IJCAR 2008

4th International Joint Conference on Automated Reasoning
Sydney, Australia, August 10—15, 2008

Tutorial Program

hnp//2008 | IJ CAR-org
8002 1SNBNY G1-0L “BlleASnY ASUPAS ‘BUILSES} PBIEWOINY Lo 80UBISJUOD JUIOF [2UORBLIBIU] Ut UL

SMT Solvers in
Program Analysis and Verification

Nikolaj Bjgrner and Leonardo de Moura

T 3 —August 10

8/4/2008

g SRR = e Tutorial overview

= Appetizers

Satisfiability Modulo Theories * SMT solving

© Applications

solvers in
Program Analysis and Verification

= Applications at Microsoft Research

© Background

. R © Basics, DPLL(D), Equality, Arithmetic,
Leonardo de Moura and Nikolaj Bjgrner DPLL(T), Arrays, Matching

Microsoft Research
= Z3 - An Efficient SMT solver

YR Microsoft
o Pt e L Domains from programs
y = Bits and bytes 0= ((x—1) & x) <= x = 00100000..00
= =
J_/V,/,/_l © Numbers X+y=y+X

© Arrays read (write(a,i,4),i) =4

s 9

}pr gf_L/gf = Records mkpair(x, y) = mkpair(z,u) = x =z

© Heaps n—"n'aAm=cons(a,n)=m-—"n'
» Data-types car(cons(x,nil)) = x
= Objectinheritance @B < AAC<B=C<A

Satisfiability Modulo Theories (SMT)

x+2=y=|f[read(write(a, x,3),y —2) =[f [y - x+1) Jilpff)_/jcgjfjgfjj

N i ey Appetizer

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Some takeaways from Applications Program Verification

= SMT solvers are used in several applications:

The
» Program Verification m §ESDEC# .
. s Programming System
= Program Analysis

= Program Exploration R E—
= Software Modeling) - VCC —‘ BOOg'e ‘
(St = L)

= SMT solvers are

= directly applicable, or Win. Modules == HAVOC
= disguised beneath a transformation m
= Theories and quantifiers supply abstractions Bug path s

= Replace ad-hoc, often non-scalable, solutions

Microsoft

Research

Static Driver Verifier

Test case generation

= Z3is part of SDV 2.0 (Windows 7)
= Itis used for:
= Predicate abstraction (c2bp)

Run Test and Monitor Execution Path Condition

Path

Test

Inputs = Counter-example refinement (newton)

Unexplored path S_L&M
b il ol o (

(gl Vigilante m’g&

EllaBounimova, Vlad Levin, Jakob Lichtenberg,
Tom Ball, Sriram Rajamani, Byron Cook

New input .
P Constraint

System

de Halleux, Patrice Godefroid
ippe Martin, Miguel Castro,
Manuel Costa, Lintao Zhang

More applications

o il .Ll Research

* Bounded model-checking of model ©
programs

= Termination A wnn 2 ¢ ® -
» Security protocols, F#/7 J‘BPP/JC.CJIJ Qf_}_)
= Business application modeling ri
» Cryptography [} -
» Model Based Testing (SQL-Server)
* Verified garbage collectors I

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

SNl T me "Research i
! =TTl e .L. What IS Pex

= Test input generator
= Pex starts from parameterized unit tests
= Generated tests are emitted as traditional unit tests

B B = Dynamic symbolic execution framework
Program EXploratlon WIth ng = Analysis of .NET instructions (bytecode)

= Instrumentation happens automatically at JIT
time

» Using SMT-solver Z3 to check satisfiability and generate
models = test inputs

Nikolai Tillmann, Peli de Halleux

http://research.microsoft.com/Pex

ArrayList: The Spec ArrayList: Additem Test

class ArrayListTest {

msdn [PexMethod]
’ void AddItem(int c, object item) {
NET Fram per Center " var list = new Arraylist(c); oper Center

list.Add(item);
Assert(list[] == item); e R -
7 , ssert(list[0] == item); } -

NET Framework Ciass Ubran

ArrayList.Add Method

NET Framework Class Ubr

ArrayList.Add Method

class Arraylist {

Acds an objec t the 0 of the Arcaslis Sgect(] items, Acds an objec t the 0 of the Arcaslis
Nemespicn i ; 8 Mcomtons | uome

int count; ot
Assambly: macor (1n macoris.d1) @ mierosohstann | Assembly: macor (n macorbh

1 Microactt Mana
ArrayList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];

B Miosoftinkd k to Rate and Give Feedback

=i i aceepts nul reference (Nothing in Visus Basc) 5 o void vale and alows ¥

D perorh kT i demens

@ Microsattcr 1F Couns aveady equals Capaiit, the capacity of the Arzaulss i incressed by void Add(object item) {

] miecoact ‘automatically reallocating the intemal array, and the existing elements are copied to the if (count == items.Length)

B i new arrey before the new slement iz added.

B MiosoftMana 1 Couct i less than this method is an O{1) operation. I the capacity needs ta
@ MirosofServi be incressed to accommodate the new elemert, this method becomes an () operation,
where n s Cour,

ResizeArray();

| items[this.count++] = item; }
1 Mot ser |

ArrayList: Starting Pex ArrayList: Run 1, (O,null)

class ArraylistTest { Inputs class ArraylistTest { Inputs
[Pextethod] [PexMethod]
void AddItem(int c, object item) { void AddItem(int c, object item) { (@,null)
var list = new Arraylist(c); var list = new Arraylist(c);
list.Add(item); list.Add(item);
Assert(list[@] == item); } Assert(list[@] == item); }
} }
class ArrayList { class ArrayList {
object[] items; object[] items;
int count; int count;
ArrayList(int capacity) { ArrayList(int capacity) {
if (capacity < @) throw ...; if (capacity < @) throw ...;
items = new object[capacity]; items = new object[capacity];
} }
void Add(object item) { void Add(object item) {
if (count == items.Length) if (count == items.Length)
ResizeArray(); ResizeArray();
items[this.count++] = item; } items[this.count++] = item; }
J J

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 3
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://research.microsoft.com/Pex

8/4/2008

ArrayList: Run 1, (O,null)

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

ArrayList: Run 1, (O,null)

class ArrayListTest {
[Pexttethod]
void AddItem(int c, object item) {

Inputs Observed
Constraints

Inputs Observed
Constraints

var list = new Arraylist(c); (@,null) !(c<0) var list = new Arraylist(c); (@,null) !(c<@) & O==C
list.Add(item); list.Add(item);
Assert(list[@] == item); } Assert(list[@] == item); }
} }
class Arraylist { class Arraylist {
object[] items; object[] items;
int count; int count;
ArrayList(int capacity) { Arraylist(int capacity) {
if (capacity < @) throw ...; | ¢ > false if (capacity < @) throw ...;
items = new object[capacity]; items = new object[capacity];
}
void Add(object item) { void Add(object item) {
if (count == items.Length) if (count == items.Length)| @ > true
ResizeArray() ; ResizeArray();
items[this.count++] = item; } items[this.count++] = item; }
J J

ArrayList: Run 1, (O,null) ArrayList: Picking the next branch to cover

class ArrayListTest { Inputs Observed class ArrayListTest { Constraints to Inputs Observed
[Pextethod] Constraints [PexMethod] solve Constraints
void AddItem(int c, object item) { void AddItem(int c, object item) {
var list = new Arraylist(c); (e,null) !(c<@) && @==c var list = new Arraylist(c); (0,null) 1(c<0) 8& B==c
list.Add(item); list.Add(item); (e< 1=c
Assert(list[0] == item); } [) Assert(list0] - item; } !(c<0) && 0
) item == item)
class Arraylist { class Arraylist {
object[] items; object[] items;
int count; int count;
Arraylist(int capacity) { Arraylist(int capacity) {
if (capacity < @) throw ...; if (capacity < @) throw ...;
items = new object[capacity]; items = new object[capacity];
} ¥
void Add(object item) { void Add(object item) {
if (count == items.Length) if (count == items.Length)
ResizeArray(); ResizeArray();
items[this.count++] = item; } items[this.count++] = item; }
))
A olve co (S using olve AmayList Run 2, (1, null)
3 3 mayList Run Z, (1, nu
class ArraylListTest { o a o p Observed class ArraylListTest { Constraints to Inputs Observed
[Pexmethod] olve o a [Pexmethod] solve Constraints
void AddItem(int c, object item) { void AddItem(int c, object item) {
var list = new Arraylist(c); (0,null) !(c<@) && 0== var list = new Arraylist(c); (@,null) !(c<0) && 0==
list.Add(item); ‘ | I= list.Add(item); | 1= | 1=
Assert(List[0] == item); } !(c<) && @l=c (1,null) hssert (115¢[0] == item); } 1(c<0) 8& @!=c (1,null) !(c<@) & O!=C
} ¥
class Arraylist { class Arraylist {
object[] items; Z 3 object[] items;
int count; int count;
Constraint solver
Arraylist(int capacity) { Arraylist(int capacity) {
if (capacity < @) throw ...; Z3 has decision procedures for if (capacity < @) throw ...;
items = new object[capacity]; - Arrays items = new object[capacity];
- Linear integer arithmetic }
- Bitvector arithmetic
void Add(object item) { = void Add(object item) {
if (count == items.Length) - (Everything but floating-point numbers) if (count == items.Length) @ > false
ResizeArray(); ResizeArray();
items[this.count++] = item; } items[this.count++] = item; }
J J
© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi d and/or tr inthe U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 4

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

AmayList Pick new branch

Observed
Constraints

Constraints to
solve

class ArraylListTest { Inputs
[PexMethod]
void AddItem(int c, object item) {

var list = new Arraylist(c); (0,null) !(c<@) && B==c
list.Add(item);

1 1= 1 1=
hssert (List[0] - item); } 1(c<0) && @!=c (1,null) 1(c<0) && @!=C
} c<@

class ArrayList {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];

