)

Combine:

Triangulate (Seidl & Olm)

Project on x

1

2

1

2

1 1 0 0 0 1

0 0 0 0

0 ' 0 ' 0 0

0 0 0

s

s
b A

x
b A

x
I I I

x

1 0 1
(1, 2)

0 1 2

x
x y

y

Bounded Model Checking of
Model Programs

Margus Veanes

FORTE 08

Integration with symbolic analysis
techniques at design time –
smart model debugging

Theorem proving

Model checking

Compositional reasoning

Domain specific front ends
Different subareas require
different adaptations

Model programs provide the
common framework

Motivating example

SMB2 Protocol Specification

Sweet spot for model-based
testing and verification. Examples

17%

Server Details,

21%

Client Details,

24%

Messages,

35%

Intro, 3%

Behavioral modeling

Scenarios (slicing)

Scenarios (slicing)

Adapter for testing

% pages

Sample protocol document for
SMB2 (a network file protocol)

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 25

FORTE 2008, Tokyo

Given a model program P step bound k
and reachability condition φ

Array model programs use only maps with
integer domain sort.

For normalizable comprehensions universal
quantifiers can be eliminated using a
decision procedure for the array property
fragment [Bradley et. al, VMCAI 06]

Set comprehensions are introduced
through skolem constant definitions using
support for quantifiers in Z3

Elimination of quantifiers is partial.

Model is refined if a spurious model is
found by Z3.

A spurious model may be generated by Z3 if
an incomplete heuristic is used during
quantifier elimination.

Model program:

FORTE 2008, Tokyo

149

Start

Finish

Plan

Verifying Garbage
Collectors
- Automatically and fast

Chris Hawblitzel

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?Source
Path=%24%2fsingularity%2fbase%2fKernel%2fBartok%2fVerifiedGCs&changeSe
tId=14518

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 26

Garbage Collectors
Mark&Sweep

Copying GC

Verify small garbage collectors

more automated than interactive provers

borrow ideas from type systems for regions

Singularity
Safe micro-kernel

95% written in C#

all services and drivers in processes

Software isolated processes (SIPs)
all user code is verifiably safe

some unsafe code in trusted runtime

processes and kernel sealed at execution

Communication via channels
channel behavior is specified and checked

fast and efficient communication

Working research prototype
not Windows replacement

shared source download

Bartok
MSIL X86 Compiler

BoogiePL
Procedural low-level language

Contracts

Verification condition generator

safety verifier

trusted
computing
base
(minimize this!)

typed x86

untrusted
code

compiler

MSIL

exception
handling

I/O

linker, loader

garbage
collector

MSIL: MSFT Intermediary Language

A
(root)

B C

mark-sweep copying from copying to

A

B

C

A

B

C

abstract
graph

A

B

safety: gc does no harm
type safety

gc turns well-typed heap into well-typed heap

graph isomorphism
concrete graph represents abstract graph

effectiveness
after gc, unreachable objects reclaimed

termination

efficiency

verified

not
verified

A
(root)

B C
abstract
graph

A B

procedure GarbageCollectMs()
requires MsMutatorInv(root, Color, $toAbs, $AbsMem, Mem);

modifies Mem, Color, $toAbs;

ensures MsMutatorInv(root, Color, $toAbs, $AbsMem, Mem);

{
call Mark(root);
call Sweep();

}

concrete
graph

$toAbs$toAbs

function MsMutatorInv(...) returns (bool) {

WellFormed($toAbs) && memAddr(root) && $toAbs[root] != NO_ABS

&& (forall i:int::{memAddr(i)} memAddr(i) ==> ObjInv(i, $toAbs, $AbsMem, Mem))

&& (forall i:int::{memAddr(i)} memAddr(i) ==> White(Color[i]))

&& (forall i:int::{memAddr(i)} memAddr(i) ==> ($toAbs[i]==NO_ABS <==>

Unalloc(Color[i])))}

function ObjInv(...) returns (bool) { memAddr(i) && $toAbs[i] != NO_ABS ==>

... $toAbs[Mem[i, field1]] != NO_ABS ...