¥

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }

ArrayList Run 3, (-1, null)

Observed
Constraints

Constraints to
solve

class ArraylistTest { Inputs
[PexMethod]
void AddItem(int c, object item) {

var list = new Arraylist(c); (0,null) !(c<@) && @==c
List.Add(item);

! 1= ! 1=
hssert (List[0] == item); } 1(c<0) && @!=c (1,null) 1(c<0) && 0!=C
} c<@ (-1,null) c<@

class Arraylist {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < @) throw ...; | c
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)
ResizeArray();

> true

items[this.count++] = item; }

Test more with less effor

* Reduce testing costs

* Automated analysis, reproducible results
* Produce more secure software

* White-box code analysis
* Produce more reliable software

* Analysis based on
contracts written as code

8/4/2008

ArrayList Run 3, (-1, null)

Constraints to Observed

class ArraylistTest { Inputs

[PexMethod] solve Constraints
void AddItem(int c, object item) { "
var list = new Arraylist(c); (@,null) !(c<@) && 0==c

list.Add(item);
Assert(list[@] == item); }
} c<0 (-1,null)

1(c<@) &8& B!=c (1,null) !(c<@) && B!=c

class Arraylist {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];

}

void Add(object item) {
if (count == items.Length)

ResizeArray();

items[this.count++] = item; }

ArrayList Run 3, (-1, null)

Observed
Constraints

Constraints to
solve

class ArrayListTest {
[PexMethod]
void AddItem(int c, object item) {

o ccvitiont: (0,null) I(c<o) 8 o-=c
list.Add(item);

! 1= ! 1=
hssert (list[0] == item); } 1(c<0) && @!=c (1,null) !(c<@) && B!=c
} c<0 (-1,null) c<0@

Inputs

class Arraylist {
object[] items;
int count;

ArrayList(int capacity) {
if (capacity < @) throw ...;
items = new object[capacity];
}
void Add(object item) {
if (count == items.Length)
ResizeArray();

items[this.count++] = item; }

White box testing in practice

How to test this code?
(Real code from .NET base class libraries.)

Demand, Flags=Securityfermizsion rializationformatter))

from an assenbl

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi: and/or tr inthe U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 5
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Pex—Test Input Generation tomorrow

White box testing in practice

fle fdt Yew Befoctor Projct Buld Debug Dags Jook Tex Window Community Help

B-3-FH@ s anl9- &+ 5 » Debug - 3l
8 ResourceReaderTestLor - x
#it 1FEATORE_PAL 2 % MscomoT v .
= b4 -
bf.Binder = _typeLimitingBinder: it
senass
mater = be:
Testinput,

generated by Pex
Eytal] @ = new byteldl:
a[a)

—

Siresn nStresm = m_scream az
ug.hasert (nStresm 1= null, “m_stre

ae return mStrean, InternalfeasIne32():

[P — arameterizedTest(a);

FillBugfer
et ic) (m_bartez[0] | = burfer[1] <c 8 | m burfer(3] << 1€ | m burfer(3] << 2417 Breskgoim

(&
) A RumTo Cumer
cm ’

Guntining .

Test Input Generation by
Dy : .

F Inputs .
System
Known L Known J

Paths

AmagicNum != AmagicNum != 0x95673948
0x95673948 nmagicNum == 0x95673948

Known Q Known j J

Result:'small'test’s y g : t y!
high code coverage No false warnings high code coverage No false warnings

d and/or tr inthe U.S. and/or other countries.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be regi:
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Test Input Generation by
D : Pz

L/ A\ A
Test
' I Inputs
e el
System

Execution Path

—J

Known
Paths

Test Input Generation by

D)

Test
, Inputs
Constraint
System
{ E Known 1 J
Paths

Execution Path

Automatic Test Input Generation:
\Whole-proaram; white box code analysis

Test
C Inputs
Constraint
System

high code coverage

R

Execution Path

Finds'only'real’bu:

No false war}lings

Known
Paths

8/4/2008

Rich Combination: Solvers for uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic, arrays, tuples

Formulas may be a big conjunction

= Pre-processing step

Eliminate variables and simplify input format
= Universal quantifiers
= Used to model custom theories, e.g. .NET type system
= Model generation
= Models used as test inputs
© Incremental solving

= Givena formula F, find a model M, that minimizes the value of the
variables xp... X,

= Push / Pop of contexts for model minimization
= Programmatic API

= For small constraint systems, text through pipes would add huge
overhead

Constraint Solving: Preprocessing

Independent constraint optimization + Constraint
caching (similar to EXE)

= |dea: Related execution paths give rise to "similar"
constraint systems

» Example: Consider xsyaz0 v xoyAz<=0

= If we already have a cached solution for a "similar"
constraint system, we can reuse it
= x=1,y=0, z=1is solution for x>y A z>0
= we can obtain a solution for x>y A z<=0 by
= reusing old solution of x>y: x=1, y=0
= combining with solution of z<=0:z=0

Monitoring by Code Instrumentation

Idtoken Point:X
class Point {int x; inty; call __Monitor:LDFLD_REFERENCE
public static int GetX(Point p) { IdfldPoint:
if (p!= null) return pX; call __Monitor:AtDereferenceFallthrough
else return -1;}} b2
Idtoken Point:GetX -
call __Monitor:EnterMethod oonne o ~ anchTarget
brfalse LO Record concrete values iy .
Idarg.0 * = all information
call __Monitor:NextArgumer < ~
Wyt thod is called

oyl (The rgal C# compiler \or context
call __Monitor:LDARG_0 output is actually more 1

complicated.) dorn teferenceException

_an __wionitor::AtNullReferenceException

rethrow

il }
Epilogue ;. jeare 15

call __Monitor:BRTRUE | Hinally {
brirue 11 i Monitor::LeaveMethod
call __Monitor:BranchFallthrough el ito [auile
call _Monitor:LDARG_0 path condition
Idarg.0 | 15 Idioco

ret

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 7
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Verifying Compilers

B Gixenw .L. Research
™ T N ae

i >

A verifying compiler uses automated reasoning to check the
correctness of a program that is compiles.

Spec# and Boogie BEe

Rustan Leino & Mike Barnett redundant annotations that accompany the program.

Correctnessis specified by types, assertions, . . . and other

Tony Hoare 2004

Speci# Approach for a Verifying Compiler Basic verifier architecture

= Source Language

= C#+ goodies = Spec#
= Specifications

= method contracts,

Spec# (annotated C#)

Spec# Compiler

) i Boogie PL
“ invariants,

= field and type annotations.
® Program Logic:

= Dijkstra’s weakest preconditions.
= Automatic Verification

© typechecking,

= verification condition generation (VCG), Verification condition

© automatic theorem proving Z3 J— (lOgiCB' formula)
Research

Intermediate verification language

VC Generator

Formulas

Verification architecture

A
Spec# compiler

verifier
Bytecode , /
translator

Inference engine

Modeling execution traces

———®@ terminates

diverges

”VH\'/\ goes wrong

Static program verifier (Boogie)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 8
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

States and execution traces Command language

- — A~ -
State . x:=E g assert P E EH
= Cartesian product of variables (xint, y: int, z bool) @ xi=x+l ! - A
= Execution trace . x:=10 .“,} = assume P
= Nonempty finite sequence of states e —® p{es 2
Infinite sequ.er.1ce of states *—— e havoc x
= Nonempty finite sequence of states 0777\

followed by special error state

Command language Command language

“x:=E g = assertP P{ 9 % ex:=E g = assertP P{ 89
e xi=x+1 o P Le—R e xi=x+1 o P Le R
- x=10 e assumeP o %= 10 e assume P

X P Pis X P Pis
= havoc x % = havoc x % =SUT
«— -
—
*——e -~
.

Reasoning about execution traces Reasoningabout execution traces

= Hoare triple {P}sS {Q} saysthat = Hoare triple {P}s {Q} saysthat
every terminating execution trace of S that every terminating execution trace of S that
startsin a state satisfying P startsin a state satisfying P
= does not go wrong, and = does not go wrong, and
= terminatesin a state satisfying Q = terminatesin a state satisfying Q
= Given P and Q, what is the largest S’ satisfying = Given S and Q, what is the weakest P’ satisfying
{Pys’{Q}? {P'¥s{Q}?
= to check {P}S {Q}, checkSc &’ = P'is called the weakest precondition of S with
respect to Q, written wp(S, Q)
= to check {P}S {Q}, check P = P’

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 9
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Structured if statement

Weakest preconditions

= wp(x:=E, Q)= Q[E/x] if Ethen Selse Tend =
= wp(havocx, Q)= (Vxe Q)

= wp(assertP, Q)= PAQ assumeE; S

= wp(assumeP, Q)= P=0Q O

=wp(S;T, Q)= wp(S, wp(T,Q)) assume-E; T
“wp(SUT, Q)= wp(S,Q) Awp(T, Q)

Dijkstra's guarded command Picking any good value

assign x such that P =
fE>S| F2>Tfi= havoc x; assume P

assert EvV F; P{%)
(; ——9 =
-P E

assumekE; S

0 assign x such that x*x =y
assumeF; T

I

Procedures Procedure example

= A procedure is a user-defined command @ procedure Inc(n) returns (b)
= procedure M(x, y, z) returns (r, s, t) requ?r.es 0<n
requires P modifies g
modifies g, h ensures g = old(g) +n
ensures Q

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 10
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

= procedure M(x, y,) returns (r, s, t)
requires P
modifies g, h
ensures Q

= calla, b, c:= M(E, F G)

=x:=Evy:=F2z:=G

assert P';
g0:=g; hO:=h;
havocg, h, r', s’ t;
assume Q’;
a:=r; b:=s; c=t Research

Xy,z,nst, 0ld(g),

While loop with loop invariant

while E
invariantJ where x denotes the
do assignment targets of S
S
end

check that the loop invariant holds initially

= assertJ; <
havoc x; assume J;
(assumeE; S; assert J; assume false

U assume - E check that lhe loop invariant is
) maintained by the loop body

Microsoft

Research

’} “fast forward” to an arbitrary
iteration of the loop

Properties of the heap

“ introduce:
function IsHeap(HeapType) returns (bool);
» introduce:
axiom IV h: HeaiType, o: Ref, f: Field Ref o
ST () WA null A h[o, alloc]
=

h[o, f] = null v h[h[o,f], alloc]);
© introduce: assume IsHeap(Heap)
after each Heap update; for example:
Tr[[Ex:=F]]=
assert...; Heap[...] :=..,;
assume IsHeap(Heap)

8/4/2008

Procedure implementations

» procedure M(x, y,) returns (r, s, t)
requires P
modifies g, h
ensures Q
e implementation M(x, y, z) returns (r, s, t) is S
= assume P;
g0:=g; hO:=h; SRR

S « Q'is Q with g0,hO for old(g), old(h)

I
assert Q'

syntactically check that S
assignsonly to g,h

Microsoft

Research

Properties of the heap

= introduce:
axiom (V h: HeapType, o: Ref, f: Field Ref e
o # null A ho, alloc]

=
hlo, f] = null v h[h[o,f], alloc]);

=" method M(x: X) returns (y: Y)
requires P; modifies S; ensures Q;
{Stmt}
= procedure M(this: Ref, x: Ref) returns (y: Ref);
free requires IsHeap(Heap);
free requires this # null A Heap[this, alloc];
free requires x = null v Heaplx, alloc];
requires DF[[P 1] A Tr[[P 11;
requires Df[[S;
modifies Heap;
ensures Df[[Q 1 ATF[[Q 11;
ensures (V{a o: Ref, f: Field o o
o # null A old(Heap)[oalloc] =
Heap[o,f] = old(Heap)[o,f] v
(of) e old(Tr[S 1))
free ensures IsHeap(Heap);
freeensuresy = null v Heaply, alloc];
free ensures (Vo: Ref e old(Heap)[o,alloc] = Heap[o,alloc]);

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 1 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

SpecH Chunker.NextChunk translation

Z3 & Program Verification

Chunken) tem St

e St = Quantifiers, quantifiers, quantifiers,

free mmumsueapms Salocated):

1, Sin <: SHeap[ihi

Stieapistieapis. SounerRef Slocahnvl = SEaseC\ass(sHeaD[mws sownelnamel))&& uonu She e Spe & :dsgsﬁsc :mc::ea] = Modelin g the runtime

SpeoiEpey i SHeaplipe, Socaing - Sopeotspon

e N . = Frame axioms (“what didn’t change”)

FooaR ety e s oy 46 respte . . .
‘i'i?3&?&?;‘;3??’3?3;&?3*“’" foly by Sl ! ! © Users provided assertions (e.g., the array is sorted)
e = Prototyping decision procedures (e.g., reachability,
r juj;:w}.{?‘ﬁggéi"utzn"fmo‘-f”niﬁ e S e ity heaps, ...)

Bmc‘:sS‘:Séﬁ?i:ﬁ’méﬂggs;;:’23‘25:::;%:31‘5 I (Chunker <: DeciType(s) || 'SincludedinModifies Star(s) && old(So 1= this || $f = Solver must befast in Satisfiab/e instances.
s ssemacoracag< -
oS S socang) s o sHeapts = Trade-off between precision and performance.
orall So ref - { $Heap[$o, ap)[old($Heap)[So.
oy ceHeaplio. 3 sl = Candidate (Potential) Models

o e (ol o v { seapi, socain) { Seapiso,sind ld(SHeaplso Salocated) == c(SHeap)o. S == SHeaplo. Snd 62
D (SHeap)So,siocalin ==

sownevFvame])(SNeap[Sol sownev ef] Sallocated] &&] 1=
bES —t Microsoft:
gl R LA Research
ﬁ o= . N e

© http://research.microsoft.com/slam/
® SLAM/SDVis a software model checker.

= Application domain: device drivers.
H o (¥ = Architecture:
The Statlc D river Verlfler c2bp C program - boolean program (predicate abstraction).
SLAM bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)
= SMT solvers are used to perform predicate abstraction and to

r check path feasibility.
nm—. Q ‘ = c2bp makes several calls to the SMT solver. The formulas are
EllaBounimova, Viad Levin, Jakob Lichtenberg, relatively small.

Tom Ball, Sriram Rajamani, Byron Cook

_—

Model checking
Boolean program

Example Do this code Example

obey the looking
rule?

do { D) do {

KeAcquireSpinLock() ; KeAcquireSpinLock() ;
nPacketsOld = nPackets;

if (request) { \ if(*){

request = request->Next;)

KeReleaseSpinLock() ; KeReleaseSpinLock() ;

nPackets++; 0

} }

} while (nPackets != nPacketsOld); o } while (*);
@

KeReleaseSpinLock() ;

W
KeReleaseSpinLock () ;
@

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

12

8/4/2008

Example e

Is error path

Example oo

Add new predicate to
Boolean program

feasible? : (nPacketsOld == nPackets)
do { do {
KeAcquireSpinLock() ; KeAcquireSpinLock() ;
nPacketsOld = nPackets; b = true;
if (request) { if (request) {
request = request->Next; request = request->Next;
KeReleaseSpinLock() ; KeReleaseSpinLock() ;
nPackets++; b=D>b ? false : *;
} }
} while (nPackets != nPacketsOld) ; } while (ls) 1) ;
KeReleaseSpinLock() ; KeReleaseSpinLock() ;

Example —

Model Checking
Refined Program

Example e

Model Checking
Refined Program

: (nPacketsOld == nPackets) : (nPacketsOld == nPackets)
do { do {
KeAcquireSpinLock () ; KeAcquireSpinLock () ;
b = true; b = true;

b 1 (%) { b if (%) {
KeReleaseSpinLock () ; KeReleaseSpinLock() ;
b=b ? false : *; b b=b ? false : *;

} }
b b } while (!'b); b b } while (!'b);
b KeReleaseSpinLock () ; b KeReleaseSpinLock() ;
b b

Observations about SLAM Syntatic Sugar

© Automatic discovery of invariants

= driven by propertyand a finite set of (false) execution paths goto L1, L2;
= predicates are not invariants, but observations if () { /
= abstraction + model checking computes inductive invariants . . .
(boolean combinations of ob%ervat‘i)ons) SL; \ L1: assume(e);
}else { S1;
» A hybrid dynamic/static analysis S2; gotol3;, —
© newton executes path through C code symbolically }
» c2bp+bebop explore all paths through abstraction s3: L2: assume(l);
S2;

© Anew form of program slicing
= program code and data not relevant to property are dropped 90t0‘ L3;
= non-determinism allows slices to have more behaviors /

L3: 53";)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 13
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Predicate Abstraction: c2bp Abstracting Assignments via WP

= Givena C program Pand F={p,, ..., p,}. = Statementy=y+1 and F={ y<4, y<5}

* Produce a Boolean program B(P, F) = {y<a}, {y<5} = ((My<5} || Hy<4}) ? false : *), {y<4})
= Same control flow structure as P.

= Boolean variables {b,, ..., b,} to match {p,, ..., p,}.
= Properties true in B(P, F) are true in P. o WP(y=y+1, y<5) =
» Each p;is a pure Boolean expression. (y<5)'[y >y
= Each p, represents set of states for which p; is true. (y+1<5)
= Performs modular abstraction. (y<4)

= WP(x=e,Q) = Q[x-> €]

WP Problem Abstracting Expressions via F

= WP(s, p;) is not always expressible via {p;, ...,

Pn} o Implies; (e)
= Example: = Best Boolean function over F that implies e.
® F={x==0, x==1, x < 5} e ImpliedByy (e)

® WP(x=x+1,x<5)=x<4 = Best Boolean function over F that is implied by e.

= ImpliedByy (e) = not Implies, (not e)

Impliesg(e) and ImpliedBy(e) Computing Implies{(e)

® mintermm =/, A ... Al,, where [, = p,, or [, = not p;.
/- = Implies, (e): disjunction of all minterms that imply e.
» Naiveapproach

= Generate all 2" possible minterms.

= For each minterm m, use SMT solver to check
- validityof m=e.

— = Many possible optimizations

ImpliedByg(e) —

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 14
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Computing Implies {e)

® F={x<y,x=2}

= e:y>1

= Minterms over F
o Ix<y, Ix=2 impliesy>1 @
© x<y, Ix=2 implies y>1 @
® Ix<y,x=2 impliesy>1 @
o x<y, x=2 impliesy>1

Impliesg(y>1) = x<y, x=2

Assignment Example

Statement:y=y+1 Predicates: {x ==y}

Weakest Precondition:
WP(y=y+1,x==y)=x==y+1

Impliesg(x==y+1) = false
Impliesg(x!=y+1)

X==y

Abstractionof y =y +1
{x==y}={x==y}?false: ¥

Newton

= Givenan error path p in the Boolean program B.

Is p a feasible path of the corresponding C program?
= Yes: found a bug.

= No: find predicates that explain the infeasibility.

= Execute path symbolically.

= Check conditions for inconsistency using SMT solver.

4]

Abstracting Assignments

= if Impliesg(WP(s, p;)) is true before s then
© p;istrue afters

= if Impliesg(WP(s, !p,)) is true before s then
© p;is false after s

{p} = Implies;(WP(s,p)) ? true :
Implies((WP(s, Ip})) ? false

*.

’

8/4/2008

Abstracting Assumes

= WP(assume(e), Q) = e implies Q
= assume(e)is abstracted to:
assume(ImpliedByg(e))
* Example:
F={x==2, x<5}
assume(x< 2) is abstracted to:
assume({x<5} && {x==2})

& “HI% g0 W 10

ﬁ = 1. NLD e

A Verifying C Compiler

Ernie Cohen, Michal Moskal, Herman Venter, Wolfram Schulte
+ Microsoft Aachen + Verisoft Saarbriicken

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 15
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Microsoft Hypervisor

Partition

Virtual
Interrupt

Management
Stratum

Address

Space
Hardware Virtual
Processor

Virtualization o
Abstraction AL Cayer

is well layered!