... $toAbs[Mem[i, field1]] == $AbsMem[$toAbs[i], field1] ... }

$AbsMem

Mem

Idea: use marker

Relativize quantifiers using marker

function{:expand false} T(i:int) returns (bool) { true }

function GcInv(Color:[int]int, $toAbs:[int]int, $AbsMem:[int,int]int,
Mem:[int,int]int) returns (bool) {

WellFormed($toAbs)
&& (forall i:int::{T(i)} T(i) ==> memAddr(i) ==>

ObjInv(i, $toAbs, $AbsMem, Mem)
&& 0 <= Color[i] && Color[i] < 4
&& (Black(Color[i]) ==> !White(Color[Mem[i,0]]) && !White(Color[Mem[i,1]]))
&& ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))

}

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 27

Insert markers to enable triggers

procedure Mark(ptr:int)
requires GcInv(Color, $toAbs, $AbsMem, Mem);
requires memAddr(ptr) && T(ptr);
requires $toAbs[ptr] != NO_ABS;
modifies Color;
ensures GcInv(Color, $toAbs, $AbsMem, Mem);
ensures (forall i:int::{T(i)} T(i) ==> !Black(Color[i]) ==> Color[i] == old(Color)[i]);

ensures !White(Color[ptr]);
{
if (White(Color[ptr])) {

Color[ptr] := 2; // make gray
call Mark(Mem[ptr,0]);
call Mark(Mem[ptr,1]);
Color[ptr] := 3; // make black

}
}

Refinement Types for
Secure Implementations

http://research.microsoft.com/F7

Jesper Bengtson,
Karthikeyan Bhargavan,
Cédric Fournet,
Andrew D. Gordon,
Sergio Maffeis
CSF 2008

Executable code has more details than models

Executable code has better tool support: types, compilers,
testing, debuggers, libraries, verification

Using dependent types: integrate cryptographic protocol
verification as a part of program verification

Such predicates can also represent security-related
concepts like roles, permissions, events, compromises,
access rights,...

Un-trusted code may call
a trusted library

Trusted code expresses
security policy with
assumes and asserts

Each policy violation causes
an assertion failure

F7 statically prevents any
assertion failures by typing

type facts = CanRead of string
| CanWrite of string

let read file = assert(CanRead(file)); …
let delete file = assert(CanWrite(file); …

let pwd = “C:/etc/passwd””
let tmp = “C:/temp/temp”

assume CanWrite(tmp)

assume x . CanWrite(x) CanRead(x)

let untrusted() =
let v1 = read tmp in // ok
let v2 = read pwd in //CanRead(pwd)

// assertion fails

Pre-conditions express access control requirements

Post-conditions express results of validation

F7 type checks partially trusted code to guarantee that all
preconditions (and hence all asserts) hold at runtime

val read: file:string{CanRead(file)} string
val delete: file:string{CanDelete(file)} unit
val publish: file:string unit{Public(file)} Models for Domain Specific

Languages with
FORMULA & BAM

Ethan Jackson

FORTE 08

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 28

Designing Complex Systems Requires Multiple Abstractions

Forget about the network; think about the
software components

Product lines abstract across families of
implementations

Functional architecture taken from AUTOSAR:
http://www.autosar.org

Screenshot of “Build Your Scion”:
http://www.scion.org

BMW architecture:
Taken from

A General Synthesis Approach for
Embedded Systems Design with
Applications to Multi-media and

Automotive Designs.
Sangiovanni-Vincentelli et al., 2007.

Automotive system is just processors and their
communication buses

Many Modeling Styles are Used to Build Abstractions

Abstraction: ECU/Bus
Style: Domain-specific Language

Abstraction:
Scheduling Problem

Style:
Platform-based design

Abstraction:
Automotive Product-line
Style: Feature Diagram

Instance Instance Instance

A Notorious Problem: How Do We Compose
Abstractions?

Instance of ECU/Bus
rich syntax

Instance of
scheduling problem

Instance of feature
description

Integration of Multiple Abstractions

We view each abstraction as providing (among other things) a constraint system
representing the legal “models” of the abstraction. Composition occurs via these

constraint systems:

For example, this instance must satisfy the constraints of each abstraction used in its
construction.

FORMULA is a CLP Language for Specifying, Composing,
and Analyzing Abstractions

A domain encapsulates
a reusable, composable

constraint system

Special function
symbols (malform,

wellform) capture legal
instances in a domain-

independent way.