= Meta OS: small layer of software virguzgeen |

8/4/2008

between hardware and OS
= Mini: 60K lines of non-trivial Memouren
concurrent systems C code Management

Scheduter e e

= Critical: must provide functional %’g E rernel [— R ——
resource abstraction ETC Leesas,

= Trusted: a grand verification challenge ~ome [EEEEEE R

s | —— \

What is to be verified? o i i -isEsealeh

= Source code
= C + x64 assembly

» Sample verifiable slices:
= Safety: Basic memory safety HAVOC

= Functionality: Hypervisor simulates a Verifying Windows Components
number of virtual x64 machines.

= Utility: Hypervisor services guest OS with
available resources. m
Lahiri & Qadeer, POPL'08,

Also: Ball, Hackett, Lahiri, Qadeer, MSR-TR-08-82.

HAVOC's Architecture

Heaps and Shapes

Cprogram
typedef struct _LIST_ENTRY{
struct _LIST_ENTRY sFlink, *Blink;
} LIST_ENTRY, +PLIST_ENTRY;

typedef struct _NODEA{
PERESOURCE Resource;
LIST_ENTRY NodeBQueue;

} NODEA, PNODEA;

typedef struct _NODEB{
PNODEA ParentA;
ULONG State;
LIST_ENTRY NodeALinks;

} NODEB, +PNODEB;

#define CONTAINING RECORD(addr, type, field)\
((type =) ((PCHAR) (addr) -\ .
(PCHAR) (£((type *)0)->Field))) Representative shape graph
in Windows Kernel component

Doubly linked lists in Windows Kernel code

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

16

8/4/2008

Precise and expressive heap reasoning

Annotation Language & Logic

q __vequires (NodeA != NULL)
T IRF = Procedure contracts o
: s “ansures ((sFBodst)->Parentd == Noded)
= requires, ensures, modifies Taedifies (ot
. . wvoid Compl) Nodeb
P = Arbitrary C expressions L PHODEL Wodek. PWOOED sPModeB) :
vee link = program variables, resources

link
next next 1 " = Boolean connectives
t prev L prev = quantifiers

= Can expressa rich set of contracts
state state = APl usage (e.g. lock acquire/release)
PENDING ‘ PENDING = Synchronization protocols

= Memory safety

= Pointer Arithmetic = Data structure invariants (linked list)
g = CONTAINING_RECORD(p, IRP, link) = Challenge:

= (IRP*) ((char*)p - (char*)(&(((IRP *)0)—link))) = Retain efficiency

. = Decidable fragments
= Transitive Closure

Reach(next, u) = {u, u->next, u->next->next, ...}

forall (x, Reach(next,p), CONTAINING_RECORD(x, IRP, link)->state == PENDING)

= 1. NLD e

Efficient logic for program verification ﬂ . Tl .L' Research

(rerLexave] [sTER| [REACH]
1)

= | “ Logicwith Reach,
Quantifiers, Arithmetic

-
= Expressive /‘ _,*,h;.:‘
= Careful use of quantifiers L 6

= Efficient logic
~ oy campee Combining Random Testing
with Model Checking

teveus]
it

foroER1

aLli

wZuly

{reaxsimivE]]

(Reachsd]
ReachBetx

Encoding using quantifiers

Aditya Nori, Sriram Rajamani,
and triggers

ISSTA08: Proofs from Tests. Nels E. Beckman, Nori, Rajamani, Rob Simmons

void LockUnlock(struct ProtectedInt *pi,

int *lockl, int *lock2, int x)
{
Main workhorse: test case e e
generation sk Poecedie pili e it 0
*lac 3
+ Use counterexamples from i B: else te(piostock == lockd) (
current abstraction to s 7: pic>lock = lockl:
“extend frontier” and //initialize all locks to be unlocked
te tests woid lock(int +x) sf :iﬁ:;i)f"é) o
sveoud genera . gz: 1f(ex 1= 0) 101 locx2 = 0;
» When test case generation i error(); 11: 16(do_retern) retura;
. P . 25: ex = 1; 9 ’
fails, use this information to 3 st
" ' " . 14: lock(pi=>lock) ;
refine” abstraction at the is: A£(oLocks el || +lockz ==1)
frontier void ulock{snt +x) o o
. R Cieten e 18: 42 (Nombet()) {
Use only aliases that happen 2 ":rz"(j{‘ 19: (o (pi->y))o+;
on the tests! A 20: unlock(pi->1ock) ;
4 21: } while(x t= +(pi->y));
22: unlock(pi->lock);
}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 17
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

rontier of error path

Example

void prove_me(int y)

{

1: do {

2t leck();

3: x =y;

4: it (#) {

5: unlock();
6: y=yt L
7:)} while (x!=y);

8: unlock();
}

Symbolic execution + Theorem Proving

void prove_me(int y)

{

1: do {

2: lock();

3 x=y;

4: it (=) {

5: unlock();

6: y=y+1;
i

7: } while (x!=y);

8: unlock();
}

©=(0,123,4,7,89)

symbolic memory

Y Yo

lockstate L

X Yo
constraints

8/4/2008

Example

void prove_me(int y)

do {
lock();
x=y;
if (=) {
unlock();
o y=yt L
t=error pathin abstraction
iontiercterotptt :)} while (x!=y);
unlock();

Symbolic execution+
Theorem proving

emplate-based refinement

p=(lock.state!=L)

void prove_me(int y)

lock();

x =y
it (=) {
<=errorpathin abstracton unlock();
= trontierof error path X gyt
¥

} while (x!'=y)};

yes 8: unlock();
¥

Symbolic execution+
Theorem proving

Template-based refinement
0

ol)
=

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

18

8/4/2008

void prove_me(int y)

do {

void prove_me(int y) lock();

x =

¥i
it (=) {

do {

Tock(); unlock();
e }y-yr*l;
if (=

- unlock(); } while (x!=y);

<= error pathin abstraction 6: yey+1; = error pathin abstraction : unlock();
£= frontier of error path 3 '

f= frontier of error path

: } while (x!=y);
8: unlock();

Correct, the
program is

Refine abstraction

1=(0,12347,<8p>9)

Yogi's solver interface

Representation Theorem proving needs
oL = Facts about pointers:
= program locations. ° *&x=x

“Rcl xL = Subsumption checks: Better Bug Reporting with

= Control flow graph © 9= WP(, y) Better Privacy
= State:L — Formula -set ° ¢ = —WP(, v)

= Symbolic state: each » Structure sharing
location has set of disjoint = Similar formulas in
formulas different states Miguel Castro, Manuel Costa, Jean-Philippe Martin

. P . ASPLOS 08
= Simplification

° Collapse/Reducgwfmcs)M[mulas See also: Vigilante — Internet Worm
Res,eamh Containment Miguel Castro, Manuel Costa, Lintao Zhang

Moot Windaws —

l{ Do you want to send mare information about
the problem?

itcnl detais sbout what west wroe can help
Mot reate 3 o,

|| & ot s Sena wsomanion | [cancet

GET /checkout ?product=embarassing&

credilcardnumber=1122334455667788 int :“;‘:ﬁﬁ?gf@ge“m sock, char ‘mag) { ﬂuﬂﬂﬂm

Example program

char host[20];

’ - buffer
Replay Execution it i=0;

. = I= overflow 5
int ProcessMessage(int sock, char ‘msg) { if (msg(0] f’ L msg(1] 'F e :assumption (= b0 bv71[8])
char url[20] msg[2] = T || msgi3] 3 tion (= bl bv69[8])
char host[20] buff ry— return -1 -assumption (= v
int i=0: — bulier Extract Path Condition msg = msg+ :assumption (= b2 bv84(8])
if (msg[0] = ‘G’ || msg[1] = 'E overflow whilg (g &&*msg !="") { :assumption (= b3 bv32[8]))
msg[2] '= T || msg[3] !> _
return -1 f } Hunnm
msg Solve Path Compute Bits urlfi] = 0 [
whilg. N ="") Conditi Revealed GetHost(msg, host) . o
f o ihE retum ProcessGet(sock, url, host); -assumption (distinct b6 bv10[8] bv32(8])
))
i -0 6 e [T lolm|. || |
GetHost(msg, host);
retumn ProcessGet(sock, url, host) GET /checkout?product= teddvbear 1&

) creditcardnumber: 00102220344011100

Privacy: measure distance between original crash input and new input

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 19
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

o . e T Microsoft: '
g s ggmereseardh Form Byron Cook's blog

Program Termination 2

Byron Cook

http://www.foment.net/byron/fsharp.shtml

A complete method for the synthesis of
linear ranking functions. Podelski &
Rybalchenkoy; VMCAI 04

Does this program Terminate?

X>0Ay>0n 0 + 0y + —lz + Oy + 1 < 0
X' =X—1AYy'> Yy 1z + 0 + -l + 0y 4+ 1 < 0
while (x > 0 s& v > 0) { -1z’ + 0y + 1z + 0Oy + -1 £ 0
x=x-1; r > 0 0z + 0y + 0z 4+ -1y + 1 < 0
: y=y+1+zz; ¢ > z—-1 0z + -1y + 0z + 1y + 1 < 0
o < x-1 .
_— Canwe find £ b, L
Y >y such that the - flzy) > fle'y)
0z + 0y + -l + 0y + 1 <0 inclusion holds? = fy) = b
1w + 0 + —-lx + 0y + 1 < 0
12" + 0 + 1z + 0y + -1 < 0
0z + 0y + O0r + -1y + 1 < 0 Thatis: fla'y) + —flzy) + 1 < 0
0z + -l + 0z + 1y + 1 £ 0 s —fla'y') + b < 0
Research

Rank function synthesis

Find C;,C,,C,,Cy
AR AR AR Wl ittty Mo miw il
,lfr/ 1 gz T 711; L 8; 1 ,11 i 3 C f@y) + —flmy) + 1 <0 S+ oy o+ e+ 0y + -1 <0 © ey + Loy 4+ 0 <0
0 + 0 + 0z + -ly + 1 <0 —f@y) + b <0 0 40/ 4 O+ ly 41 <0 llﬂ:l ' 1.1:’ s
0 4 -1y 4 0 4+ 1y 4+ 1 <0 R R I+ ocle DS 0
Search over linear templates: Search over linear templates:
flab) = cla + exb fla,b) 2 cia 4+ c2b
—fla,b) 2 cza + esd —fla,b) 2 cza + esd
¢y = —lec3 ¢y = —lec3
o = —ley o = —ley

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 20
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Rank function synthesis Rank function synthesis — simplified version

{3
N
308G G VXY XY 30,16,1C0 s VX, Y, X' %
X
0+ 0 + s+ 0y + 1 <0 ar' + oy + (fls;' N :‘\;f : j ; g (nj -+ u;,j + -1z + 0y + 1 <0 2,
1.7,” + Dy: + + 0y + 1 <0 1o + leg 4+ 0 €0 R2 lfr N 3”/ + 711: M 8‘” M 11 2 g x
1+ 0+ + 0y o+ -1 <0 > 1oy e 10 <0 i A G T e - 1
0+ 0y + + -y + 1 <0 Loz ey + 0 <0 0 4 0y 4 Or 4 Ay 41 <0 R
0z + -1y + + 1y + 1 <0 ez les + 0 < 0 0z 4+ -y 4+ 0z + ly + 1 <0 ’ N
%
" N X
Search over linear templates: Search over linear templates: v
<+
iy & 4
fla,b) 2 ca + b fla,b) 2 ca + b
A A
—fla,b) £ cza + b —fla,b) £ cza + b
¢y = —lec3 ¢y = —lec3
o = —ley o = —ley

36,,C,,C5,C, VX, Y, X Y
1 C51Ca0Ca Instead solve: 3¢,,C,, €€y A Ay As Aan As
oz + 0 + —lz + 0y + 1 < 0
' + 0 + —-1lx + 0y + 1 < 0 g o= 0+ 1A 4+ 1A+ 0A 4+ 0A
RE “L' + 0 + lr + 0 + -1 <0 — e o= 0+ 0w+ 0+ DA+ -l
0+ 0y 4 0 4+ -1y + 1 = 0 e = —Ih 4+ —lda 4 LA 4+ DA £ OAg
. v & v = o= 0\ + 0A + DA+ 1Ay + 1As
0z + -1y + 0z + 1y + 1 =0 1€ 1 4+ e 4+ -1 + Iy o+ 1
n cp o= =leg A MZ0 A XZ0 A A20
P =2 e’ + oy 4+ cr + oy + 1 <0 e = —leg A A0 A A0
Farkas’ lemma. R = 4 iff there exist real multipliers Farkas’ lemma. R = 4 iff there exist real multipliers
A, ..., A5 = 0 such that A, ..., A5 = 0 such that
o= Ny A A e =30 Ny A TS (300 Aibi) o =20 Ny A A e =30 Ny A TS (30 Nibi)

— Microsoft

g i .Ll Research
@ e Tiaia

Rank function synthesis

Instead solve: 3c,,C,,C;,C,, A, Ay, Aoy Ay, Ag

= 0+ a4+ —ld + A 0 H
S B St o I OB S Program Analysis as
g = —1\ 4 e + 1ha 4+ DA+ DX . -

S S AV A Constraint Solving
1 = 1y + 1Az 4+ =1Az + 1Ay 4+ 1Ag

o= —leg A M0 A X0 A M20

g = —leg A A =00A

As 20 Sumit Gulwani, Saurabh Srivastava, Ramarathnam Venkatesan,
PLDI 2008

Solver: Dual Simplex for Th(LRA).

See Byron Cook’s blog for an F#
program that produces input to Z3

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2 1
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Loop invariants

C]

O(x)= 1(x)
whisle(cn - 31vx| 1(x) Ac(X) AS(X,X) = 1(X))
)

—¢(X) A 1(x) = Post(x)

Post

o (1)

Loop invariants

O(x) = I(x)
Vx| () Ac(X) AS(X,x") = 1(X)
—Cc(X) A 1(x) = Post(x)
a(lx)
» Assume | is of the form X ax < b

« Simplified problem: 3A,bVxg, (AX.Ax <b,X)

How to find loop invariant / ?

Loop invariants = Existential

= Original: Ve, (1,X)

= Relaxed: A bVX@, (AX.AX <b,X)

= Farkas": VX(AX<0=bx <0)

<IN A A (b=2+D 4a,)

= Existential:
Problem: contains multiplication

3Ab, 1¢,(Ab,)

Program Verification: Example

8/4/2008

= Original:

= Existential:

* Bounded:

Loop invariants = SMT solving

= Or: Bit-vectors:

Avxe, (1, x)

3Ab320,(Ab, 2)

ite(p,,4,0) +
3Ab, pi, P, Ps@, (Ab, | ite(p,,2,0) +
ite(p;,1,0)

3Ab, A : BitVec[8].¢,(Ab, 1)

{n=1 Am=1}

Invariant Template

ap+ a;x + ajy + azn +a;m >0
by + b;x + by + bsn + bym=>0

ag+ aX + ay + asn +a;m 20

x:=0,y:=0;
while (x < 100) {y=>
X = X+n;

yi=y+m;

Satisfying Solution

100}

Loop Invariant

a,=b,=1, a;=b;=-1

ap+ aX + agy +asn +a;m =0 b= [T y2Xx
a,=by=c,=1, a;=by=cy=-1

by + byx + by + bsn + bym >0 =SS m>1

Co+ CX + Gy + ¢3n + ¢;m=0 n>1

y=x

—— UNSAT ——>

mzn

Invalid triple or
Imprecise Template

Digression: Bit-vectors and Z3

> Bit-vector multiplication

A8 861 Apl8 821

> For each sub-term A*B
= Replace by fresh vector OUT
= Create circuit for:

OUT = A*B
= Convertcircuit into clauses:
Foreach internal gate
= Create fresh
propositional variable
outy) ouz1 ounn) ou01

o Vel | Ansenl A8 0]
i aas e — 1| Azsspl

ST

ACISBI] A8 8

“ Representgate as —— m—
clause

{Out[0], ~A[0],~B[O]}, {A[0],~Out[0]}, {B[O],~Out[Q]},

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

22

8/4/2008

Digression: Bit-vectors and Z3

SHl il -L. Research
ﬁ = 1. NLD e

Tableau + DPLL =
Relevancy Propagation

2 Abstract Interpretation
o and modular arithmetic

= Tableaugoes outside in, DPLL inside out

Relevancy propagation: If DPLL sets B:yve to true, 8 is marked .
as relevant, then first of y, ¢ to be set to true gets marked as Material based on:
relevant. King & Sendergard, CAV 08

Used for circuit gates and for quantifier matching Seid| & Olm, ESOP 2005

Programs as transition systems

Abstract abstraction

= Transition system:
© Concrete reachable states: L= @
(C habl CR:L — (S)

L locations,
4 variables, = Abstract reachable states: AR:L > A
S=[V—>Vval states, .
Rcl xS xS xL transitions, * Connections:
OcS initial states U:AxA A

L. . y A > 25
b €L initial location w S A

o @5 >A where o(S) = U {a(s)|s € S}

Abstract abstraction

Abstraction using SMT

= Concrete reachable states: Abstract reachable states:
CR [X <« @ XN [= tinit AR zinit <« 0((@)

Find interpretation M:
= Abstract reachable states: M & Y(AR £,x0) A R £y X x £ A —y(AR £x)
ARIX <« a(OK) Al =1,

Then:
AREx « a(y(AR £hxp) A REy xy x D)

AR?E « AR U a(xM)

Why? fewer (finite) abstract states

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

23

8/4/2008

Abstraction: Linear congruences Example

{yy <X c«0;
{;:whiley !=0do [y «y&(y-1);c « c+1]
L

= States are linear congruences:
AV =b mod 2™

= Whenat {,:
= Vis set of program variables. e yis 0.

= A matrix, b vector of coefficients [0.. 2™-1] = ¢ contains number of bits in x.

Abstraction: Linear congruences Abstraction: Linear congruences

= States are linear congruences: 1 olx] 1
e q(x=1y=2)2 =
A) e
1 1x]| |3

2%, +3% =1mod 2° A X, + %, =3mod 2°® < * (AV=bmod2m) L (A'V =b" mod 2m)

i 1 1 0] [o] :1 1
As Bit-vector constraints (SMTish syntax): = Combine: b 0 A 0 o) |O
0 -b o] A0 o]
(and o o -1 -1 1% |o
(= (bvadd (bvmul 010 x,) (bvmul 011 x;)) 001) x
(= (bvadd x, x;) 011) = Triangulate (Seidl & Olm)

)

» Project on x

o FRUCIRMEER = Ji Goal:Model Based Development

Int : . T —
tevchniqu:’slt;: d’esign time — Sample protocol document for
smart model debugging SMB2 (a network file protocol)
= Theorem proving
= Model checking

Bounded Model Checking of _ Compositional reasoning

Domain specific front ends Messages,
Model Programs Giterent sdapiations %
= Model programs provide the
common framework
Motivating example
2 » SMB2 Protocol Specification Server Details,

= Sweet spot for model-based 21%
testing and verification.

% pages

®

Client Details,

24%

Margus Veanes

FORTE 08

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 24
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Symbolic Reachability

—
g

Bounded-reachability formula

= Given a model program P step bound k
and reachability condition ¢

Rench(P.p. k) = Ipa(N P AL\ ¢l

0<i<h 0<i<hk

V (m‘:‘mnm = flfili.. ... Tuli]) A (_;'{.UJ
reAp
N it =t N elir1] =)

vevy veVe\V

Pl

Array model programs and quantifier

elimination

= Array model programs use only maps with
integer domain sort.