FORMULA can construct satisfying instances
to logic program queries using Z3.

Search for satisfying instances are Reduced to Z3
This model finding procedure allows us to:

1. Determine if a composition of abstractions contains inconsistencies
2. Construct (partial) architectures that satisfy many domain constraints.

3. Generate design spaces of architectural invariants.

1

2

3
4

5
6

Symbolic backwards chaining yields a set of
candidate terms S with the following property:

A finite instance exists that satisfies the query Q iff
some subset of S satisfies the query Q.

Once the finite set S is calculated, then S + Q is
reduced to SMT and evaluated by Z3.

Reduction to Z3 works as follows:

S =

Q

S

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 29

Pre-requisites and notation

Functions , Variables, Predicates
f, g, x, y, z, P, Q, =

Atomic formulas, Literals
P(x,f(y)), Q(y,z)

Quantifier free formulas
P(f(a), b) c = g(d)

Formulas, sentences

x . y . [P(x, f(x)) g(y,x) = h(y)]

A signature is a finite set of:

Function symbols:

F = { f, g, … }

Predicate symbols:

P = { P, Q,=, true, false, … }

And an arity function:
 N

Function symbols with arity 0 are constants

A countable set V of variables

disjoint from

The set of terms T(F ,V) is the smallest set
formed by the syntax rules:

t T ::= v v V
| f(t1, …, tn) f F t1, …, tn T

• Ground terms are given by T(F ,)

a Atoms ::= P(t1, …, tn)

P P t1, …, tn T

An atom is ground if t1, …, tn T(F ,)

Literals are (negated) atoms:

• l Literals ::= a | a a Atoms

The set QFF(,V) of quantifier free formulas
is the smallest set such that:

 QFF ::= a Atoms atoms

| negations

| ’ bi-implications

| ’ conjunction

| ’ disjunction

| ’ implication

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 30

The set of first-order formulas are obtained
by adding the formation rules:

 ::= …

| x . universal quant.

| x . existential quant.

• Free (occurrences) of variables in a formula
are theose not bound by a quantifier.

• A sentence is a first-order formula with no
free variables.

A (first-order) theory T (over signature) is a set of
(deductively closed) sentenes (over and V)

Let DC() be the deductive closure of a set of
sentences .

For every theory T, DC(T) = T

A theory T is constistent if false T

We can view a (first-order) theory T as the class of
all models of T (due to completeness of first-order
logic).

A model M is defined as:
Domain S; set of elements.

Interpretation, fM : Sn S for each f F with arity(f) = n

Interpretation PM Sn for each P P with arity(P) = n

Assignment xM S for every variable x V

A formula is true in a model M if it evaluates to
true under the given interpretations over the
domain S.

M is a model for the theory T if all sentences of T
are true in M.

A formula (x) is T-satisfiable in a theory
T if there is a model of DC(T x (x)).
That is, there is a model M for T in
which (x) evaluates to true.

Notation:

M ⊨T (x)

A formula (x) is T-valid in a theory
T if x (x) T. That is, (x) evaluates
to true in every model M of T.

T-validity:

⊨T (x)

Checking the validity of in a theory T:

 is T-valid

 T-unsat:

 T-unsat: xyzu . (prenex of)

 T-unsat: xz . [f(x),g(x,z)] (skolemize)

 T-unsat: [f(a1),g(a1,b1)] … (instantiate)
 [f(an),g(an,bn)] (if compactness)

 T-unsat: 1 … m (DNF)

where each i is a conjunction.

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 31

Theory solvers must minimally be able to

check unsatisfiability of conjunctions of
literals.

We want to only work with formulas in Conjunctive
Normal Form CNF.

is not in CNF.: 5 (3)x y z x

: 5 (3)x y z x

' : (5) (5)

(3)

(3) ()

p x p x

p y z x

p y p z x

Equi-satisfiable CNF formula

cnf() = let (q,F) = cnf’() in q F

cnf’(a) = (a, true)

cnf’(’) = let (q,F1) = cnf’()
(r, F2) = cnf’(’)

p = fresh Boolean variable
in

(p, F1 F2 (p q)
(p r)
(p q r))

Exercise: cnf’(’), cnf’(’), cnf’()

Main properties of basic CNF

Result F is a set of clauses.

 is T-satisfiable iff cnf() is.

size(cnf()) 4(size())

 paux cnf()

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 32

Incrementally build a model M for a CNF formula F (set of
clauses).

Initially M is the empty assignment

Propagate: M: M(r) false
if (p q r) F, M(p) = false, M(q) = true

Decide M(p) true or M(p) false,
if p is not assigned.

Backtrack:
if (p q r) F, M(p) = false, M(q) = M(r)= true, (e.g. M ⊨T C)

Maintain states of the form:

M || F - during search

M || F || C – for backjumping

M a partial model, F are clauses, C is a clause.

Decide M || F Mld || F if l F \ M

d is a decision marker

Propagate M || F MlC || F

if l C F, C = (C’ l), M ⊨T C’

Conflict M || F M || F || C if C F, M ⊨T C

Learn M || F || C M || F, C || C i.e, add C to F

Resolve Mp(C’ p) || F || C p M || F || C C’

Skip Mp || F || C M || F || C if lC

Backjump MM’ld|| F || C MlC || F

if lC and M’ does not intersect with C

Congruence closure just checks satisfiability
of conjunction of literals.

How does this fit together with Boolean
search DPLL?

DPLL builds partial model M incrementally

Use M to build C*

After every Decision or Propagate, or

When F is propositionally satisfied by M.

Check that disequalities are satisfied.

Recall Conflict:

Conflict M || F M || F || C if CF, M ⊨T C

A version more useful for theories:

Conflict M || F M || F || C if C M, ⊨T C

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 33

Example

M = fff(a) = a, g(b) = c, fffff(a)= a, a f(a)

 C = fff(a) = a, fffff(a)=a, a f(a)

⊨E fff(a) a fffff(a) a a = f(a)

Use C as a conflict clause.

Fourier-Motzkin:
Quantifier elimination procedure

x (t ax t’ bx cx t’’) ct at’ ct’ bt’’

Polynomial for difference logic.

Generally: exponential space, doubly exponential
time.

Simplex:
Worst-case exponential, but

Time-tried practical efficiency.

Linear space

Initial state: L is set of literals over 1 2

Purify: Preserving satisfiability,
convert L into L’ = L1 L2 such that
L1 T(1,V), L2 T(2,V)
So L1 L2 = Vshared V

Interaction:
Guess a partition of Vshared

Express the partition as a conjunction of equalities.
Example, { x1 }, { x2 , x3 }, { x4 } is represented as:
: x1 x2 x1 x4 x2 x4 x2 = x3

Component Procedures:
Use solver 1 to check satisfiability of L1
Use solver 2 to check satisfiability of L2

Instead of guessing, we can often deduce the
equalities to be shared.

Interaction: T1 L1 ⊨ x = y
then add equality to .

If theories are convex, then we can:
Deduce all equalities.

Assume every thing not deduced is distinct.

Complexity: O(n4 x T1(n) x T2(n)).

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 34

Reduced guessing is only complete for convex
theories.

Deducing all implied equalities may be expensive.
Example: Simplex – no direct way to extract from just
bounds and

But: backtracking is pretty cheap nowadays:
If (x) = (y), then x, y are equal in arithmetical
component.

Backjumping is cheap with modern DPLL:

If (x) = (y), then x, y are equal in arithmetical
model.

So let’s add x = y to , but allow to backtrack
from guess.

In general: if M1 is the current model
M1 ⊨ x = y then add literal (x = y)d

Functions: F = { read, write }

Predicates: P = { = }

Convention a[i] means: read(a,i)

Non-extensional arrays TA:

a, i, v . write(a,i,v)[i] = v

a, i, j, v . i j write(a,i,v)[j] = a[j]

Extensional arrays: TEA = TA +

a, b. ((i. a[i] = b[i]) a = b)

Let L be literals over F = { read, write }

Find M such that: M ⊨TA
L

Basic algorithm, reduce to E:
for every sub-term read(a,i), write(b,j,v) in L

i j a = b read(write(b,j,v),i) = read(a,i)

read(write(b,j,v),j) = v

Find ME, such that
ME ⊨E L AssertedAxioms

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 35

We can use DPLL(T) for with quantifiers.

Treat quantified sub-formulas as atomic
predicates.