= For normalizable comprehensions universal
quantifiers can be eliminated using a
decision procedure for the array property
fragment [Bradley et. al, VMCAI 06]

A dlfferent example:

Model program:

Nodel program of walking in a grid until reachin

var Yilocks ax g of Tmeger te et of Intepar
var silocks as Map of Integer to Set of Integer

[action)
)
require y « wax and not (y in ylocks (x))
and not (x = xcos] and y = yGoal)

requirey > 0 and mot -1 in ylodks (1)
and not (x = xoal and y = yGoal)
-1
hul-n)
Right)
require x < xax and not (x in xilocks (y))
and not (x « xGoal and y = yGeal)

x> 0 and not (x-1 in xslocks (y))
and not (x = xoal and y = yGoal)

Implementation using the SMT solver Z3

= Set comprehensions are introduced
through skolem constant definitions using
support for quantifiers in Z3

= Elimination of quantifiers is partial.

» Model is refined if a spurious model is
found by Z3.
= A spurious model may be generated by Z3 if

an incomplete heuristic is used during
quantifier elimination.

S | 2% 90 teo

f o IL.Mﬁ“e*search

Verifying Garbage I

Collectors Chis Hawbize

- Automatically and fast
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?Source

Path=%24%2fsingularity%2fbase%2fKernel%2fBartok%2fVerifiedGCs&changeSe
t1d=14518

8/4/2008

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 25
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518
http://www.codeplex.com/singularity/SourceControl/DirectoryView.aspx?SourcePath=$/singularity/base/Kernel/Bartok/VerifiedGCs&changeSetId=14518

Context

Singularity Garbage Collectors
= Safe micro-kernel = Mark&Sweep
95%witten in C# = Copying GC
all services and drivers in processes = Verify small garbage collectors
= Softwareisolated processes (SIPs) = more automated than interactive provers

alluser code is verifiably safe -
some unsafe code intrusted runtime
processes and kerel sealed at execution
Communicationvia channels
channel behavior is specified and checked
fastand efficient communication
Working research prototype
not Windows replacement
shared source download
Bartok
= MSIL — X86 Compiler

BoogiePL

borrow ideas from type systems for regions

Procedural low-level language
= Contracts
= \Verification condition generator

abstract A —— 3] C
graph (root) T
mark-sweep copying from copying to
==
Al TR
C C
B B B

8/4/2008

Goal: safely run untrusted code

— MSIL

MSIL: MSFT Intermediary Language

untrusted compiler
code —
typed x86
/0 exception ‘ garbage
handling | collector

trusted L T4
computing _J N /
base linker, loader
(minimize this!) AV4 A V4

safety verifier

Garbage collector properties

= safety: gc does no harm
 type safety
= gcturns well-typed heap into well-typed heap
= graph isomorphism — verified
= concrete graph represents abstract graph
= effectiveness
= after gc, unreachable objects reclaimed |
= termination
= efficiency

not
verified

Controlling quantifier instantiation

abstract A __iM”Leé'L =
graph (root) . =
fStoAbs ' $toAbs
concrete | Mem |
graph A B
. =

procedure GarbageCollectMs()

requires , Color, $toAbs, $Ab: , Mem);
modifies Mem, Color, $toAbs;

ensures function MsMutatorinv(...) returns (bool) {
$ &&

) && $!= NO_ABS
> Objinv(i, $toAbs, $AbsMem, Mem))
White(Color[i]))

 ABS <==>

Unalloc(Color[i])))}

function Objlnv(...) returns (bool) { memAddr(i) && $toAbs[i] != NO_ABS ==>
... $toAbs[Mem[i, field1]] != NO_ABS ...
o 1 field1]] ==

il, field1] ...}

= |dea: use marker

function{:expand false} T(i:int) returns (bool) { true }

= Relativize quantifiers using marker

function Gclnv(Color:[int]int, $toAbs:[int]int, $AbsMem:[int,int]int,
Mem:[intint]int) returns (bool) {
WellFormed($toAbs)
&& (forall i:int:{T(i)} T(i) ==> memAddr(i) ==>
Objlnv(i, $toAbs, $AbsMem, Mem)
&& 0 <= Color[i] && Color[i] < 4
&& (Black(Colorl[i]) ==> 'White(Color[Mem([i,0]]) && 'White(Color[Mem([i,1]]))
&& ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))
}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 2 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

8/4/2008

Controlling quantifier instantiation

PEE FTeleiw -h. Research

A T TN 0 e

= Insert markers to enable triggers
procedure Mark(ptr:int)

requires Gclnv(Color, $toAbs, SAbsMem, Mem);
requires memAddr(ptr) && T(ptr);

requires SoAblpr] - N0 AT Refinement Types for
modifies Color; °

ensures Gclnv(Color, $toAbs, $AbsMem, Mem); Sec u re I m p I e m e n ta tl o n S
ensures (foralli:int:{T(i)} T(i) ==> !Black(Color[i]) ==> Color{i] == old(Color)(i]);

ensures !White(Color([ptr]);

{ .
if (White(Color(ptr]) http://research.microsoft.com/F,

Color[ptr] := 2; // make gray
call Mark(Mem[ptr,0]);
call Mark(Mem[ptr,1]);
Color[ptr] := 3; // make black
}
}

Jesper Bengtson,
Karthikeyan Bhargavan,
Cédric Fournet,
Andrew D. Gordon,
Sergio Maffeis

CSF 2008

Example: access control for files

type facts = CanRead of string

Un-trusted code may call | CanWrite of string
Executable code has more details than models atrusted library

3

let read file = assert(CanRead(file)); ...
let delete file = assert(CanWrite(file); ...
. » Trusted code expresses
Executable code has better tool support: types, compilers,

N . N g security policy with
testing, debuggers, libraries, verification

let pwd = "C:/etc/passwd”
assumes and asserts

let tmp = “C:/temp/temp”

. . . CanWri
Using dependent types: integrate cryptographic protocol ::::2: virT c;':f,f;ms()x) L CanRead(x)
verification as a part of program verification

= Each policy violation causes .
)) an assertion failure ‘et untrusted() =

Such predicates can also represent security-related letvl = read tmp in // ok

concepts like roles, permissions, events, compromises, » Fystatically prevents any letv2 = read pwd in //CanRead(pwd)
access rights,... assertion failures by typing // assertion fails)

Access control with refinement types

HE glvle (e -h. Research
B o= T T3l ap

val read: file:string{CanRead(file)} — string
val delete: file:string{CanDelete(file)} — unit
val publish: file:string — unit{Public(file)} MOdElS for Domain Specific
Languages with

© Pre-conditions express access control requirements Fo RM U LA & BAM

» Post-conditions express results of validation

Ethan Jackson
© F,type checks partially trusted code to guarantee that all

preconditions (and hence all asserts) hold at runtime FORTE 08

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 27
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Designing Complex Systems Requires Multiple Abstractions

Automotive system is just processors and their
communication ‘buses
e

Product lines abstract across families of

Forget about the network; think about the

boftware components implementations
Functional architecture taken from AUTOSAR: Screenshot of "Build Your Scion”:
http//www.autosarorg http:/fwwwscion.org

A Notorious Problem: How Do We Compose
Abstractions?

= =
= Instance of
= =] scfteduling problem
& H

Instance of ECU/Bus Ei Y
rich syntax | |
| E2] |

Instance of feature e e8] e

description =] =)

Integration of Multiple Abstractions

For example, this instance must satisfy the constraints of each abstraction used in its
construction.

Search for satisfying instances are Reduced to Z3

2. Construct(partla!) architectures that satisfy many domam constraints.
3. Generate design spaces of architectural invariants.

Reduction to Z3 works as follows:

Tio_map (Task (a1]
bad_map (Task x), Taskiy)

Task(x),
Taak(z),
Constraint (y,z),
Frocessoria),

Taskmap (x,p) .
Taskmap (z,

Task(y),
Con

proceasor (x),
Taskmap (¥,),

+ Brocessorly,
1 Taskiy)

iy, Lz,

Symbolic backwards chaining yields a set of
candidate terms § with the following property:

A finite instance exists that satisfies the query Q iff
some subset of S satisfies the query Q.

Once the finite set S is calculated, then S + Q is
reduced to SMT and evaluated by Z3.

Many Modeling Styles are Used to Build Abstractions

Instance

8/4/2008

FORMULA is a CLP Language for Specifying, Composing,

A domain encapsulates
areusable, composable
constraint system

Special function

| & malform(bad map (x,y))

and Analyzing Abstractions

/ Rules for ting bad schedules

no_map (Task (x)) 1~ Task(x), !Taskmap(x,).
bad_map (Task (x) ,Task (y)) :- Taskmap(x,z), Taskmap(y,z),
Constraint (x,y) .

models
no_map (x) .
bad_map (x,y) .

for decla
m (no_map (x))

malf

TaskMar_ (x,y)
Constraint (x,y) .