In other words, if x.(x) is a sub-formula if ,
then introduce fresh p. Solve instead

[x.(x) p]

Suppose DPLL(T) sets p to false

 any model M for must satisfy:

M ⊨ x.(x)

 for some skx: M ⊨ (skx)

In general: ⊨ p (skx)

Suppose DPLL(T) sets p to true

 any model M for must satisfy:

M ⊨ x.(x)

 for every term t: M ⊨ (t)

In general: ⊨ p (t)
For every term t.

Summary of auxiliary axioms:

⊨ p (skx) For fixed, fresh skx

⊨ p (t) For every term t.

Which terms t to use for auxiliary axioms of
the second kind?

⊨ p (t) For every term t.

Approach:
Add patterns to quantifiers

Search for instantiations in E-graph.

a,i,v { write(a,i,v) } . read(write(a,i,v),i) = v

⊨ p (t) For every term t.

Approach:
Add patterns to quantifiers

Search for pattern matches in E-graph.

a,i,v { write(a,i,v) } . read(write(a,i,v),i) = v

Add equality every time there is a write(b,j,w) term in E.

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 36

Linear real and integer arithmetic.

Fixed-size bit-vectors

Uninterpreted functions

Extensional arrays

Quantifiers

Model generation

Several input formats (Simplify, SMT-LIB,
Z3, Dimacs)

Extensive API (C/C++, .Net, OCaml)

http://research.microsoft.com/projects/z3/documentation.html

Theories

Core Theory

SAT solver

Rewriting
Simplification

Bit-Vectors

Arithmetic

Partial orders

Tuples

E-matching

Arrays

OCamlText .NETC Given arrays:

bool a1[bool];
bool a2[bool];
bool a3[bool];
bool a4[bool];

All can be distinct.

Add:

bool a5[bool];

Two of a1,..,a5 must
be equal.

http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 37

(benchmark integer-linear-arithmetic
:status sat
:logic QF_LIA
:extrafuns ((x1 Int) (x2 Int) (x3 Int)

(x4 Int) (x5 Int))
:formula (and (>= (- x1 x2) 1)

(<= (- x1 x2) 3)
(= x1 (+ (* 2 x3) x5))
(= x3 x5)
(= x2 (* 6 x4)))

)

(benchmark array
:logic QF_AUFLIA
:status unsat
:extrafuns ((a Array) (b Array) (c Array))
:extrafuns ((i Int) (j Int))

:formula (and
(= (store a i v) b)
(= (store a j w) c)
(= (select b j) w)
(= (select c i) v)
(not (= b c))

)

benchmark ::= (benchmark name
[:status (sat | unsat | unknown)]
:logic logic-name

declaration*)

declaration ::= :extrafuns (func-decl*)
| :extrapreds (pred-decl*)
| :extrasorts (sort-decl*)
| :assumption fmla
| :formula fmla

sort-decl ::= id - identifier

func-decl ::= id sort-decl* sort-decl - name of function, domain, range

pred-decl ::= id sort-decl* - name of predicate, domain

fmla ::= (and fmla*) | (or fmla*) | (not fmla)
| (if_then_else fmla fmla fmla) | (= term term)
| (implies fmla fmla) (iff fmla fmla) | (predicate term*)

Term ::= (ite fmla term term)
| (id term*) - function application
| id - constant

Logics:

QF_UF – Un-interpreted functions. Built-in
sort U

QF_AUFLIA – Arrays and Integer linear
arithmetic.

Built-in Sorts:
Int, Array (of Int to Int)

Built-in Predicates:
<=, >=, <, >,

Built-in Functions:
+, *, -, select, store.

Constants: 0, 1, 2, …

Q: There is no built-in function for max or
min. How do I encode it?

(max x y) is the same as (ite (> x y) x y)

Also: replace (max x y) by fresh constant
max_x_y add assumptions:
:assumption (implies (> x y) (= max_x_y x))
:assumption (implies (<= x y) (= max_x_y y))

Q: Encode the predicate (even n), that is
true when n is even.

Quantified formulas in SMT-LIB:

fmla ::= …
| (forall bound* fmla)
| (exists bound* fmla)

Bound ::= (id sort-id)

Q: I want f to be an injective function. Write an axiom that forces f to be
injective.