Task(x), Processor(y)
Task(x), Task(y)

straint (x,y),

ts a well i sche e.
onstraint (y,z), !'malform(m).

symbols (malform, by
wellform) capture legal
instances in a domain- FORMULA can construct satisfying instances
independent way. to logic program queries using Z3.
- 4 — Microsoft:
e IL. Research
2 o= T T3l ae

- !
Selecteq

Baciground
on SMT

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

28

8/4/2008

Microsoft

om wveee m - 'Research ic -
g e g -Researc Language of logic - summary

= Functions, Variables, Predicates
*fg9 Xxyz PQ =
») 2 = Atomic formulas, Literals
~ (P} .
DUSICS Pty ~Qly2
= Quantifier free formulas
Pre-requisites and notation * P(f(a), b) A c = g(d)
= Formulas, sentences
® Vx. Vy. [P f(x)) v gyx) = h(y)]

Language: Signatures Language: Terms

= Asignature X is a finite set of: = The set of terms T(Z,V) is the smallest set
= Function symbols: formed by the syntax rules:
Ze={fg ..}
= Predicate symbols: “teT u=v veV
Tp = {P Q= true, false, ... } | fity ... t) feZety ., tyeT
= And an arity function:
Z->N « Ground terms are given by T(X; ,J)
= Function symbols with arity 0 are constants
= A countable set V of variables
= disjoint from ~

Language: Atomic Formulas Language: Quantifier free formulas

®ae Atoms =P, .., t,) » The set QFF(Z,V) of quantifier free formulas
Pelpty..t,eT is the smallest set such that:
An atom is ground if ty, ..., t, € T(Z¢ &) ¢ €QFF :=a e Atoms atoms
| = o negations
| o o' bi-implications
) | oA g conjunction
Literals are (negated) atoms: love disiunction
- | eliterals :=a|—-a a e Atoms ¢ (0, aryunctr
| — ¢ implication

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 29
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Language: Formulas

universal quant.
| Ax. @ existential quant.

 Free (occurrences) of variables in a formula
are theose not bound by a quantifier.

« A sentence is a first-order formula with no
free variables.

Models (Semantics)

= A model M is defined as:
= Domain S; set of elements.
= Interpretation, M : S" —S for each f e Z¢ with arity(f) = n
= Interpretation PM < S" for each P e T, with arity(P) = n
= Assignment xM e S for every variable x € V/

= A formula ¢ is true in a model M if it evaluates to
true under the given interpretations over the
domain S.

= Mis a model for the theory T if all sentences of T
aretrue in M.

= A formula ¢(x) is T-valid in a theory
Tif V x o(x) € T. That s, ¢(x) evaluates
to true in every model M of T.

= T-validity:

Er o(X)

8/4/2008

Theories

= A (first-order) theory T (over signature 3) is a set of
(deductively closed) sentenes (over X and V)

= Let DC(I') be the deductive closure of a set of
sentencesT.
= Forevery theory T, DC(T) =T

= Atheory T is constistent if false # T

= We can view a (first-order) theory T as the class of
all models of T (due to completeness of first-order
logic).

T-Satisfiability

= Aformula ¢(x) is T-satisfiable in a theory
T if there is a model of DC(T U 3 x ¢(x)).
That is, there is a model M for T in
which ¢(x) evaluates to true.

= Notation:

M &1 p(x)

Checking validity

~ Checking the validity of ¢ in a theory T:

¢ is T-valid
= T-unsat: -
= T-unsat: Vx3Iyvz3iu. ¢ (prenex of —@)
= T-unsat: vxVz. §[f(x),g(xz)] (skolemize)
< T-unsat: ¢[f(a;).g(@,by)] A ... (instantiate)

A ¢[f(an),g(an,bn] (D if compactness)
= T-unsat: 01V .. Vo (DNF)

where each ¢, is a conjunction.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

30

Checking Validity — the morale

= Theory solvers must minimally be able to

= check unsatisfiability of conjunctions of
literals.

Clauses — CNF conversion

p:X=5&(y<3vz=Xx)
Equi-satisfiable CNF formula

@' (=pvX=5)A(pv—Xx=5)A
(=pvy<3vz=x)A
(pv—y<3)A(pv—z=x)

Clauses - CNF

= Main properties of basic CNF

= Result Fis a set of clauses.
= @ is T-satisfiable iff cnf(¢) is.
= size(cnf(g)) < 4(size(p))

* @ < 3 paycnf(e)

8/4/2008

Clauses — CNF conversion

We want to only work with formulas in Conjunctive
Normal Form CNF.

@:X=5<(y<3vzZ=X) isnotinCNF

Clauses — CNF conversion
cnf(g) =let (q,F) = cnf'(p)ing A F

cnf'(a) = (a, true)

cnf'(p A @) =let(qg,F,) = cnf'(o)
(r, Fp) = enf'(¢)
p = fresh Boolean variable
in
P FiAFoA(=pvg)a
(=pvia
(—r p V= q V= r))

Exercise: cnf'(¢ v ¢), cnf'(¢ <> ¢), cnf'(= @)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

31

8/4/2008

DPLL - dassrgue Modem DPLL — as transitions

= Incrementally build a model M for a CNF formula F (set of = Maintain states of the form:
clauses). = M| F - during search
= Initially M is the empty assignment * MI|[F||C - for backjumping

© M a partial model, F are clauses, C is a clause.
© Propagate: M: M(r) « false
» if (p v—q v—r) € F, M(p) = false, M(q) = true

= Decide M||F =M/?|| F ifl eF\M

» Decide M(p) « true or M(p) < false, dis a decision marker
= if pis not assigned.

° o

o Backtrack: PropagateM | F = MIC|| F

o if (p v—q v—r) € F, M(p) = false, M(q) = M(r)=true, (e.g. M 1 =C) il cCeFEC=(C vl MEr—C
, L= g T

RN 90w te0 Mﬁm h
esearc

Modem DPLL — as transitions —or .h'

&
|

» ConflictM || F =M || F|| C ifCe FME; —C

® LearnM || F||C=>M| FC| C ie addCtoF

» Resolve Mp©) || F||[Cv -p =M || F||CvC r / / =
DFPLL S)

= SkipMp ||[F[[C=M]| F||C if-leC

= Backjump MM'/?| F || C = M-I|| F

if —/eC and M’ does not intersect with —C

onLe

= Congruence closure just checks satisfiability —
of conjunction of literals. Recall Conflict:

= How does this fit together with Boolean * Conflict M| F = M| F|| C if CeF, M= ~C

search DPLL?
A version more useful for theories:

= DPLL builds partial model M incrementally
= Use M to build C* e Conflict M ||F =M || F||C if Cc-M, = C

= Afterevery Decision or Propagate, or
= When F is propositionally satisfied by M.

= Check that disequalities are satisfied.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

32

E - conflicts

Example
» M = fff(a) = a, g(b) = ¢, fffff(a)= a, a =f(a)

* = C = fff(a) = a, fffff(a)=a, a #f(a)
* E¢fffla)=avfffffla)=a va = f(a)

= Use C as a conflict clause.

8/4/2008

Approaches to linear arithmetic

= Fourier-Motzkin:
= Quantifier elimination procedure
Ix(t<ax At'<bxacx <t') <ct <at'act’ <bt”
= Polynomial for difference logic.

= Generally: exponential space, doubly exponential
time.

= Simplex:
» Worst-case exponential, but
= Time-tried practical efficiency.
= Linear space

Microsoft:

. “ZIY g0 | WD 160 []
et e Research

Nelson-Oppen procedure

Initial state: L is set of literals over £, U X,
Purify: Preserving satisfiability,

convert Linto L' = L; U L, such that

L; eT(ELV), Ly e T(Z,V)

SoL; MLy = Vihaea SV
Interaction:

Guess a partition of Vgareq

Express the partition as a conjunction of equalities.
Example, {X; }, { X2, X3 }, { X4 } is represented as:
WIX] 7 Xg AX] 7 Xg AXp # X4 AXp = X3

Component Procedures:
Use solver 1 to check satisfiability of L; Ay
Use solver 2 to check satisfiability of L, Ay

/) D9 f . . g 9 ,
Arrtnimetic
T "Research

|
=TT 0 e hl

Comoining
Theory Solvers

NO — reduced guessing

= Instead of guessing, we can often deduce the
equalities to be shared.

= Interaction: T, A [;EXx =y
then add equality to y.

= If theories are convex, then we can:
» Deduce all equalities.
= Assume every thing not deduced is distinct.
= Complexity: O(n* x T,(n) x T,(n)).

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

33

8/4/2008

Model-based combination Model-based combination

= Reduced guessing is only complete for convex * Backjumping is cheap with modern DPLL:
theories.
= If B(x) = B(y), then x, y are equal in arithmetical
= Deducing all implied equalities may be expensive. model.
= Example: Simplex — no direct way to extract from just
boundsand B

= So let's add x = y to v, but allow to backtrack
from guess.
= But: backtracking is pretty cheap nowadays:

= If B(x) = B(y), then x, y are equal in arithmetical . L .
component. In general: if M; is the current model

° M; E x = y then add literal (x = y)d

wveew m "Research
ML Theory of arrays

» Functions: X; = { read, write }
» Predicates: Zp = { = }
= Convention afi] means: read(a,i)

/X gy '~
C fff_/y_) = Non-extensional arrays Tj:

° va, i v.write(a,iv)[i] =v
° va, i j, v.i=j = writea,v)[j] = alj

= Extensional arrays: Tg, = T, +
° va, b. (Vi afi] = b[i]) =a=>b)

o o - —Tx 90 |ud e [Mﬁm h

° LfetL be literals over X = { read, write } K)L_/C_/fffjfjgf_j
» Find M such that: M &= L L
: - ' .y |
= Basic algorithm, reduce to E: 5./.[] fj ﬂ_’gff_/pf_/
= for every sub-term read(a,i), write(b,,v) in L . y_®
= [#j na = b = read(write(bj,v),i) = read(a,i) r ' /
= read(write(bj,v)j) = v ffj Cff Cf_/_/f.j:g
® Find Mg, such that
Mg g L A AssertedAxioms

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 34
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

DPLL(QT) — cute quantifiers

© We can use DPLL(T) for ¢ with quantifiers.

= Treat quantified sub-formulas as atomic
predicates.

= In other words, if Vx.y(x) is a sub-formula if ¢,
then introduce fresh p. Solve instead

o[Vxy(x) « p]

DPLL(QT)

= Suppose DPLL(T) sets p to true

» = any model M for ¢ must satisfy:

M E Vx.y(x)
» = foreverytermt: Mk y(t)
® In general: Ep—- vy

For every term t.