Patterns: guiding the instantiation of quantifiers (Lecture 5)

fmla ::= …
| (forall (?x A) (?y B) fmla :pat { term })
| (exists (?x A) (?y B) fmla :pat { term })

Q: what are the patterns for the injectivity axiom?

open Microsoft.Z3
open System.Collections.Generic
open System

let par = new Config()
do par.SetParamValue("MODEL", "true")
let z3 = new TypeSafeContext(par)

Create a context z3:

let check (fmla) =
z3.Push();
z3.AssertCnstr(fmla);
(match z3.Check() with
| LBool.False -> Printf.printf "unsat\n"
| LBool.True -> Printf.printf "sat\n"
| LBool.Undef -> Printf.printf "unknown\n"
| _ -> assert false);
z3.Pop(1ul)

Check a formula

-Push
-AssertCnstr
-Check
-Pop

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 38

let fmla1 = ((x === f(f(f(f(f(f x))))) && (x === f(f(f x)))) ==> (x === (f x))
do check (neg fmla1)

let (===) x y = z3.MkEq(x,y)
let (==>) x y = z3.MkImplies(x,y)
let (&&) x y = z3.MkAnd(x,y)
let neg x = z3.MkNot(x)

let a = z3.MkType(“a”)
let f_decl = z3.MkFuncDecl("f",a,a)
let x = z3.MkConst(“x”,a)
let f x = z3.MkApp(f_decl,x)

Declaring z3 shortcuts,
constants and functions

Proving a theorem

(benchmark euf
:logic QF_UF
:extrafuns ((f U U) (x U))
:formula (not (implies (and (= x (f(f(f(f(f x)))))) (= x (f(f(f x))))) (= x (f x))))

compared to

We want to find models for

But we only care about different

1 2 3

1 2 3 2 3 1

2 5 1 7 1 17

0

i i i

i i i i i i

1i

Representing the problem

1

2

3

1 2 3

2 3 1

2 5

1 7

1 17

0

i

i

i

i i i

i i i

void Test() {
Config par = new Config();
par.SetParamValue("MODEL", "true");
z3 = new TypeSafeContext(par);
intT = z3.MkIntType();
i1 = z3.MkConst("i1", intT); i2 = z3.MkConst("i2", intT);
i3 = z3.MkConst("i3", intT);

z3.AssertCnstr(Num(2) < i1 & i1 <= Num(5));
z3.AssertCnstr(Num(1) < i2 & i2 <= Num(7));
z3.AssertCnstr(Num(-1) < i3 & i3 <= Num(17));
z3.AssertCnstr(Num(0) <= i1 + i2 + i3 & Eq(i2 + i3, i1));
Enumerate();
par.Dispose();
z3.Dispose();

}

Enumeration:

void Enumerate() {
TypeSafeModel model = null;
while (LBool.True == z3.CheckAndGetModel(ref model)) {

model.Display(Console.Out);
int v1 = model.GetNumeralValueInt(model.Eval(i1));
TermAst block = Eq(Num(v1),i1);
Console.WriteLine("Block {0}", block);
z3.AssertCnstr(!block);
model.Dispose();

}
}

TermAst Eq(TermAst t1, TermAst t2) { return z3.MkEq(t1,t2); }

TermAst Num(int i) { return z3.MkNumeral(i, intT); }

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {

int mid = (lo+hi)/2;
Console.WriteLine("lo: {0}, hi: {1}, mid: {2}",lo,hi,mid);
z3.Push();
z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));
TypeSafeModel model = null;
if (LBool.True == z3.CheckAndGetModel(ref model)) {

lo = model.GetNumeralValueInt(model.Eval(a));
model.Dispose();

}
else hi = mid;
z3.Pop();

}
return hi;

}

Maximize(i3,-1,17):

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {

int mid = (lo+hi)/2;
Console.WriteLine("lo: {0}, hi: {1}, mid: {2}",lo,hi,mid);
z3.Push();
z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));
TypeSafeModel model = null;
if (LBool.True == z3.CheckAndGetModel(ref model)) {

lo = model.GetNumeralValueInt(model.Eval(a));
model.Dispose();
lo = Maximize(a, lo, hi);

}
else hi = mid;
z3.Pop();

}
return hi;

}