DPLL(QT)

= Suppose DPLL(T) sets p to false

= = any model M for ¢ must satisfy:

M E = Vxy(x)

= = for some sk, M = — y(sk,)

= In general: E—p— = wy(sky)

8/4/2008

DPLL(QT) with E-matching

“Ep-o>y(t) For every term t.

= Approach:
= Add patterns to quantifiers
= Search for instantiations in E-graph.

Va,i,v{ write(a,i,v) } . read(write(a,i,v),i) = v

DPLL(QT)

= Summary of auxiliary axioms:

e Eap——y(sk)
©Ep -y

For fixed, fresh sk,
For every term t.

= Which terms t to use for auxiliary axioms of
the second kind?

DPLL(QT) with E-matching

*Ep-ovyt) For every term t.

= Approach:
= Add patterns to quantifiers
= Search for pattern matches in E-graph.

Va,iv { write(a,i,v) } . read(write(a,iv),i) = v

= Add equality every time there is a write(b,j,w) term in E.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

35

8/4/2008

i '._- Research Main features

1]

Linear real and integer arithmetic.
Fixed-size bit-vectors

> 4 |) ,—' rre Jr o
_./,:) _'_/i _/ _,H[f_/ C_/ _'_.JJf_[_C' = Uninterpreted functions

L]

= Extensional arrays
- - - , = Quantifiers
)/ \/jf_J ijgf = Model generation

= Several input formats (Simplify, SMT-LIB,
Z3, Dimacs)

Extensive API (C/C++, .Net, OCaml) ...
Research

L]

m—EC Supporting material

e Favortes | #8 Custorize ks

e % W Yahoo! B3 Test @23 % B tmuiste 7] % =) < 0 v rPagew DTookv @y &

Home o Docs » Downlood o Moll » FAQ o Awards o Status o MSR

An Efficient SMT Solver

Introduction

> http://research.microsoft.com/projects/z3/documentation.html

« Introduction

« Documentation

d
« Publications and Slides

= Applications

'Research 'Research

Theories for (n = 21 n <= 51 ntt) (Given arrays:
prince (o
otz = 23_mk_context (cfg) : boolaifbool]
. oolal[bool];
Bit-Vectors bool type = a3_mk_bool type(cty): .
LY mk_boal_typ boola2[bool]
R arcay_typs = I3 mk_arvaj_typs(ctx bosl types bool typeli o0 3o I]l
ewriting oola3[bool];
Simplification Arithmetic rays */ boola4[bool];
z3_symbol = = 23 mk_int_symbol (ctx, i):
al1] = 23wk const (cta, =, array typs): All can be distinct.
1]
Arrays
ert distinct(al0l, alnl) */ :
E-matching Core Theory _mk_distinct (ctx, n, &) Add:
Partial orders princf . 23 ast_to_string(ctx, d1):
23_assart_cnetr(ctxz, d): bool as[bool];

te. is = able if n < 5 */
Tuples (23_chack (ctx) 1_false) Two of al,..,a5 must
printf(y nli
SAT solver be equal.

23_del_context (ctx)

'Research

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. 3 6
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html
http://research.microsoft.com/projects/z3/documentation.html

Example: SMT-LIB

(benchmark integer-linear-arithmetic (benchmark array

:status sat :logic QF_AUFLIA

‘logic QF_LIA :status unsat

:extrafuns ((x1 Int) (x2 Int) (x3 Int) :extrafuns ((a Array) (b Array) (c Array))

(x4 Int) (x5 Int)) :extrafuns ((i Int) (j Int))

formula (and (>= (- x1 x2) 1)
(<= (-x1x2)3)
(= x1 (+ (*2x3) x5))

formula (and
(= (store aiv)b)

(= x3 x5) (= (storeajw)c)
(= x2 (* 6 x4))) (= (select b j) w)
) (= (select ci) v)
(not (= b q)

SMT-LIB syntax - basics

» Logics:
» QF_UF — Un-interpreted functions. Built-in
sort U
= QF_AUFLIA — Arrays and Integer linear
arithmetic.

= Built-in Sorts:
= Int, Array (of Int to Int)
= Built-in Predicates:
° <=,>=,<,>,
= Built-in Functions:
° +,* - select, store.
= Constants:0, 1, 2, ...

Quantifiers

Quantified formulas in SMT-LIB:

° fmla =
| orallbound* fmla)
| (exists bound* fmla)
© Bound = (idsort-id)

Q: I want f to be an injective function. Write an axiom that forces f to be
injective.

Patterns: guiding the instantiation of quantifiers (Lecture 5)

° fmla =
| ¢ orall(’xA

B) fmla :pat { term })
| (exists (?x A)

B) fmla :pat { term })

Q: what are the patterns for the injectivity axiom?

SMT-LIB syntax — basics

= benchmark := (benchmark name
[:status (sat | unsat | unknown)]
‘logic logic-name
declaration®)
= declaration :=extrafuns (func-decl*)
| extrapreds (pred-decl*)
| extrasorts (sort-decl*)
| :assumption fmla
| formula fmla

= sort-decl =id - identifier
= func-decl = id sort-decl* sort-decl - name of function, domain, range
= pred-decl id sort-decl* - name of predicate, domain

= fmla z= (and fmla*) | (or fmla*) | (not fmla)
| (if_then_else fmla fmla fmla) | (= term term)
| (implies fmla fmla) (iff fmla fmla) | (predicate term*)

o Term = (ite fmla term term)
| (id term*) - function application
id - constant

8/4/2008

SMT-LIB —encodings

= Q: There is no built-in function for max or
min. How do | encode it?

= (max xy) is the same as (ite (> x y) X y)

= Also: replace (max x y) by fresh constant
max_x_y add assumptions:
:assumption (implies (> x y) (= max_x_y x))
:assumption (implies (<= xy) (= max_x_y y))

= Q: Encode the predicate (even n), that is
true when n is even.

Using the Z3 (managed) API

open Microsoft.Z3
open System.Collections.Generic
open System

Create a context z3:

let par = new Config()
do par.SetParamValue("MODEL", "true")
let z3 = new TypeSafeContext(par)

let check (fmla) =

23.Push(); Check a f I
z3.AssertCnstr(fmla); eck e tormia
(match z3.Check() with _Push

| LBool.False -> Pn_nttpn_ntf "unsat\n" _AssertCnstr

| LBool.True -> Printf.printf "sat\n" _Check

| LBool.Undef -> Printf.printf “unknown\n" -Pop

| _-> assert false);
z3.Pop(1ul)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

37

Using the Z3 (managed) API

=)xy = z3.MkEq(xy)
>)xy = z3.Mkimplies(x,y)
)

let &8)xy = z3.MkAnd(xy) Declaring z3 shortcuts,

constants and functions

let neg x = z3.MkNot(x)
leta = z3.MkType("a”)

let f_decl = z3.MkFuncDecl("f",a,a)
let x = z3.MkConst("x",a)

Proving a theorem

letfx = z3.MkApp(f_declx)

let fmlal = ((x === f(f(f(f(f(fx))))) && (x === f(f(f x)))) ==> (x === (f x))
do check (neg fmlal)

(benchmark euf compared to
:logic QF_UF

:extrafuns ((f U U) (x U))

formula (not (implies (and (= x (f(f(F(f(f x)))) (= x (FCF(F X)) (= x (X))

8/4/2008

Enumerating models

We want to find models for

2<i;<5A1<i, <7TA-1<i, <17 A

0<i+i,+izAl,+iy =1,

But we only care about different i,

Enumerating models

= Representing the problem

void Test() {
. Config par = new Config();
2 < |1 S 5 N par.SetParamValue("MODEL", "true");
z3 = new TypeSafeContext(par);
1< | <7TA intT = z3.MkIntType();
2= i1 = z3.MkConst("i1", i

H i3 = z3.MkConst("i
-1<i; <17 A mmp

. . . z3.AssertCnstr(Num(2) < il & i1l <= Num(5));
0<i,+i, +iy A 23 AssertCnstr(Num(1) < i2 & i2 <= Num(?));
) . . z3.AssertCnstr(Num(-

= z3.AssertCnstr((
I2 + I3 Il Enumerate();
parDispose();
z3.Dispose();

3
3

N
N
N
N

;12 = z3.MkConst("i2",intT);

1) < i3 &i3 <= Num(17));
um(0) <=il +i2 + i3 & Eq(i2 + i3, i1));

Push, Pop

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {
int mid = (lo+hi)/2;
Console.WriteLine("lo: {0}, hi: {1}, mid: {2}",lo,hi,mid);
z3.Push();
z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));
TypeSafeModel model = null;
if (LBool.True == z3.CheckAndGetModel(ref model)) {
lo = model.GetNumeralValuelnt(model.Eval(a));
model.Dispose();
Llse hi = mid; Maximize(i3,-1,17):
23.Pop();
}

return hi;

Enumerating models

Enumeration:

void Enumerate() {

TypeSafeModel model = null;

while (LBool.True == z3.CheckAndGetModel(ref model)) {
model.Display(Console.Out);
int vl = model.GetNumeralValuelnt(model.Eval(il));
TermAst block = Eq(Num(v1),il);
Console.WriteLine("Block {0}", block);
z3.AssertCnstr(!block);
model.Dispose();

}

TermAst Eq(TermAst t1, TermAst t2) { return z3.MkEq(t1,t2);}

TermAst Num(int i) { return z3.MkNumeral(i, intT); }

Push, Pop — but reuse search

int Maximize(TermAst a, int lo, int hi) {
while (lo < hi) {
int mid = (lo+hi)/2;
Console.WriteLine("lo: {0}, hi: {1}, mid: {2}",lo,hi,mid);
z3.Push();
z3.AssertCnstr(Num(mid+1) <= a & a <= Num(hi));
TypeSafeModel model = null;
if (LBool.True == z3.CheckAndGetModel(ref model)) {
lo = model.GetNumeralValuelnt(model.Eval(a));
model.Dispose();
lo = Maximize(a, lo, hi);
}
else hi = mid;
23.Pop();
}

return hi;

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitmenton the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

